
COMP 3804 — Assignment 2

Due: Thursday February 16, 23:59.

Assignment Policy:

• Your assignment must be submitted as one single PDF file through Brightspace.

Use the following format to name your file:

LastName StudentId a2.pdf

• Late assignments will not be accepted. I will not reply to emails of the
type “my internet connection broke down at 23:57” or “my scanner stopped
working at 23:58”, or “my dog ate my laptop charger”.

• You are encouraged to collaborate on assignments, but at the level of discussion only.
When writing your solutions, you must do so in your own words.

• Past experience has shown conclusively that those who do not put adequate effort into
the assignments do not learn the material and have a probability near 1 of doing poorly
on the exams.

• When writing your solutions, you must follow the guidelines below.

– You must justify your answers.

– The answers should be concise, clear and neat.

– When presenting proofs, every step should be justified.

1

Question 1: Write your name and student number.

Question 2: You are given k sorted lists L1, L2, . . . , Lk of numbers. Let n denote the total
length of all these lists.

Describe an algorithm that returns one list containing all these n numbers in sorted order.
The running time of your algorithm must be O(n log k).

Explain why your algorithm is correct and why the running time is O(n log k).
Hint: If k = 2, this should look familiar.

Question 3: This is a long question. Don’t be intimidated! As always, for each
part in this question, you must justify your answer.

Professor Justin Bieber needs a data structure that maintains a collection A,B,C, . . . of
sets under the following operations:

1. Maximum(X): return the largest element in the set X.

2. Insert(X, y): add the number y to the set X.

3. ExtractMax(X): delete and return the largest element in the set X.

4. Combine(X, Y): take the union X ∪ Y of the sets X and Y , and call the resulting
set X.

Professor Bieber knows how to support the first three operations: Store each set X in a
max-heap. The fourth operation seems to be more problematic, because we have to take two
max-heaps and combine them into one max-heap.

To support all four operations, Professor Bieber has invented the following sequence
B0, B1, B2, . . . of trees, which are now universally known as Bieber trees :

1. B0 is a tree with one node.

2. For each i ≥ 1, the tree Bi is obtained as follows: Take two copies of Bi−1 and make
the root of one copy a child of the root of the other copy.

B0
B1 B2

B3

Bi−1

Bi−1
Bi

2

Question 3.1: Let i ≥ 0. How many nodes does the tree Bi have?

Question 3.2: Let i ≥ 0. What is the height of the tree Bi?

Question 3.3: Let i ≥ 1. Prove that the subtrees of the root of Bi are the Bieber trees
B0, B1, . . . , Bi−1.

Let X be a set of n numbers, assume that n ≥ 1, and let

n = (bm, bm−1, . . . , b1, b0)

be the binary representation of n. Note that bm = 1 and

n =
m∑
i=0

bi · 2i.

The Bieber max-heap for the set X is obtained as follows:

1. Partition the set X, arbitrarily, into subsets such that for each i for which bi = 1, there
is exactly one subset of size 2i.

For example, if n = 11 = 23 + 21 + 20, the set X is partitioned into three subsets: one
of size 23, one of size 21, and one of size 20.

2. Each subset of size 2i is stored in a Bieber tree Bi. Each node in Bi stores one element
of the subset. Each node in Bi has pointers to its parent and all its children. There is
a pointer to the root of Bi.

3. Each Bieber tree has the property that the value stored at a node is larger than the
values stored at any of its children.

4. The roots of all these Bieber trees are connected using a doubly-linked list.

The figure below gives an example when n = 11.

Question 3.4: Let X be a non-empty set of numbers, and assume that this set is stored in
a Bieber max-heap. Describe an algorithm that implements the operation Maximum(X) in
O(log |X|) time.

Question 3.5: Let X and Y be two sets of numbers, and assume that both sets have the
same size 2i. A Bieber max-heap for X consists of one single Bieber tree Bi. Similarly, a
Bieber max-heap for Y consists of one single Bieber tree Bi. Describe an algorithm that
implements the operation Combine(X, Y) in O(1) time.

