COMP 3804 — Solutions Assignment 1

Some useful facts:

- 1. for any real number x > 0, $x = 2^{\log x}$.
- 2. For any real number $x \neq 1$ and any integer $k \geq 1$,

$$1 + x + x^{2} + \dots + x^{k-1} = \frac{x^{k} - 1}{x - 1}.$$

3. For any real number $0 < \alpha < 1$,

$$\sum_{i=0}^{\infty} \alpha^i = \frac{1}{1-\alpha}.$$

Master Theorem:
1. Let
$$a \ge 1$$
, $b > 1$, $d \ge 0$, and

$$T(n) = \begin{cases} 1 & \text{if } n = 1, \\ a \cdot T(n/b) + O(n^d) & \text{if } n \ge 2. \end{cases}$$
2. If $d > \log_b a$, then $T(n) = O(n^d)$.
3. If $d = \log_b a$, then $T(n) = O(n^d \log n)$.
4. If $d < \log_b a$, then $T(n) = O(n^{\log_b a})$.

Question 1: Write your name and student number.

Solution: Lionel Messi, 10

Question 2: Consider the following recurrence, where *n* is a power of 6:

$$T(n) = \begin{cases} 1 & \text{if } n = 1, \\ n^2 + 11 \cdot T(n/6) & \text{if } n \ge 6. \end{cases}$$

- Solve this recurrence using the *unfolding method*. Give the final answer using Big-O notation.
- Solve this recurrence using the *Master Theorem*.

Solution: We write $n = 6^k$. Unfolding gives

$$\begin{split} T(n) &= n^2 + 11 \cdot T(n/6) \\ &= n^2 + 11 \left((n/6)^2 + 11 \cdot T(n/6^2) \right) \\ &= (1 + 11/36) n^2 + 11^2 \cdot T(n/6^2) \\ &= (1 + 11/36) n^2 + 11^2 \left((n/36)^2 + 11 \cdot T(n/6^3) \right) \\ &= (1 + 11/36 + (11/36)^2) n^2 + 11^3 \cdot T(n/6^3) \\ &= (1 + 11/36 + (11/36)^2 + (11/36)^3) n^2 + 11^4 \cdot T(n/6^4) \\ &\vdots \\ &= (1 + 11/36 + (11/36)^2 + \dots + (11/36)^{k-1}) n^2 + 11^k \cdot T(n/6^k) \\ &= \sum_{i=0}^{k-1} (11/36)^i n^2 + 11^k \cdot T(1) \\ &= \sum_{i=0}^{k-1} (11/36)^i n^2 + 11^k \\ &\leq \sum_{i=0}^{\infty} (11/36)^i n^2 + 11^k \\ &= \frac{1}{1 - 11/36} n^2 + 11^k \\ &= \frac{36}{25} n^2 + 11^k. \end{split}$$

Note that, since $n = 6^k$, we have $n^2 = 6^{2k} = 36^k > 11^k$. Therefore,

$$T(n) \le \frac{36}{25}n^2 + n^2 = \frac{61}{25}n^2 = O(n^2).$$

Using the Master Theorem: We have a = 11, b = 6, and d = 2. Since

$$\log_b a = \log_6 11 = \frac{\log 11}{\log 6} \approx 1.338 < d,$$

the Master Theorem tells us that $T(n) = O(n^d) = O(n^2)$.

Question 3: Consider the following recurrence:

$$T(n) = n + T(n/5) + T(7n/10).$$

In class, we have seen that T(n) = O(n). In this question, you will prove this using the recursion tree method.

Recall from class: The root represents the recursion tree on an input of size n. Consider a node u in the recursion tree that represents a recursive call on an input of size m. Then we write the value m at this node u, we give u a left subtree which is a recursion tree for an input of size m/5, and we give u a right subtree which is a recursion tree for an input of size 7m/10. In this way, T(n) is the sum of the values stored at all nodes in the entire recursion tree.

Below, we assume that the *levels* in the recursion tree are numbered $0, 1, 2, \ldots$, where the root is at level 0. For each $i \ge 0$, let S_i be the sum of the values of all nodes at level i.

