COMP 3804 — Solutions Assignment 1

Some useful facts:
1. for any real number z > 0, z = 2'°87

2. For any real number x # 1 and any integer k > 1,

k-1

lto+a+. a2t = :
z—1

3. For any real number 0 < a < 1,

Master Theorem:
1. leta>1,b>1,d>0, and

1 if n=1,
Tn) = { a-T(n/b)+ 0O (n?) ifn>2.

2. If d > log, a, then T'(n) = O(n?).

3. If d = logy a, then T'(n) = O(n¢logn).

4. If d < log, a, then T'(n) = O(n'°&9).

Question 1: Write your name and student number.

Solution: Lionel Messi, 10

Question 2: Consider the following recurrence, where n is a power of 6:

1 if n =1,
T(n) = { n?411-T(n/6) if n > 6.

e Solve this recurrence using the unfolding method. Give the final answer using Big-O
notation.

e Solve this recurrence using the Master Theorem.

Solution: We write n = 6. Unfolding gives

T(n) = n*+11-T(n/6)
= n’+11((n/6)* + 11-T(n/6%))
= (1+11/36)n2+112 T(n/6?)
(1+11/36) n* +11* ((n/36)* + 11 - T(n/6%))
(1411/36 + (11/36)%) n* + 11% - T(n/6?)
= (1+11/36 + (11/36)%) n*> + 11° ((n/6°)* + 11 - T(n/6"))
(14 11/36 + (11/36)* + (11/36)%) n* + 11* - T(n/6*)

_ (1411/36 + (11/36)* + - -+ + (11/36)* ") n* + 11* - T'(n/6")
k—1

= 2(11/36)in2+11’“~T(1)

= 21(11/36)%2 + 11%

<) (11/36)'n” + 11*
1=0
1 2 k
- 22411
—1i36" "
36

= — 11%,
25n +

Note that, since n = 6%, we have n? = 62* = 36* > 11*. Therefore,

36 61
<20 ol o _ 2y
T()_25n + n? =5 O(n?)

Using the Master Theorem: We have a = 11, b = 6, and d = 2. Since

1
08l 1338 <4
log 6

the Master Theorem tells us that T'(n) = O(n¢) = O(n?).

log, a = logg 11 =

Question 3: Consider the following recurrence:
T(n) =n+T(n/5)+ T(7n/10).

In class, we have seen that T'(n) = O(n). In this question, you will prove this using the
recursion tree method.

Recall from class: The root represents the recursion tree on an input of size n. Consider
a node u in the recursion tree that represents a recursive call on an input of size m. Then

2

we write the value m at this node u, we give u a left subtree which is a recursion tree for an
input of size m/5, and we give u a right subtree which is a recursion tree for an input of size
7m/10. In this way, T'(n) is the sum of the values stored at all nodes in the entire recursion
tree.

Below, we assume that the [evels in the recursion tree are numbered 0, 1,2,...,, where
the root is at level 0. For each ¢ > 0, let .S; be the sum of the values of all nodes at level 1.

e Determine Sj.

Determine S;.

Determine Ss.

Use induction to prove the following claim: For every i > 0,

S; < (9/10)" - n.

Hint: Consider level i, let k = 2%, and let the values stored at the nodes at level i be
mi,Ma, ..., my. What are the values stored at the nodes at level i + 17

Complete the proof by showing that T'(n) = O(n).

Solution: In the following figure, you see levels 0, 1, and 2, in the recursion tree:

From this figure, we see that Sy = n,
S1=n/5+Tn/10 = (9/10) - n,

and
Sy =n/25 + Tn/50 + Tn/50 + 49n/100 = (9/10)* - n.

There seems to be a pattern!

Now we prove by induction on i that S; < (9/10)" - n.

Base case: i = 0. We have seen above that Sy = n. Since (9/10)" - n = n, the claim is
true.

Induction step: Let ¢ > 0, and assume that S; < (9/10)° - n. We follow the hint: Let
k = 2¢, and let the values stored at the nodes at level i be mq, mao, ..., ms. Note that

my+mg+ -+ my =5 <(9/10) - n

1. The values stored at the two children of m; are my/5 and 7m;/10. Their sum is

(9/10) - m

2. The values stored at the two children of my are my/5 and 7msy/10. Their sum is

(9/10) - mq
3. Ete. Etc.

