Question 1: Write your name and student number.

Solution: Karim Benzema, 9

Question 2: Consider the language A consisting of all strings over the alphabet $\{a, b\}$ that contain both aba and bab as substrings. Give a regular expression that describes the language A. As always, justify your answer.

Solution: Each string in the language A is of one of the following four types:

- It contains the string $abab$.
 These start with a string in $\{a, b\}^*$, followed by $abab$, and end with a string in $\{a, b\}^*$.

- It contains the string $baba$.
 These start with a string in $\{a, b\}^*$, followed by $baba$, and end with a string in $\{a, b\}^*$.

- aba is to the left of bab and they are not overlapping.
 These start with a string in $\{a, b\}^*$, followed by aba, then a string in $\{a, b\}^*$, then bab, and end with a string in $\{a, b\}^*$.

- bab is to the left of aba and they are not overlapping.
 These start with a string in $\{a, b\}^*$, followed by bab, then a string in $\{a, b\}^*$, then aba, and end with a string in $\{a, b\}^*$.

This gives the regular expression

$$(a\cup b)^*abab(a\cup b)^*\cup(a\cup b)^*baba(a\cup b)^*\cup(a\cup b)^*aba(a\cup b)^*bab(a\cup b)^*\cup(a\cup b)^*bab(a\cup b)^*aba(a\cup b)^*$$

Question 3: Let A be the language over the alphabet $\{a, b\}$ that is described by the regular expression aa. Give a regular expression that describes the complement \overline{A} of A. As always, justify your answer.

Solution: The language described by the regular expression aa is $A = \{aa\}$. We need a regular expression for its complement, i.e., all strings that are not equal to aa.

Each string in \overline{A} is of one of the following three types:

- Any string of length at most one.
- It has length exactly two and is not equal to aa.
- It has length at least three.

$$(a\cup b)^*aa(a\cup b)^*\cup(a\cup b)^*baba(a\cup b)^*\cup(a\cup b)^*aba(a\cup b)^*bab(a\cup b)^*\cup(a\cup b)^*bab(a\cup b)^*aba(a\cup b)^*$$
This gives the regular expression
\[\varepsilon \cup a \cup b \cup ab \cup ba \cup bb \cup (a \cup b)(a \cup b)(a \cup b)^*\]

Question 4: In this question, the alphabet is \{a, b\}. A block in a string is a maximal substring all of whose symbols are the same. For example, the string aaabbaa has three blocks: aaa, bb, and aa.

Let \(A \) be the language of all strings \(w \) such that every block in \(w \) has length two or three. The empty string is in \(A \), as is the string aaabbaa.

Give a regular expression that describes the language \(A \). As always, justify your answer.

Solution: Throughout the solution, a block always refers to a block of length two or three.

Each string in the language \(A \) is of one of the following two types:

- The string starts with an \(a \)-block, and the \(a \)-blocks and \(b \)-blocks alternate. The total number of blocks can be even or odd.
- The string starts with a \(b \)-block, and the \(b \)-blocks and \(a \)-blocks alternate. The total number of blocks can be even or odd.

This gives the regular expression
\[((aa \cup aaa)(bb \cup bbb))^*(\varepsilon \cup aa \cup aaaa) \cup ((bb \cup bbb)(aa \cup aaaa))^*(\varepsilon \cup bb \cup bbbb)\]

Note that \(\varepsilon \) is in the language described by this regular expression.

Question 5: Use the construction given in class to convert the regular expression
\[a \cup ba^*\]
to an NFA. Do not simplify your NFA; just apply the construction rules “without thinking”.

Solution: We first consider how the regular expression is “built”:

- Take the regular expression \(a \).
- Take the regular expression \(b \).
- Take the regular expression \(a \), and turn it into the regular expression \(a^* \).
- Take the regular expressions \(b \) and \(a^* \), and combine them into the regular expression \(ba^* \).
- Take the regular expressions \(a \) and \(ba^* \), and combine them into the regular expression \(a \cup ba^* \).
First, we construct an NFA M_1 that accepts the language described by the regular expression a:

$$M_1\quad \xrightarrow{a}\quad$$

Next, we construct an NFA M_2 that accepts the language described by the regular expression b:

$$M_2\quad \xrightarrow{b}\quad$$

Next, we apply the star construction to M_1. This gives an NFA M_3 that accepts the language described by the regular expression a^*:

$$M_3\quad \xrightarrow{\varepsilon}\quad \xrightarrow{a}\quad \xrightarrow{\varepsilon}\quad$$