- Determine S_0 .
- Determine S_1 .
- Determine S_2 .
- Use induction to prove the following claim: For every $i \ge 0$,

$$S_i \le (9/10)^i \cdot n.$$

Hint: Consider level *i*, let $k = 2^i$, and let the values stored at the nodes at level *i* be m_1, m_2, \ldots, m_k . What are the values stored at the nodes at level i + 1?

• Complete the proof by showing that T(n) = O(n).

Solution: In the following figure, you see levels 0, 1, and 2, in the recursion tree:

From this figure, we see that $S_0 = n$,

$$S_1 = n/5 + 7n/10 = (9/10) \cdot n,$$

and

$$S_2 = n/25 + 7n/50 + 7n/50 + 49n/100 = (9/10)^2 \cdot n.$$

There seems to be a pattern!

Now we prove by induction on *i* that $S_i \leq (9/10)^i \cdot n$.

Base case: i = 0. We have seen above that $S_0 = n$. Since $(9/10)^i \cdot n = n$, the claim is true.

Induction step: Let $i \ge 0$, and assume that $S_i \le (9/10)^i \cdot n$. We follow the hint: Let $k = 2^i$, and let the values stored at the nodes at level i be m_1, m_2, \ldots, m_k . Note that

$$m_1 + m_2 + \dots + m_k = S_i \le (9/10)^i \cdot n$$

- 1. The values stored at the two children of m_1 are $m_1/5$ and $7m_1/10$. Their sum is $(9/10) \cdot m_1$.
- 2. The values stored at the two children of m_2 are $m_2/5$ and $7m_2/10$. Their sum is $(9/10) \cdot m_2$.
- 3. Etc. Etc.
- 4. The values stored at the two children of m_k are $m_k/5$ and $7m_k/10$. Their sum is $(9/10) \cdot m_k$.

It follows that the sum of the values stored at all nodes at level i + 1 is equal to

$$S_{i+1} = (9/10) \cdot (m_1 + m_2 + \dots + m_k) = (9/10) \cdot S_i.$$

We conclude that

$$S_{i+1} = (9/10) \cdot S_i \le (9/10) \cdot (9/10)^i \cdot n = (9/10)^{i+1} \cdot n.$$

For the last part of the question, we get

$$T(n) \le \sum_{i=0}^{\infty} (9/10)^i \cdot n = \frac{n}{1 - 9/10} = 10n = O(n).$$

Question 4: Zoltan is not only your friendly TA, he is also the owner of the popular budget airline ZoltanJet that offers flights in Canada. As you all know, there are n airports in Canada. We denote these airports, in order from west to east, by A_1, A_2, \ldots, A_n .

William, who is the CEO of ZoltanJet, has designed a *flight plan* which is a list of ordered pairs (A_i, A_j) of airports such that there is a direct flight from A_i to A_j . This flight plan has the following two properties:

- (P.1) Every flight is going eastwards¹. In other words, if (A_i, A_j) is in the flight plan, then i < j.
- (P.2) For any two indices i and j with $1 \le i < j \le n$, it is possible to fly from A_i to A_j in at most two *hops*. In other words, either (A_i, A_j) is in the flight plan, or there is an index k such that both (A_i, A_k) and (A_k, A_j) are in the flight plan. Note that, because of (P.1), i < k < j.

¹But how do I get home? A customer service representative will tell you "that is your problem".

Observe that ZoltanJet can guarantee (P.1) and (P.2) by offering direct flights between all $\binom{n}{2} = \Theta(n^2)$ pairs (A_i, A_j) of airports, where $1 \le i < j \le n$.

• Prove that ZoltanJet can guarantee (P.1) and (P.2) using a flight plan having only $O(n \log n)$ pairs of airports. You may assume that n is a power of two.

Hint: Since this is the divide-and-conquer assignment, you probably have to use ...

Solution: We define P(n) to be the number of pairs of airports in the flight plan if the number of airports is n.

