Question 1: Write your name and student number.

Solution: Johan Cruijff, 14

Question 2: Consider the language A consisting of all strings over the alphabet \{a, b\} that do not contain bb as a substring. Give a regular expression that describes the language A. As always, justify your answer.

First Solution: Each string in the language A is of the following form:

- It starts with zero or more a’s.
 - This is described by the regular expression a^*.
- Then we see zero or more times a string described by baa^*. This guarantees that every b that is not the rightmost symbol is followed by at least one a.
 - This is described by the regular expression $(baa^*)^*$.
- The string may end with b.
 - This is described by the regular expression $\varepsilon \cup b$.

By concatenating these, we get the regular expression

$$a^* (baa^*)^* (\varepsilon \cup b).$$

Second Solution: You can check that the following regular expression is also correct:

$$(a \cup ba)^* (\varepsilon \cup b).$$

Using Prof. Swift’s result in Question 3, we can write this as

$$(a^* (ba)^*)^* (\varepsilon \cup b).$$

Third Solution: Here is a DFA whose language is the set of all strings in \{a, b\} that contain bb:
If we “flip” the states, then we get a DFA whose language is the set of all strings in \(\{a, b\}^* \) that do not contain \(bb \). Now we can use the technique seen in class to convert this to a regular expression.

Question 3: Let \(R_1 \) and \(R_2 \) be two arbitrary regular expressions over the same alphabet. Professor Taylor Swift claims that the regular expressions
\[
(R_1 \cup R_2)^*
\]
and
\[
(R_1^* R_2^*)^*
\]
describe the same language. If Professor Swift’s claim correct? As always, justify your answer.

Solution: As all Swifties know, Taylor is always right. Giving a formal proof is vey painful: You would have to use induction on \(R_1 \) and then, inside, induction on \(R_2 \). Those of you who come to class know that it is enough to give a proof in English.

Left is contained in right: We show that the language described by \((R_1 \cup R_2)^*\) is contained in the language described by \((R_1^* R_2^*)^*\).

Take an arbitrary string in the language described by \((R_1 \cup R_2)^*\). There is an integer \(k \geq 0 \), such that this string is described by “\(k \) times, do \(R_1 \) or \(R_2 \)”. Think of this as “do \(A_1, A_2, \ldots, A_k \)”, where each \(A_i \) is either \(R_1 \) or \(R_2 \). We show that this is contained in \((R_1^* R_2^*)^*\):

- For \(i = 1, 2, \ldots, k \):
 - if \(A_i = \text{“do } R_1 \text{”} \): We do \(R_1 \) once and \(R_2 \) zero times. This is contained in \(R_1^* R_2^* \).
 - if \(A_i = \text{“do } R_2 \text{”} \): We do \(R_1 \) zero times and \(R_2 \) once. This is contained in \(R_1^* R_2^* \).
- The entire for-loop is contained in \((R_1^* R_2^*)^*\).

Right is contained in left: Now we show that the language described by \((R_1^* R_2^*)^*\) is contained in the language described by \((R_1 \cup R_2)^*\).

Take an arbitrary string in the language described by \((R_1^* R_2^*)^*\). There is an integer \(k \geq 0 \), such that this string is described by “\(k \) times, do \(R_1^* R_2^* \)”. Think of this as “do \(A_1, A_2, \ldots, A_k \)”, where each \(A_i \) is \(R_1^* R_2^* \). We show that this is contained in \((R_1 \cup R_2)^*\):

- For \(i = 1, 2, \ldots, k \):
 - Since \(A_i \) is “do \(R_1^* R_2^* \)”, there are integers \(m_i \geq 0 \) and \(n_i \geq 0 \), such that \(A_i \) is “\(m_i \) times, do \(R_1 \), followed by \(n_i \) times, do \(R_2 \)”. This is contained in “\(m_i + n_i \) times, do \(R_1 \cup R_2 \)”. Thus, \(A_i \) is contained in \((R_1 \cup R_2)^*\).
- The entire for-loop is contained in \((R_1 \cup R_2)^*\).
Question 4: In this question, the alphabet is \{0, 1\}. Let \(A \) be the language consisting of all bitstrings that are the binary representation of an integer at least equal to 40. (Assume that the leftmost bit in the binary representation of a positive integer is 1. For example, the integer 41 in binary is 101001 and not 0101001.) Give a regular expression that describes the language \(A \). As always, justify your answer.