Next, we apply the concatenate construction to M_2 and M_3. This gives an NFA M_4 that accepts the language described by the regular expression ba^*:

$$M_4\quad \xrightarrow{b}\quad \xrightarrow{\varepsilon}\quad \xrightarrow{\varepsilon}\quad \xrightarrow{a}\quad \xrightarrow{\varepsilon}\quad$$

Finally, we apply the union construction to M_1 and M_4. This gives an NFA M_5 that accepts the language described by the regular expression $a \cup ba^*$:

$$M_5\quad \xrightarrow{a}\quad \xrightarrow{\varepsilon}\quad \xrightarrow{\varepsilon}\quad \xrightarrow{b}\quad \xrightarrow{\varepsilon}\quad \xrightarrow{\varepsilon}\quad \xrightarrow{\varepsilon}\quad \xrightarrow{a}\quad \xrightarrow{\varepsilon}\quad$$

Question 6: Use the construction given in class to convert the following DFA to a regular expression.
Solution: For each state $i = 1, 2, 3$, we define L_i to be the set of all strings w in $\{a, b\}^*$ such that the path in the state diagram that starts in state i and corresponds to w ends in the accept state. We obtain the following set of equations:

$$
L_1 = aL_1 \cup bL_2 \\
L_2 = aL_3 \cup bL_2 \\
L_3 = \epsilon \cup aL_1 \cup bL_2
$$

Since 1 is the start state, we need a regular expression for L_1.

We use the following tool to solve these equations:

If $L = BL \cup C$ and $\epsilon \notin B$, then $L = B^*C$. (4)

We solve the equations (1), (2), and (3), in the following way: By substituting (3) into (2), we obtain

$$
L_2 = a(\epsilon \cup aL_1 \cup bL_2) \cup bL_2,
$$

which we rewrite as

$$
L_2 = (ab \cup b)L_2 \cup (a \cup aaL_1). \quad (5)
$$

This equation is in the form of (4), with $L = L_2$, $B = (ab \cup b)$, and $C = (a \cup aaL_1)$. Since ϵ is not in the language described by B, we can apply (4) to (5), and we obtain

$$
L_2 = (ab \cup b)^*(a \cup aaL_1),
$$

which we rewrite as

$$
L_2 = (ab \cup b)^*a \cup (ab \cup b)^*aaL_1. \quad (6)
$$

By substituting (6) into (1), we obtain

$$
L_1 = aL_1 \cup b((ab \cup b)^*a \cup (ab \cup b)^*aaL_1),
$$

which we rewrite as

$$
L_1 = (a \cup b(ab \cup b)^*aa) L_1 \cup b(ab \cup b)^*a. \quad (7)
$$

This equation is in the form of (4), with $L = L_1$.

$$
B = (a \cup b(ab \cup b)^*aa)
$$
and $C = b(ab \cup b)^*a$. Since ϵ is not in the language described by B, we can apply (4) to (7), and we obtain

$$L_1 = (a \cup b(ab \cup b)^*aa)^*b(ab \cup b)^*a.$$

Question 7: Use the Pumping Lemma to prove that the following languages are not regular. In all cases, the alphabet is $\{a, b\}$.

1. $\{a^n u : n \geq 0, u \in \{a, b\}^*, |u| \leq n\}$.
2. $\{a^m b^n : m \geq 0, n \geq 0, n \text{ is a multiple of } m\}$.
3. $\{a^m b^n : m \geq 0, n \geq 0, m \text{ is a multiple of } n\}$.

 (a) Professor Justin Bieber claims that this can be proven by taking the string $s = a^p b^p$, where p is the Pumping length. Show that Professor Bieber is (again!) wrong.

 (b) Now give a correct proof.
4. $\{uv : u \in \{a, b\}^*, v \in \{a, b\}^*, u = v^R\}$.

Note: If $v = v_1 v_2 \cdots v_n$ is a string, then $v^R = v_n v_{n-1} \cdots v_1$ is the reverse of v.

