
COMP 3803 — Solutions Assignment 3

Question 1: Write your name and student number.

Solution: Mohamed Salah, 11

Question 2: Consider the context-free grammar G = (V,Σ, R, S), where the set of variables
is V = {S,A,B}, the set of terminals is Σ = {a, b}, the start variable is S, and the rules are
as follows:

S → abB
A → ε | aaBb
B → bbAa

Prove that the language L(G) that is generated by G is equal to

L(G) = {ab(bbaa)nbba(ba)n | n ≥ 0}.

(Remember: To prove that two sets X and Y are equal, you have to prove that X ⊆ Y and
Y ⊆ X.)

Solution: We write
L = {ab(bbaa)nbba(ba)n | n ≥ 0},

so that we have to prove that L = L(G).
First we prove that L ⊆ L(G). If we start with the variable B and apply the rule

B → bbAa followed by the rule A→ aaBb, then we see that

B ⇒ bbAa⇒ (bbaa)B(ba).

If we repeat this n times, then we see that

B
∗⇒ (bbaa)nB(ba)n.

It follows that, for each integer n ≥ 0,

S ⇒ abB
∗⇒ ab(bbaa)nB(ba)n

⇒ ab(bbaa)nbbAa(ba)n

⇒ ab(bbaa)nbbεa(ba)n = ab(bbaa)nbba(ba)n.

This proves that each string in L can be derived from the start variable S. In other words,
this proves that L ⊆ L(G).

It remains to show that L(G) ⊆ L, i.e., no other strings can be derived from the start
variable S.

To derive a string in L(G), we must start with the start variable S. At the start, the
only rule that can be applied is S → abB, after which the only rule that can be applied is
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B → bbAA. At this moment, we apply either the rule A → ε or the rule A → aaBb. In
the first case, we are done. In the second case, we can only apply the rule B → bbAA, after
which we either apply A → ε or A → aaBb. From this, it follows that the only derivations
in the grammar G are the ones given in the proof of the fact that L ⊆ L(G).

Question 3: Give context-free grammars that generate the following languages. For each
case, justify your answer.
(3.1) {an+3bn | n ≥ 0}. The set of terminals is equal to {a, b}.
(3.2) {anbm | n ≥ 0,m ≥ 0, 2n ≤ m ≤ 3n}. The set of terminals is equal to {a, b}.
(3.3) {ambncn | m ≥ 0, n ≥ 0}. The set of terminals is equal to {a, b, c}.

Solution:
We start with

L1 = {an+3bn | n ≥ 0}.
We can write L1 as

L1 = aaaL′1,

where any string in L′1 is either

• empty or

• starts with a, followed by a string in L′1, and ends with b.

This leads to the context-free grammar G = (V,Σ, R, S), where V = {S,A}, Σ = {a, b}, and
R consists of the rules

S → aaaA
A → ε | aAb

Observe that from A, we can derive all strings of the form anbn for some n ≥ 0. From S, we
can derive all strings that start with aaa and are followed by any string that can be derived
from the variable A. Therefore, from S, we can derive all strings in L1 (and nothing else).

Next we do
L2 = {anbm | n ≥ 0,m ≥ 0, 2n ≤ m ≤ 3n}.

Any string in L2 is either

• empty or

• is a non-empty string in which all the a’s are to the left of all the b’s, and for each a,
there are two or three b’s.

This leads to the context-free grammar G = (V,Σ, R, S), where V = {S}, Σ = {a, b},
and R consists of the rules

S → ε | aSbb | aSbbb
It is clear that for each string in L(G), all a’s are to the left of all b’s, and the number of

b’s is at least twice and at most three times the number of a’s.
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It remains to argue that every string in L2 is in L(G). Let u = anbm be an arbitrary
string in L2, where n ≥ 0, m ≥ 0, and 2n ≤ m ≤ 3n. The string u is derived from the start
variable S in the following way:

• Start with S, and apply the rule S → aSbbb exactlym−2n times (note thatm−2n ≥ 0).
This gives

S
∗⇒ am−2nSb3(m−2n).

• Now apply the rule S → aSbb exactly 3n − m times (note that 3n − m ≥ 0). This
gives

S
∗⇒ am−2n

(
a3n−mSb2(3n−m)

)
b3(m−2n).