4. The values stored at the two children of my are my/5 and 7my/10. Their sum is

(9/10) - m
It follows that the sum of the values stored at all nodes at level 7 4+ 1 is equal to
Siv1 = (9/10) - (my +ma + - +my) = (9/10) - S
We conclude that
Siv1 = (9/10) - S; < (9/10) - (9/10)" - n = (9/10)"*! - n

For the last part of the question, we get
(9/10)" ———— =10n = O(n).
Z / T1- 9/10 n=0(n)

Question 4: Zoltan is not only your friendly TA, he is also the owner of the popular budget
airline ZoltanJet that offers flights in Canada. As you all know, there are n airports in
Canada. We denote these airports, in order from west to east, by Ay, As, ..., A,.

William, who is the CEO of ZoltanJet, has designed a flight plan which is a list of ordered
pairs (A;, A;) of airports such that there is a direct flight from A; to A;. This flight plan has
the following two properties:

e (P.1) Every flight is going eastwards'. In other words, if (A;, A;) is in the flight plan,
then 7 < j.

e (P.2) For any two indices i and j with 1 < i < j < n, it is possible to fly from A; to
A; in at most two hops. In other words, either (A4;, A;) is in the flight plan, or there
is an index k such that both (A;, Ax) and (A, A;) are in the flight plan. Note that,
because of (P.1), i < k < j.

'But how do I get home? A customer service representative will tell you “that is your problem”.

Observe that ZoltanJet can guarantee (P.1) and (P.2) by offering direct flights between all

(%) = ©(n?) pairs (A;, A;) of airports, where 1 <i < j < n.

e Prove that ZoltanJet can guarantee (P.1) and (P.2) using a flight plan having only
O(nlogn) pairs of airports. You may assume that n is a power of two.

Hint: Since this is the divide-and-conquer assignment, you probably have to use ...

Solution: We define P(n) to be the number of pairs of airports in the flight plan if the
number of airports is n.

The base case is when n = 1. In this case, there is only one airport and, thus, there are
no flights in the flight plan, i.e., P(1) = 0.

Assume that n > 2 is a power of two. Let k = n/2 so that Ay, is the airport in the middle.

1. For each i with 1 <i <k — 1, we add (P}, P;) to the flight plan.
2. For each j with k41 < j <n, we add (P, P;) to the flight plan.

3. Note: By doing this, we can fly from any airport A;, with 1 < i < k, to any airport
Aj, with £ 4+1 < j <n, in at most two hops.

4. We now apply the construction recursively to the airports A; with 1 <i < k.
5. We also apply the construction recursively to the airports A; with k +1 < j <n.

From this, we obtain the recurrence
Pn)=(n—-1)+2-P(n/2) <n+2-P(n/2).

This is the merge-sort recurrence (with a different base case). We have seen in class that
this recurrence solves to P(n) = O(nlogn).

Question 5: Professor Justin Bieber needs a fast algorithm that searches for an arbitrary
element z in a sorted array A[l...n] of n numbers. He remembers that there is something
called “binary search”, which maintains an interval [¢, r] of indices such that, if x is present
in the array, then it is contained in the subarray A[¢...r]. In one iteration, the algorithm
takes the middle index, say p, in the interval [¢,r]. Then the algorithm either finds z at
the position p, or it recurses in the interval [¢,p — 1], or it recurses in the interval [p + 1, 7].
Unfortunately, Professor Bieber does not remember the expression? for p in terms of £ and 7.

Professor Bieber does remember that, instead of choosing p in the middle of the interval
[¢,r], it is often enough to choose p uniformly at random in this interval. Based on this,
he obtains the following algorithm: The input consists of the sorted array A[l...n], its size
n, and a number x. If z is in the array, then the algorithm returns the index p such that
Alp] = z. Otherwise, the algorithm returns “not present”. We assume that all numbers in
A are distinct.