3

Question 3.6: Let X and Y be two non-empty sets of numbers, and assume that X is
stored in a Bieber max-heap and Y is stored in a Bieber max-heap. Describe an algorithm
that implements the operation Combine(X, Y) in O(log |X|+ log |Y |) time.
Hint: This operation computes one Bieber max-heap storing the union X ∪ Y . If you take
the sum of two integers, both given in binary, then you go through the bits from right to left
and keep track of a carry bit.

Question 3.7: Let X be a non-empty set of numbers, and assume that this set is stored in
a Bieber max-heap. Describe an algorithm that implements the operation Insert(X, y) in
O(log |X|) time.

Note that this operation computes a Bieber max-heap for the set X ∪ {y}.
Question 3.8: Let X be a non-empty set of numbers, and assume that this set is stored in a
Bieber max-heap. Describe an algorithm that implements the operation ExtractMax(X)
in O(log |X|) time.

Note that this operation computes a Bieber max-heap for the set X \ {y}, where y is the
largest number in X.

Question 3.9: Let X be a non-empty set of numbers, and assume that this set is stored
in a Bieber max-heap. How would you extend this data structure such that the operation
Maximum(X) only takes O(1) time, whereas the running times for the other operations
Combine, Insert, and ExtractMax remain as above?

Question 4: Consider the following undirected graph:

A B C D

E F G H

I J K L

Draw the DFS-forest obtained by running algorithm DFS on this graph. The pseudocode
is given at the end of this assignment. Algorithm DFS uses algorithm Explore as a
subroutine; the pseudocode for this subroutine is also given at the end of this assignment.

In the forest, draw each tree edge as a solid edge, and draw each back edge as a dotted
edge.

Whenever there is a choice of vertices, pick the one that is alphabetically last.

4

Question 5: Tyler is not only your friendly TA, he is also the inventor of Tyler paths and
Tyler cycles in graphs: A Tyler path in an undirected graph is a path that contains every
vertex exactly once. In the figure below, you see a Tyler path in red. A Tyler cycle is a
cycle that contains every vertex exactly once. In the figure below, if you add the black edge
{s, t} to the red Tyler path, then you obtain a Tyler cycle.

s

t

If G = (V,E) is an undirected graph, then the graph G3 is defined as follows:

1. The vertex set of G3 is equal to V .

2. For any two distinct vertices u and v in V , {u, v} is an edge in G3 if and only if there
is a path in G between u and v consisting of at most three edges.

Question 5.1: Describe a recursive algorithm TylerPath that has the following specifi-
cation:

Algorithm TylerPath(T, u, v):
Input: A tree T with at least two vertices; two distinct vertices u and v in T such
that {u, v} is an edge in T .
Output: A Tyler path in T 3 that starts at vertex u and ends at vertex v.

Hint: You do not have to analyze the running time. The base case is easy. Now assume
that T has at least three vertices. If you remove the edge {u, v} from T , then you obtain
two trees Tu (containing u) and Tv (containing v).

1. One of these two trees, say, Tu, may consist of the single vertex u. How does your
recursive algorithm proceed?

2. If each of Tu and Tv has at least two vertices, how does your recursive algorithm
proceed?

Question 5.2: Prove the following lemma:

Tuttle’s Lemma: For every tree T that has at least three vertices, the graph T 3 contains
a Tyler cycle.

Question 5.3: Prove the following theorem:

Tuttle’s Theorem: For every connected undirected graph G that has at least three vertices,
the graph G3 contains a Tyler cycle.

5

Algorithm DFS(G):
for each vertex u
do visited(u) = false
endfor;
cc = 0;
for each vertex v
do if visited(v) = false

then cc = cc + 1
Explore(v)

endif
endfor

Algorithm Explore(v):
visited(v) = true;
ccnumber(v) = cc;
for each edge {v, u}
do if visited(u) = false

then Explore(u)
endif

endfor

6