Solution: First, we do

$$A = \{a^n u : n \geq 0, u \in \{a, b\}^*, |u| \leq n\}.$$

Assume the language A is regular. Let $p \geq 1$ be the pumping length, as given by the Pumping Lemma. Let $s = a^p b^p$. We can write $s = a^p u$, where $u = b^p$. Since $|u| \leq p$, the string s is in A. Also, $|s| = 2p \geq p$. Hence, by the Pumping Lemma, we can write $s = xyz$, where

1. $y \neq \epsilon$,
2. $|xy| \leq p$, and
3. $xy^i z \in A$, for all $i \geq 0$.

Since $|xy| \leq p$, the string y contains only as. Since $y \neq \epsilon$, the string y contains at least one a. Let $k = |y|$, so that $y = a^k$. Note that $1 \leq k \leq p$. By the Pumping Lemma, the string

$$s' = xy^0 z = a^{p-k} b^p$$

is in A. Hence, there is a j such that $s' = a^j u$, where $u \in \{a, b\}^*$ and $|u| \leq j$.

However, since $j \leq k - p$, we must have $|u| \geq p > p - k \geq j$. Thus, s' is not in A. So we have a contradiction, and we can conclude that A is not regular.
Next we do
\[B = \{ a^m b^n : m \geq 0, n \geq 0, \text{ } n \text{ is a multiple of } m \}. \]
Assume the language \(B \) is regular. Let \(p \geq 1 \) be the pumping length, as given by the
Pumping Lemma. Let \(s = a^p b^p \). Since \(p \) is a multiple of \(p \), the string \(s \) is in \(B \). Also,
\(|s| = 2p \geq p \). Hence, by the Pumping Lemma, we can write \(s = xyz \), where

1. \(y \neq \epsilon \),
2. \(|xy| \leq p \), and
3. \(xy^i z \in B \), for all \(i \geq 0 \).

Since \(y \neq \epsilon \) and \(|xy| \leq p \), the string \(y \) has the form \(y = a^k \), for some integer \(k \) with \(1 \leq k \leq p \).

Consider the string
\[s' = xy^2 z = xy yz = a^{p+k} b^p. \]
By the Pumping Lemma, \(s' \) is in \(B \). However, since \(p \) is not a multiple of \(p+k \), the string
\(s' \) is not in \(B \). So we have a contradiction, and we can conclude that \(B \) is not regular.

Next we do
\[C = \{ a^m b^n : m \geq 0, n \geq 0, \text{ } m \text{ is a multiple of } n \}. \]
We first show why Professor Bieber should fail COMP 3803: The string \(s = a^p b^p \) is in \(C \)
because \(p \) is a multiple of \(p \). Also \(|s| = 2p \geq p \). Hence, by the Pumping Lemma, we can write \(s = xyz \), where

1. \(y \neq \epsilon \),
2. \(|xy| \leq p \), and
3. \(xy^i z \in C \), for all \(i \geq 0 \).

Since \(y \neq \epsilon \) and \(|xy| \leq p \), the string \(y \) has the form \(y = a^k \), for some integer \(k \) with \(1 \leq k \leq p \).

\textbf{It may happen that } \(k = p \), i.e., \(x = \epsilon \) and \(y = a^p \). In this case, for every \(i \geq 0 \),
\[xy^i z = a^{ip} b^p. \]
Since \(ip \) is a multiple of \(p \), all these strings \(xy^i z \) are in \(C \). In other words, we do not get a
contradiction.

Here are two correct proofs.

\textbf{First proof:} Assume the language \(C \) is regular. The reverse language \(C^R \), obtained by
reversing all strings in \(C \) is equal to
\[C^R = \{ b^n a^m : m \geq 0, n \geq 0, \text{ } m \text{ is a multiple of } n \}. \]
We have seen in class that the reverse of a regular language is also regular. Thus, \(C^R \) is
regular. But, by swapping \(a \) and \(b \), \(C^R \) is equal to \(B \), the language in part 2. Thus, \(B \) is
regular. This is a contradiction. We conclude that \(C \) is not regular.
Second proof: Assume the language C is regular. Let $p \geq 1$ be the pumping length, as given by the Pumping Lemma. Let $s = a^{p+1}b^{p+1}$. Since $p + 1$ is a multiple of $p + 1$, the string s is in B. Also, $|s| = 2p + 2 \geq p$. Hence, by the Pumping Lemma, we can write $s = xyz$, where

1. $y \neq \epsilon$,
2. $|xy| \leq p$, and
3. $xy^iz \in C$, for all $i \geq 0$.