• Finally, apply the rule S → ε. This gives

S
∗⇒ am−2n

(
a3n−m ε b2(3n−m)

)
b3(m−2n) = anbm = u.

Finally, we do
L3 = {ambncn|m ≥ 0, n ≥ 0}.

Any string in L3

• starts with zero or more a’s, followed by a string of the form bncn, for some n ≥ 0.

This leads to the context-free grammar G = (V,Σ, R, S), where V = {S,X}, Σ = {a, b, c},
and R consists of the rules

S → AX
A → ε | aA
X → ε | bXc

Observe that from A, we can derive all strings of the form am for some m ≥ 0. From X, we
can derive all strings of the form bncn, for some n ≥ 0. Therefore, from S, we can derive all
strings in L3 (and nothing else).

Question 4: Give (deterministic or nondeterministic) pushdown automata that accept the
following languages. For each pushdown automaton, start by explaining the algorithm in
plain English, then mention the states that you are going to use, then explain the meaning
of these states, and finally give the list of instructions.
(4.1) {02n1n | n ≥ 0}.
(4.2) {wwR | w ∈ {0, 1}∗}.
(If w = w1 . . . wn, then wR = wn . . . w1.)

Solution: For the language
{02n1n|n ≥ 0}

we can use a deterministic pushdown automaton. The approach is as follows:
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• Walk along the input string from left to right.

• While reading 0’s: For each 0, push a symbol S onto the stack.

• While reading 1’s: For each 1, pop the top two symbols from the stack. Popping two
symbols is done in two steps: Pop the top symbol and do not move on the input tape;
then again pop the (new) top symbol and make one step to the right on the input tape.

• Tape alphabet Σ = {0, 1}.

• Stack alphabet Γ = {$, S}.

We use three states:

• q0: This is the start state. If we are in this state, then we are reading the block of 0’s.
The stack contains $ at the bottom; the number of S-symbols on the stack is equal to
the number of 0’s read so far.

• q1: We have already seen a 1. If the current symbol on the input tape is a 1, then we
are going to do the first pop.

• q′1: The current symbol on the input tape is a 1; we are going to do the second pop.

The instructions are as follows.

• q00$→ q0R$S (push S onto the stack)

• q00S → q0RSS (push S onto the stack)

• q01$→ q0N$

– Explanation: The input string starts with 1; loop forever and, thus, do not accept.

• q01S → q1NS

– Explanation: We have reached the first 1. We switch to state q1, do not move on
the input tape, and do not modify the stack.

• q0�$→ q0Nε

– Explanation: The input string is empty. We make the stack empty and, thus
terminate and accept.

• q0�S → q0RSS

– Explanation: The input string is non-empty and only contains 0’s; loop forever
and, thus, do not accept.

• q10$→ q1N$
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– Explanation: There is a 0 to the right of a 1; loop forever and, thus, do not accept.

• q10S → q1NS

– Explanation: There is a 0 to the right of a 1; loop forever and, thus, do not accept.

• q11$→ q1N$

– Explanation: Too many 1’s; loop forever and, thus, do not accept.

• q11S → q′1Nε

– Explanation: The first pop for the current 1.

• q1�$→ q1Nε

– Explanation: Make the stack empty, terminate, and accept.

• q1�S → q1NS

– Explanation: Too many 0’s; loop forever and, thus, do not accept.

• q′10$→ cannot happen

• q′10S → cannot happen

• q′11$→ q′1N$

– Explanation: Too many 1’s; loop forever and, thus, do not accept.

• q′11S → q1Rε

– Explanation: The second pop for the current 1.

• q′1�$→ cannot happen

• q′1�S → cannot happen

For the language
{wwR|w ∈ {0, 1}∗}

we use a nondeterministic pushdown automaton. The approach is as follows:

• Walk along the input string from left to right.

• Guess when we enter the second half of the input string.

• All symbols in the first half of the input string are pushed onto the stack.

• After we have entered the second half, we check if the contents of the stack is the same
as the remaining part of the input string.
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• Tape alphabet Σ = {0, 1}.

• Stack alphabet Γ = {$, 0, 1}.

We will use two states:

• q: This is the start state. If we are in this state, then we have not guessed yet that we
have entered the second half of the input string.

• q′: We have guessed already that we have entered the second half of the input string.

The instructions are as follows.