Solution: The solution will be based on the following observations:

- Every integer at least equal to 40 has at least six bits in its binary representation.
- Every integer that has at least seven bits in its binary representation is at least equal to \(2^6 = 64 \) and, therefore, at least equal to 40.
- Every integer at least equal to 40 that has exactly six bits in its binary representation is
 - either \(11**\), where each \(* \) is 0 or 1,
 - or \(101**\), where each \(* \) is 0 or 1.

This leads to the regular expression

\[
1(0 \cup 1)(0 \cup 1)(0 \cup 1)(0 \cup 1)(0 \cup 1)(0 \cup 1)^* \\
\cup \\
11(0 \cup 1)(0 \cup 1)(0 \cup 1)(0 \cup 1) \\
\cup \\
101(0 \cup 1)(0 \cup 1)(0 \cup 1)
\]

Question 5: Use the construction given in class to convert the regular expression

\[
(a \cup bb)^* (ba^* \cup \varepsilon)
\]

to an NFA. Do not simplify your NFA; just apply the construction rules “without thinking”.

Solution: We first consider how the regular expression is “built”:

- Take the regular expression \(a \).
- Take the regular expression \(b \).
- Take the regular expressions \(b \) and \(b \), and turn them into the regular expression \(bb \).
- Take the regular expressions \(a \) and \(bb \), and turn them into the regular expression \(a \cup bb \).
- Take the regular expression \(a \cup bb \), and turn it into the regular expression \((a \cup bb)^* \).
• Take the regular expression a, and turn it into the regular expression a^*.

• Take the regular expressions b and a^*, and turn them into the regular expression ba^*.

• Take the regular expression ε.

• Take the regular expressions ba^* and ε, and turn them into the regular expression $ba^* \cup \varepsilon$.

• Take the regular expressions $(a \cup bb)^*$ and $ba^* \cup \varepsilon$, and turn them into the regular expression $(a \cup bb)^*(ba^* \cup \varepsilon)$.

First, we construct an NFA M_1 that accepts the language described by the regular expression a:

$$M_1$$

Next, we construct an NFA M_2 that accepts the language described by the regular expression b:

$$M_2$$

Next, we apply the concatenate construction to M_2 and M_2. This gives an NFA M_3 that accepts the language described by the regular expression bb:

$$M_3$$

Next, we apply the union construction to M_1 and M_3. This gives an NFA M_4 that accepts the language described by the regular expression $a \cup bb$:

$$M_4$$

Next, we apply the star construction to M_4. This gives an NFA M_5 that accepts the language described by the regular expression $(a \cup bb)^*$:
Next, we apply the star construction to M_1. This gives an NFA M_6 that accepts the language described by the regular expression a^*:

Next, we apply the concatenate construction to M_2 and M_6. This gives an NFA M_7 that accepts the language described by the regular expression ba^*:

Next, we construct an NFA M_8 that accepts the language described by the regular expression ε:

Next, we apply the union construction to M_7 and M_8. This gives an NFA M_9 that accepts the language described by the regular expression $ba^* \cup \varepsilon$:

Finally, we apply the concatenate construction to M_5 and M_9. This gives an NFA M_{10} that accepts the language described by the regular expression $(a \cup bb)^*(ba^* \cup \varepsilon)$:
This was fun eh!

Question 6: Use the construction given in class to convert the following DFA to a regular expression.

Solution: For each state q_i, $i = 0, 1, 2$, we define L_i to be the set of all strings w in $\{a, b\}^*$ such that the path in the state diagram that starts in state q_i and corresponds to w ends in the accept state q_1. We obtain the following set of equations:

\[
L_0 = aL_0 \cup bL_1 \\
L_1 = \varepsilon \cup aL_0 \cup bL_2 \\
L_2 = aL_2 \cup bL_1
\]

Since q_0 is the start state, we need a regular expression for L_0.

We use the following tool to solve these equations:

If $L = BL \cup C$ and $\varepsilon \not\in B$, then $L = B^*C$. \hspace{1cm} (4)

We solve the equations (1), (2), and (3), in the following way: Equation (3) is in the form of (4). This gives

\[
L_2 = a^*bL_1.
\]
By substituting this into (2), we obtain
\[L_1 = \varepsilon \cup aL_0 \cup ba^*bL_1, \]
which we rewrite as
\[L_1 = ba^*bL_1 \cup (\varepsilon \cup aL_0). \]
This equation is in the form of (4). This gives
\[L_1 = (ba^*b)^*(\varepsilon \cup aL_0) = (ba^*b)^* \cup (ba^*b)^*aL_0. \]
By substituting this into (1), we obtain
\[L_0 = aL_0 \cup b (ba^*b)^* \cup b (ba^*b)^*aL_0 = (a \cup b (ba^*b)^*a) L_0 \cup b (ba^*b)^*. \]
This equation is in the form of (4). This gives
\[L_0 = (a \cup b (ba^*b)^*a)^* b (ba^*b)^*. \]

Question 7: Is the language
\[L = \{a^kb^la^m : k \geq 0, \ell \geq 0, m \geq 0, k + \ell + m \geq 5\} \]
regular? As always, justify your answer.