Asit [(r—£)/2],0r [(r—2£€)/2],0r |[(r—€+1)/2],0r [(r —€+1)/2]7

Algorithm BIEBERSEARCH(A,n, x):
(=1,r=n;
while ¢ < r
do p = uniformly random element in {¢,¢+1,... 7};
if Ajp] <=z
then/=p+1
else if Ap| > =
thenr=p—1
else return p
endif
endif
endwhile;
return “not present”

Let T be the running time of this algorithm on an input array of length n. Note that T’
is a random variable. Prove that the expected value of T"is O(logn).
Hint: Most solutions that you find on the internet are wrong.

Solution: In one iteration of the while-loop, the algorithm searches for z in the subar-
ray A[(...r]; this subarray has length r — ¢ + 1. In each iteration, if the algorithm does
not terminate, either ¢ increases or r decreases; thus, the next iteration searches a smaller
subarray:.
Let ¢ > 0 be an integer. We say that the while-loop is in phase i if, at the beginning of
this iteration,
(3/4)™ -n<r—L+1<(3/4)" -n.

At the start of the first iteration, »r — £ 4+ 1 = n and, thus, the while-loop is in phase 0.

We first determine the largest possible phase number: If an iteration takes place in
phase i, then ¢ < r (this is the condition in the while-loop) and, thus, 1 < r — ¢+ 1. It
follows that

1 <(3/4)" - n,

which is equivalent to '
(4/3)" <n,

which is equivalent to
i-log(4/3) < logn,

which is equivalent to
logn
Z —
~ log(4/3)
Consider one phase i. Let m =r — ¢+ 1. Divide {¢,¢+1,...,r} into three pieces: The
first m/4 elements, the middle m/2 elements, the last m/4 elements. If p belongs to the

middle piece and if there is a next iteration, with values ¢’ and 7/, then

U —r'"+1<m-—m/4=(3/4)-m < (3/4)"" - n.

6

Thus, the next iteration is in a phase with number at least ¢ + 1.

Let X; be the random variable whose value is the number of iterations in phase ¢. Since
p is in the middle piece with probability 1/2, we have E(X;) < 2. (We have seen this in
lecture 5.)

Let ¢ be a constant such that one iteration takes at most ¢ time. Let L = lolgo(%. Then
the running time 7T satisfies

Thus,

= 2¢(L+1)
= O(logn).

Question 6: You are given a sequence S consisting of n numbers; not all of these numbers
need to be distinct.

Describe an algorithm, in plain English, that decides, in O(n) time, whether or not this
sequence S contains a number that occurs more than n/4 times.

You may use any result that was proven in class. Justify the correctness of your algorithm
and explain why the running time is O(n).
Hint: The algorithm must be comparison-based; you are not allowed to use hashing, bucket-
sort, or radix-sort.

Solution: We assume for simplicity that n is divisible by four.

The main observation is the following: If there is a number a that occurs more than n/4
times, then a is the (n/4)-th smallest number in S, or a is the (n/2)-th smallest number in
S, or a is the (3n/4)-th smallest number in S.

Let us first prove that this observation is correct. Let be the (n/4)-th smallest number
in S, let y be the (n/2)-th smallest number in S, and let z be the (3n/4)-th smallest number
in S. We assume, by contradiction, that a # x, a # y, and a # z. There are four possibilities:

1. a < z. This is a contradiction, because the number of elements in S that are less than
x is less than n/4.

2. x < a < y. This is a contradiction, because the number of elements in S that are
between x and y is less than n/4.

3.y < a < z. This is a contradiction, because the number of elements in S that are
between y and z is less than n/4.

4. z < a. This is a contradiction, because the number of elements in S that are larger
than z is less than n/4.

Thus, our main observation is correct.
Based on this, we get the following algorithm:

1. Compute the (n/4)-th smallest number, say z, in S. Walk along S and count the
number of times that x occurs. If x occurs more than n/4 times, then we return z.

2. Compute the (n/2)-th smallest number, say y, in S. Walk along S and count the
number of times that y occurs. If y occurs more than n/4 times, then we return y.

3. Compute the (3n/4)-th smallest number, say z, in S. Walk along S and count the
number of times that z occurs. If z occurs more than n/4 times, then we return z.

4. If the algorithm did not return anything yet, then we know that there is no element in
the input that occurs more than n/4 times.

Using results proven in class. The entire algorithm runs in O(n) time.