• q0$→ qR$0 (push; stay in start state)

• q0$→ q′R$0 (push, switch to q′)

• q1$→ qR$1 (push; stay in start state)

• q1$→ q′R$1 (push, switch to q′)

• q�$→ qNε (input empty; accept)

• q00→ qR00 (push; stay in start state)

• q00→ q′R00 (push, switch to q′)

• q10→ qR01 (push; stay in start state)

• q10→ q′R01 (push, switch to q′)

• q�0→ qN0 (loop forever)

• q01→ qR10 (push; stay in start state)

• q01→ q′R10 (push, switch to q′)

• q11→ qR11 (push; stay in start state)

• q11→ q′R11 (push, switch to q′)

• q�1→ qN1 (loop forever)

• q′0$→ q′N$ (loop forever)

• q′1$→ q′N$ (loop forever)

• q′�$→ q′Nε (accept)

• q′00→ q′Rε (pop)
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• q′10→ q′N0 (loop forever)

• q′�0→ q′N0 (loop forever)

• q′01→ q′N1 (loop forever)

• q′11→ q′Rε (pop)

• q′�1→ q′N1 (loop forever)

Question 5: Prove that the following languages are not context-free:
(5.1) {an! | n ≥ 0}.
(5.2) {an2

bn | n ≥ 0}.

Solution: First, we prove that the language

A = {an! | n ≥ 0}

is not context-free.
Assume that A is context-free. By the Pumping Lemma, there is an integer p ≥ 1, such

that for all strings s ∈ A with |s| ≥ p, the following holds: We can write s = uvxyz, where

1. vy is non-empty,

2. vxy has length at most p,

3. the string uvixyiz is in A, for all i ≥ 0.

Note: We may assume that p ≥ 2: If, for this particular language, the pumping length
is equal to one, then the statement of the Pumping Lemma is also true if we take p = 2.

Consider the pumping length p. We choose s = ap!. Then s is a string in A, and the
length of s is p!, which is at least p (because p ≥ 1). Thus, we can write s = uvxyz such
that 1., 2., and 3. above hold.

Let k be the length of the string vy. It follows from 1. that k ≥ 1. It follows from 2. that
k = |vy| ≤ |vxy| ≤ p.

Consider the string uvvxyyz. This string is equal to ap!+k. We have (using the fact that
p ≥ 2)

p! < p! + k ≤ p! + p < p · p! + p! = (p+ 1)!.

Thus, the length of uvvxyyz is strictly between two consecutive factorials. Therefore, this
string is no in the language A. This is a contradiction, because by the Pumping Lemma,
this string does belong to A. We conclude that A is not a context-free language.

Next we prove that the language

B = {an2

bn | n ≥ 0}
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is not context-free.
Assume that B is context-free. By the Pumping Lemma, there is an integer p ≥ 1, such

that for all strings s ∈ B with |s| ≥ p, the following holds: We can write s = uvxyz, where

1. vy is non-empty,

2. vxy has length at most p,

3. the string uvixyiz is in B, for all i ≥ 0.

Consider the pumping length p. We choose s = ap
2
bp. Then s is a string in B, and the

length of s is p2 + p, which is at least p. Thus, we can write s = uvxyz such that 1., 2., and
3. above hold.

Case 1: Both v and y are in the block of a’s.
Then the string s′ = uvvxyyz contains at least p2 + 1 many a’s and exactly p many b’s.

Therefore, this string is not in B. But, by the Pumping Lemma, s′ is contained in B. This
is a contradiction.

Case 2: Both v and y are in the block of b’s.
Then the string s′ = uvvxyyz contains exactly p2 many a’s and at least p + 1 many b’s.

Therefore, this string is not in B. But, by the Pumping Lemma, s′ is contained in B. This
is a contradiction.

Case 3: The string vy contains at least one a and at least one b.
Let k and ` be such that vy = akb`. Then k ≥ 1, ` ≥ 1, and k + ` ≤ p.
The string s′ = uvvxyyz is equal to

s′ = ap
2+kbp+`.

By the Pumping Lemma, s′ is in B, implying that

(p+ `)2 = p2 + k,

i.e.,
k = 2p`+ `2.

However,
2p`+ `2 ≥ 2p+ 1 > p ≥ k + ` > k.

This is a contradiction.