Since $y \neq \epsilon$ and $|xy| \leq p$, the string y has the form $y = a^k$, for some integer k with $1 \leq k \leq p$. Consider the string

$$s' = xy^2z = xyyz = a^{p+1+k}b^{p+1}.$$

By the Pumping Lemma, s' is in C. Thus, $p + 1 + k$ is a multiple of $p + 1$. However,

$$p + 1 < p + 1 + k \leq p + 1 + p < 2(p + 1),$$

i.e., $p + 1 + k$ is strictly between two consecutive multiples of $p + 1$. It follows that $p + 1 + k$ is not a multiple of $p + 1$. So we have a contradiction, and we can conclude that C is not regular.

Finally, we do

$$D = \{ uv : u \in \{a, b\}^*, v \in \{a, b\}^*, u = v^R \}.$$

Assume the language D is regular. Let $p \geq 1$ be the pumping length, as given by the Pumping Lemma. Let $s = a^pbpa^p$. Since the first half is the reverse of the second half, the string s is in D. Also, $|s| = 2p + 2 \geq p$. Hence, by the Pumping Lemma, we can write $s = xyz$, where

1. $y \neq \epsilon$,
2. $|xy| \leq p$, and
3. $xy^iz \in D$, for all $i \geq 0$.

Since $|xy| \leq p$, the string y has the form $y = a^k$, for some integer k with $1 \leq k \leq p$. Consider the string

$$s' = xy^2z = xyyz = a^{p+k}bba^p.$$

By the Pumping Lemma, s' is in D. Note that the reverse of any string in D is also in D. It is clear, however, that the reverse of s' is not in D. This is a contradiction. So we have a contradiction, and we can conclude that D is not regular.

Question 8: Consider the language

$$A = \{a^{n^2} : n \geq 0\} \cup \{a^{2n+1} : n \geq 0\};$$

note that the alphabet is $\{a\}$.

In this question, you will prove that A is not regular, but the concatenation AA is regular.
1. Prove that A is not a regular language.

 Hint: IGNORE THIS HINT!!!!!!! What is $A \cap \{a^{2n+1} : n \geq 0\}$?

2. Prove that $AA = \{a^n : n \geq 0\}$.

3. Prove that AA is a regular language.

Solution: SINCE THE HINT IS A PoS, THIS QUESTION WILL NOT BE MARKED.

We start with part 1. Assume the language A is regular. Let $p \geq 1$ be the pumping length, as given by the Pumping Lemma. Let $s = a^{(2p)^2}$, i.e., the string consisting of $(2p)^2 = 4p^2$ many a’s. Then s is a string in A and $|s| = 4p^2 \geq p$. Hence, by the Pumping Lemma, we can write $s = xyz$, where

1. $y \neq \epsilon$,
2. $|xy| \leq p$, and
3. $xy^iz \in A$, for all $i \geq 0$.

Since $y \neq \epsilon$ and $|xy| \leq p$, the string y has the form $y = a^k$, for some integer k with $1 \leq k \leq p$. Consider the string $s' = xy^3z = xyyyz = a^{(2p)^2+2k}$.

By the Pumping Lemma, s' is in A. We now argue that s' is not in A. First, the length of s' is even. Second $(2p)^2 < (2p)^2 + 2k \leq (2p)^2 + 2p < (2p + 1)^2$ and, thus, the length of s' is not a square (because it is strictly between two consecutive squares). So we have a contradiction, and we can conclude that A is not regular.

For part 2., it is clear that $AA \subseteq \{a^n : n \geq 0\}$. We show that $\{a^n : n \geq 0\} \subseteq AA$:

- Since $\epsilon \in A$, the string $a^0 = \epsilon \epsilon$ is in AA.
- Let $n \geq 0$. Since both ϵ and a^{2n+1} are in A, the string $a^{2n+1} = \epsilon a^{2n+1}$ is in AA.
- Let $n \geq 2$ be an even integer. Then $n = 1 + (n - 1)$, which is a sum of two odd integers. Since both a and a^{n-1} are in A, the string $a^n = aa^{n-1}$ is in AA.

For part 3., we have just shown that $AA = \{a^n : n \geq 0\}$. Since the regular expression a^* describes AA, this language is regular.