
COMP 3804 — Assignment 1

Due: Thursday February 2, 23:59.

Assignment Policy:

• Your assignment must be submitted as one single PDF file through Brightspace.

Use the following format to name your file:

LastName StudentId a1.pdf

• Late assignments will not be accepted. I will not reply to emails of the
type “my internet connection broke down at 23:57” or “my scanner stopped
working at 23:58”, or “my dog ate my laptop charger”.

• You are encouraged to collaborate on assignments, but at the level of discussion only.
When writing your solutions, you must do so in your own words.

• Past experience has shown conclusively that those who do not put adequate effort into
the assignments do not learn the material and have a probability near 1 of doing poorly
on the exams.

• When writing your solutions, you must follow the guidelines below.

– You must justify your answers.

– The answers should be concise, clear and neat.

– When presenting proofs, every step should be justified.

Some useful facts:
1. for any real number x > 0, x = 2log x.

2. For any real number x 6= 1 and any integer k ≥ 1,

1 + x+ x2 + · · ·+ xk−1 =
xk − 1

x− 1
.

3. For any real number 0 < α < 1,

∞∑
i=0

αi =
1

1− α
.

1



Question 1: Write your name and student number.

Question 2: Consider the following recurrence, where n is a power of 6:

T (n) =

{
1 if n = 1,
n2 + 11 · T (n/6) if n ≥ 6.

• Solve this recurrence using the unfolding method. Give the final answer using Big-O
notation.

• Solve this recurrence using the Master Theorem.

Question 3: Consider the following recurrence:

T (n) = n+ T (n/5) + T (7n/10).

In class, we have seen that T (n) = O(n). In this question, you will prove this using the
recursion tree method.

Recall from class: The root represents the recursion tree on an input of size n. Consider
a node u in the recursion tree that represents a recursive call on an input of size m. Then
we write the value m at this node u, we give u a left subtree which is a recursion tree for an
input of size m/5, and we give u a right subtree which is a recursion tree for an input of size
7m/10. In this way, T (n) is the sum of the values stored at all nodes in the entire recursion
tree.

Below, we assume that the levels in the recursion tree are numbered 0, 1, 2, . . . ,, where
the root is at level 0. For each i ≥ 0, let Si be the sum of the values of all nodes at level i.

• Determine S0.

• Determine S1.

• Determine S2.

• Use induction to prove the following claim: For every i ≥ 0,

Si ≤ (9/10)i · n.

Hint: Consider level i, let k = 2i, and let the values stored at the nodes at level i be
m1,m2, . . . ,mk. What are the values stored at the nodes at level i+ 1?

• Complete the proof by showing that T (n) = O(n).

2



Question 4: Zoltan is not only your friendly TA, he is also the owner of the popular budget
airline ZoltanJet that offers flights in Canada. As you all know, there are n airports in
Canada. We denote these airports, in order from west to east, by A1, A2, . . . , An.

William, who is the CEO of ZoltanJet, has designed a flight plan which is a list of ordered
pairs (Ai, Aj) of airports such that there is a direct flight from Ai to Aj. This flight plan has
the following two properties:

• (P.1) Every flight is going eastwards1. In other words, if (Ai, Aj) is in the flight plan,
then i < j.

• (P.2) For any two indices i and j with 1 ≤ i < j ≤ n, it is possible to fly from Ai to
Aj in at most two hops. In other words, either (Ai, Aj) is in the flight plan, or there
is an index k such that both (Ai, Ak) and (Ak, Aj) are in the flight plan. Note that,
because of (P.1), i < k < j.

Observe that ZoltanJet can guarantee (P.1) and (P.2) by offering direct flights between all(
n
2

)
= Θ(n2) pairs (Ai, Aj) of airports, where 1 ≤ i < j ≤ n.

• Prove that ZoltanJet can guarantee (P.1) and (P.2) using a flight plan having only
O(n log n) pairs of airports. You may assume that n is a power of two.

Hint: Since this is the divide-and-conquer assignment, you probably have to use . . .

Question 5: Professor Justin Bieber needs a fast algorithm that searches for an arbitrary
element x in a sorted array A[1 . . . n] of n numbers. He remembers that there is something
called “binary search”, which maintains an interval [`, r] of indices such that, if x is present
in the array, then it is contained in the subarray A[` . . . r]. In one iteration, the algorithm
takes the middle index, say p, in the interval [`, r]. Then the algorithm either finds x at
the position p, or it recurses in the interval [`, p− 1], or it recurses in the interval [p+ 1, r].
Unfortunately, Professor Bieber does not remember the expression2 for p in terms of ` and r.

Professor Bieber does remember that, instead of choosing p in the middle of the interval
[`, r], it is often enough to choose p uniformly at random in this interval. Based on this,
he obtains the following algorithm: The input consists of the sorted array A[1 . . . n], its size
n, and a number x. If x is in the array, then the algorithm returns the index p such that
A[p] = x. Otherwise, the algorithm returns “not present”. We assume that all numbers in
A are distinct.

1But how do I get home? A customer service representative will tell you “that is your problem”.
2is it b(r − `)/2c, or d(r − `)/2e, or b(r − `+ 1)/2c, or d(r − `+ 1)/2e?

3



Algorithm BieberSearch(A, n, x):
` = 1; r = n;
while ` ≤ r
do p = uniformly random element in {`, `+ 1, . . . , r};

if A[p] < x
then ` = p+ 1
else if A[p] > x

then r = p− 1
else return p
endif

endif
endwhile;
return “not present”

Let T be the running time of this algorithm on an input array of length n. Note that T
is a random variable. Prove that the expected value of T is O(log n).
Hint: Most solutions that you find on the internet are wrong.

Question 6: You are given a sequence S consisting of n numbers; not all of these numbers
need to be distinct.

Describe an algorithm, in plain English, that decides, in O(n) time, whether or not this
sequence S contains a number that occurs more than n/4 times.

You may use any result that was proven in class. Justify the correctness of your algorithm
and explain why the running time is O(n).
Hint: The algorithm must be comparison-based; you are not allowed to use hashing, bucket-
sort, or radix-sort.

4


