Carleton University COMP 3803, Fall 2025, Solutions Test 3

Thursday November 20, 2025

STUDENT NAME: James Bond

STUDENT NUMBER: 007

40 marks total

Question 1: (10 marks) Consider the pushdown automaton with tape alphabet $\Sigma = \{a, b\}$, stack alphabet $\Gamma = \{\$, S\}$, set of states $Q = \{q_0, q_1, q_2\}$, start state q_0 , and instructions

Recall that, at the start of the computation, the stack contains the symbol \$ (and nothing else).

Exactly one of the following four strings is accepted by this pushdown automaton.

- ullet
- baba
- babaab
- abba

Which one is it? Just give the answer. No explanation is needed.

Solution: The correct answer is *babaab*.

Question 2: (10 marks) Let L be the language

$$L = \{ (ba)^n a^n : n \ge 0 \}.$$

Give an **informal** description of a pushdown automaton that accepts the language L. (Describe the algorithm in plain English. Do not give the instructions.)

Solution:

- 1. If the leftmost symbol is \square : empty the stack, terminate, and accept.
- 2. If the leftmost symbol is a: loop forever.
- 3. If the leftmost symbol is b: switch to the state "we just read b", push(S), move right. (Note: the number of S on the stack is equal to the number of b's we have read.)
 - (a) If the next symbol is b or \square : loop forever.
 - (b) If the next symbol is a: switch to the state "we just read ba", do not change the stack, move right.
 - i. If the next symbol is \square : loop forever.
 - ii. If the next symbol is b: proceed as in 3.
 - iii. If the next symbol is a: switch to the state "we are in the a^n -block", pop the top symbol from the stack, move right.
 - A. If the next symbol is b: loop forever.
 - B. If the next symbol is a and the stack has S on top: stay in the state "we are in the a^n -block", pop the top symbol from the stack, move right.
 - C. If the next symbol is a and the stack has \$ on top: loop forever.
 - D. If the next symbol is \square and the stack has S on top: loop forever.
 - E. If the next symbol is \square and the stack has \$ on top: empty the stack, terminate, and accept.

Question 3: (10 marks) Let L be the language

$$L = \{ww : w \in \{a, b\}^*\}.$$

We want to apply the Pumping Lemma for context-free languages to prove that L is not context-free: As always, we assume that L is context-free. Let p be the pumping length, as given by the Pumping Lemma.

Can we use the string $s=a^pba^pb$ to obtain a contradiction? Justify your answer.

Solution: This was done in class.

First note that $s \in L$ and $|s| = 2p + 2 \ge p$. Thus, we can write s = uvxyz, where $|vy| \ge 1$, $|vxy| \le p$, and for all $i \ge 0$, the string uv^ixy^iz is in L.

It may happen that $p \ge 3$, $u = a^{p-1}$, v = a, x = b, y = a, and $z = a^{p-1}b$. If this is the case, then

$$uv^{i}xy^{i}z = a^{p-1}a^{i}ba^{i}a^{p-1}b = a^{p+i-1}ba^{p+i-1}b,$$

which is in L for any integer $i \geq 0$. Thus, this is the "wrong" string; we do not obtain a contradiction.

Question 4: (10 marks) Let L be the language

$$L = \{a^m b^n c^k : m \ge 0, n \ge 0, k = \max(m, n)\}.$$

Prove that L is not a context-free language.

Solution: Assume that L is context-free. Let $p \geq 1$ be the pumping length.

Take the string $s = a^p b^p c^p$. Then $s \in L$ and $|s| = 3p \ge p$. Thus, we can write s = uvxyz, where $|vy| \ge 1$, $|vxy| \le p$, and for all $i \ge 0$, the string $uv^i xy^i z$ is in L.

There are two possible cases.

Case 1: vxy does not contain c.

Consider the string uv^2xy^2z . The number of c's in this string is equal to p. However, there are at least p+1 many a's or at least p+1 many b's. Thus, this string is not in L, which is a contradiction.

Case 2: vxy contains c.

Since $|vxy| \le p$, the string vxy does not contain a.

Consider the string $uv^0xy^0z=uxz$. The number of a's in this string is equal to p. However, there are at most p-1 many c's. Thus, this string is not in L, which is a contradiction.

EXTRA PAGE FOR ANSWERS