Solution: The language \(L \) is regular. To prove this, we are going to write \(L \) as the union of finitely many languages, each of which is regular.

- For each triple \((x, y, z)\) of non-negative integers for which \(x + y + z = 5 \), consider the regular expression
 \[R(x, y, z) = \underbrace{a \cdots a}_{x} a^* b \underbrace{\cdots b}_{y} a^* b \underbrace{\cdots a}_{z} a^*. \]
 This regular expression describes a regular language. Each string in this language belongs to \(L \).

- In COMP 2804, you have learned that the number of such triples \((x, y, z)\) is equal to \(\binom{5}{2} = 21 \); in particular, this number is finite.

It remains to show that each string in \(L \) is in the language of some regular expression \(R(x, y, z) \).

Let \(k \geq 0, \ell \geq 0, \) and \(m \geq 0 \) be such that \(k + \ell + m \geq 5 \). Consider the string \(a^kb^la^m \).

We may assume without loss of generality that \(m \leq \ell \leq k \). Observe that \(k \geq 2 \).

- Assume that \(k = 2 \). Then \(\ell = 2 \) and \(m \geq 1 \). The string \(a^kb^la^m \) is in the language described by the regular expression \(R(2, 2, 1) \).
• Assume that $k = 3$. Then $\ell \geq 1$.

 – Assume that $\ell = 1$. Then $m = 1$. The string $a^k b^\ell a^m$ is in the language described by the regular expression $R(3, 1, 1)$.

 – Assume that $\ell \geq 2$. The string $a^k b^\ell a^m$ is in the language described by the regular expression $R(3, 2, 0)$.

• Assume that $k = 4$. Then $\ell \geq 1$. The string $a^k b^\ell a^m$ is in the language described by the regular expression $R(4, 1, 0)$.

• Assume that $k \geq 5$. The string $a^k b^\ell a^m$ is in the language described by the regular expression $R(5, 0, 0)$.

Question 8: For any string $w \in \{a, b\}^*$, we denote the number of a’s in w by $N_a(w)$, and we denote the number of b’s in w by $N_b(w)$. Consider the language

$$A = \{w \in \{a, b\}^* : N_a(w) = N_b(w)\}.$$

Assume that we are going to use the Pumping Lemma to prove that A is not regular. As always, we assume that A is regular. The Pumping Lemma gives us a pumping length p.

1. Explain in a few sentences why we may assume that p is even.

2. Given that p is even, can we choose the string $s = a^{p/2}b^{p/2}$ to obtain a contradiction?

Solution: For the first part, the Pumping Lemma gives us an integer p such that every string in A having length at least p can be “pumped”. This implies that every string in A having length at least $p + 1$ can also be “pumped”. If p happens to be odd, then we can take $p + 1$ to be the pumping length.

For the second part, we assume that p is even. Consider the string $s = a^{p/2}b^{p/2}$. Then $s \in A$ and $|s| = p$. By the Pumping Lemma, we can write $s = xyz$, where

1. $y \neq \epsilon$,

2. $|xy| \leq p$, and

3. $xy^iz \in A$, for all $i \geq 0$.

It may happen that $y = a^k b^k$ for some k with $1 \leq k \leq p/2$. In this case, for every $i \geq 0$, the string xy^iz contains as many a’s as b’s. Thus, each such string is in A. In other words, this string s is the wrong string.

Question 9: Use the Pumping Lemma to prove that the following languages are not regular. In all cases, the alphabet is $\{a, b\}$.

1. $\{a^k b^\ell a^m : k \geq 0, \ell \geq 0, m \geq 0, \text{ and } k = \ell \text{ or } \ell \neq m\}$.
2. \(\{a^mb^n : m \geq 0, n \geq 0, \ m + n \text{ is a prime number} \} \).