Question 6: We have seen that the regular languages are closed under the union, intersec-
tion, complement, concatenation, and star operations. In this question, we consider these
operations for context-free languages.
(6.1) Let L and L′ be context-free languages over the same alphabet Σ. Prove that the
union L ∪ L′ is also context-free.
(6.2) Let L and L′ be context-free languages over the same alphabet Σ. Prove that the
concatenation LL′ is also context-free.
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(6.3) Let L be a context-free language over the alphabet Σ. Prove that the star L∗ of L is
also context-free.
(6.4) In Question 3, you have shown that

L = {ambncn | m ≥ 0, n ≥ 0}

is a context-free language. By a symmetric argument, the language

L′ = {ambmcn | m ≥ 0, n ≥ 0}

is context-free.
Prove that the intersection of two context-free languages is not necessarily context-free.

(You may use any result that was proven in class.)
(6.5) Prove that the complement of a context-free language is not necessarily context-free.

Solution: For the first three parts, since L is context-free, there is a context-free grammar
G1 = (V1,Σ, R1, S1) that generates L. Similarly, since L′ is context-free, there is a context-
free grammar G2 = (V2,Σ, R2, S2) that generates L′. We assume that V1 ∩ V2 = ∅. (If this
is not the case, then we rename the variables of G2.)

First, we show that L ∪ L′ is context-free. Let G = (V,Σ, R, S) be the context-free
grammar, where

• V = V1 ∪ V2 ∪ {S}, where S is a new variable, which is the start variable of G,

• R = R1 ∪R2 ∪ {S → S1|S2}.

From the start variable S, we can derive the strings S1 and S2. From S1, we can derive
all strings of L, whereas from S2, we can derive all strings of L′. Hence, from S, we can
derive all strings of L∪L′. In other words, the grammar G generates the union of L and L′.
Therefore, this union is context-free.

Next, we show that LL′ is context-free. Let G = (V,Σ, R, S) be the context-free grammar,
where

• V = V1 ∪ V2 ∪ {S}, where S is a new variable, which is the start variable of G,

• R = R1 ∪R2 ∪ {S → S1S2}.

From the start variable S, we can derive the string S1S2. From S1, we can derive all strings
of L, whereas from S2, we can derive all strings of L′. Hence, from S, we can derive all
strings of the form uv, where u ∈ L and v ∈ L′. In other words, the grammar G generates
the concatenation of L and L′. Therefore, this concatenation is context-free.

Next, we show that L∗ is context-free. Any string in L∗ is either

• empty or
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• a string in L, followed by a string in L∗.

Let G = (V,Σ, R, S) be the context-free grammar, where

• V = V1 ∪ {S}, where S is a new variable, which is the start variable of G,

• R = R1 ∪ {S → ε|S1S}.

From the start variable S, we can derive all strings Sn
1 , where n ≥ 0. From S1, we can derive

all strings of L. Hence, from S, we can derive all strings of the form u1u2 . . . un, where n ≥ 0,
and each string ui (1 ≤ i ≤ n) is in L. In other words, the grammar G generates the star of
L. Therefore, L∗ is context-free.

By the way, the context-free grammar G = (V1,Σ, R, S1), where

R = R1 ∪ {S1 → ε|S1S1}

may not generate L∗. Here is an example:
The context-free grammar G1 = (V1,Σ, R1, S1), where V1 = {S1}, Σ = {0, 1}, and

R1 = {S1 → 0S10|1} generates the language

L = {0n10n : n ≥ 0}.

From the grammar G above, we can obtain the string 00:

S1 ⇒ 0S10⇒ 00.

However, this string 00 is not in L∗.

For the fourth part, we consider

L = {ambncn | m ≥ 0, n ≥ 0}

and
L′ = {ambmcn | m ≥ 0, n ≥ 0}.

• From Question 3, L is context-free.

• By a symmetric argument, L′ is context-free.

• Let L′′ = L ∩ L′.

• L′′ = {anbncn|n ≥ 0}.

• We have seen in class that L′′ is not context-free.

The last part is proved by contradiction. Thus, we assume that for any context-free
language A, the complement A is also context-free. Under this assumption, we will show that
the intersection of any two context-free languages is also context-free. This will contradict
the previous part of the question.

Let A and B be two arbitrary context-free languages.
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• By our assumption, both A and B are context-free.

• From the first part: A ∪B is context-free.

• By our assumption, A ∪B is context-free.

• By De Morgan, the latter language is equal to A ∩B.
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