Solution: First, we do

\[
A = \{a^k b^\ell a^m : k \geq 0, \ell \geq 0, m \geq 0, \text{ and } k = \ell \text{ or } \ell \neq m \}.
\]

Assume the language \(A \) is regular. Let \(p \geq 1 \) be the pumping length, as given by the Pumping Lemma. Let \(s = a^p b^p a^p \). Then \(s \in A \) and \(|s| = 3p \geq p \). By the Pumping Lemma, we can write \(s = xyz \), where

1. \(y \neq \epsilon \),
2. \(|xy| \leq p \), and
3. \(xy^iz \in A \), for all \(i \geq 0 \).

Since \(|xy| \leq p \), the string \(y \) contains only \(a \)'s from the left block of \(a \)'s in \(s \). Since \(y \neq \epsilon \), the string \(y \) contains at least one \(a \). Let \(k = |y| \), so that \(y = a^k \). Note that \(1 \leq k \leq p \). By the Pumping Lemma, the string

\[
s' = xy^2z = a^{p+k} b^p a^p
\]

is in \(A \). However, \(s' \) is not in \(A \), because the left \(a \)-block is longer than the \(b \)-block, and the \(b \)-block has the same length as the right \(a \)-block. Thus, we have a contradiction, and we can conclude that \(A \) is not regular.

Next we do

\[
B = \{a^m b^n : m \geq 0, n \geq 0, \ m + n \text{ is a prime number} \}.
\]

Since the value of \(n \) can be zero, we can copy the proof done in class: Take the string \(s = a^m b^0 = a^m \), where \(m \) is a prime number with \(m \geq p \) and \(p \) is the pumping length .

Here is a different proof (it is basically the same). Assume the language \(B \) is regular. Let \(p \geq 1 \) be the pumping length, as given by the Pumping Lemma. Let \(n \) be a prime number such that \(n \geq p \). Let \(s = a^p b^{n-p} \). Then \(s \in B \) and \(|s| = n \geq p \). By the Pumping Lemma, we can write \(s = xyz \), where

1. \(y \neq \epsilon \),
2. \(|xy| \leq p \), and
3. \(xy^iz \in B \), for all \(i \geq 0 \).

Since \(|xy| \leq p \), the string \(y \) contains only \(a \)'s. Since \(y \neq \epsilon \), the string \(y \) contains at least one \(a \). Let \(k = |y| \), so that \(y = a^k \). Note that \(1 \leq k \leq p \). By the Pumping Lemma, for each \(i \geq 0 \), the string

\[
xy^iz = a^{p+(i-1)k} b^{n-p}
\]
is in \(B \). Therefore, for each \(i \geq 0 \),
\[
p + (i - 1)k + n - p = (i - 1)k + n
\]
is a prime number. However, for \(i = n + 1 \) we have
\[
(i - 1)k + n = nk + n = n(k + 1),
\]
which is not a prime number because \(n \geq 2 \) and \(k + 1 \geq 2 \). Thus, we have a contradiction, and we can conclude that \(A \) is not regular.

Question 10: In this question, the alphabet is \(\{a, b\} \).

1. Explain in a few sentences why the language
\[
\{a^n b^n : n \geq 1\}
\]
is not regular, where the “bar” denotes the complement. You may use any result that was shown in class.

2. Explain in a few sentences why every finite language is regular. You may use any result that was shown in class.

3. Give an example of two languages \(A \) and \(B \), such that \(A \) is finite (and, thus, regular), \(AB \) is regular, but \(B \) is not regular.

4. Give an example of two languages \(A \) and \(B \), such that \(A \) is infinite and regular, \(AB \) is regular, but \(B \) is not regular.

Solution: For the first part:

- We have seen in class that \(\{a^n b^n : n \geq 1\} \) is not regular.

- We have seen in class that the complement of a regular language is regular. This implies that the complement of a non-regular language is non-regular.

For the second part:

- Let \(A \) be the language consisting of one single string, say, \(w_1 w_2 \ldots w_n \). Then \(A \) is regular, because it is described by the regular expression \(w_1 w_2 \ldots w_n \).

- Let \(B \) be any finite language, consisting of, say, \(N \) strings. Then, \(B \) is the union of \(N \) many one-string languages. Since the union of finitely many regular languages is regular, it follows that \(B \) is regular.

For the third part, take \(A = \emptyset \) and take for \(B \) your favorite non-regular language. Note that \(AB = \emptyset \), which is regular.

Alternatively, we can take \(A = \{\varepsilon, a\} \) and take for \(B \) the non-regular language in the first part. You can check that \(AB = \{a, b\}^* \), which is regular.

For the fourth part, take \(A = \{a, b\}^* \) and \(B = \{a^n b^n : n \geq 0\} \). You can check that \(AB = \{a, b\}^* \), which is regular.