The base case is when n = 1. In this case, there is only one airport and, thus, there are no flights in the flight plan, i.e., P(1) = 0.

Assume that $n \ge 2$ is a power of two. Let k = n/2 so that A_k is the airport in the middle.

- 1. For each *i* with $1 \le i \le k 1$, we add (P_i, P_k) to the flight plan.
- 2. For each j with $k + 1 \le j \le n$, we add (P_k, P_j) to the flight plan.
- 3. Note: By doing this, we can fly from any airport A_i , with $1 \le i \le k$, to any airport A_j , with $k + 1 \le j \le n$, in at most two hops.
- 4. We now apply the construction recursively to the airports A_i with $1 \le i \le k$.
- 5. We also apply the construction recursively to the airports A_j with $k+1 \leq j \leq n$.

From this, we obtain the recurrence

$$P(n) = (n-1) + 2 \cdot P(n/2) \le n + 2 \cdot P(n/2).$$

This is the merge-sort recurrence (with a different base case). We have seen in class that this recurrence solves to $P(n) = O(n \log n)$.

Question 5: Professor Justin Bieber needs a fast algorithm that searches for an arbitrary element x in a sorted array A[1...n] of n numbers. He remembers that there is something called "binary search", which maintains an interval $[\ell, r]$ of indices such that, if x is present in the array, then it is contained in the subarray $A[\ell...r]$. In one iteration, the algorithm takes the middle index, say p, in the interval $[\ell, r]$. Then the algorithm either finds x at the position p, or it recurses in the interval $[\ell, p-1]$, or it recurses in the interval [p+1, r]. Unfortunately, Professor Bieber does not remember the expression² for p in terms of ℓ and r.

Professor Bieber does remember that, instead of choosing p in the middle of the interval $[\ell, r]$, it is often enough to choose p uniformly at random in this interval. Based on this, he obtains the following algorithm: The input consists of the sorted array $A[1 \dots n]$, its size n, and a number x. If x is in the array, then the algorithm returns the index p such that A[p] = x. Otherwise, the algorithm returns "not present". We assume that all numbers in A are distinct.

² is it $|(r-\ell)/2|$, or $[(r-\ell)/2]$, or $|(r-\ell+1)/2|$, or $[(r-\ell+1)/2]$?

```
Algorithm BIEBERSEARCH(A, n, x):

\ell = 1; r = n;

while \ell \le r

do p = uniformly random element in \{\ell, \ell + 1, \dots, r\};

if A[p] < x

then \ell = p + 1

else if A[p] > x

then r = p - 1

else return p

endif

endif

endwhile;

return "not present"
```

Let T be the running time of this algorithm on an input array of length n. Note that T is a random variable. Prove that the expected value of T is $O(\log n)$. Hint: Most solutions that you find on the internet are wrong.

Solution: In one iteration of the while-loop, the algorithm searches for x in the subarray $A[\ell \dots r]$; this subarray has length $r - \ell + 1$. In each iteration, if the algorithm does not terminate, either ℓ increases or r decreases; thus, the next iteration searches a smaller subarray.

Let $i \ge 0$ be an integer. We say that the while-loop is in *phase* i if, at the beginning of this iteration,

$$(3/4)^{i+1} \cdot n < r - \ell + 1 \le (3/4)^i \cdot n.$$

At the start of the first iteration, $r - \ell + 1 = n$ and, thus, the while-loop is in phase 0.

We first determine the largest possible phase number: If an iteration takes place in phase *i*, then $\ell \leq r$ (this is the condition in the while-loop) and, thus, $1 \leq r - \ell + 1$. It follows that

$$1 \le (3/4)^i \cdot n,$$

which is equivalent to

 $(4/3)^i < n,$

which is equivalent to

$$i \cdot \log(4/3) \le \log n,$$

which is equivalent to

$$i \le \frac{\log n}{\log(4/3)}.$$

Consider one phase *i*. Let $m = r - \ell + 1$. Divide $\{\ell, \ell + 1, \ldots, r\}$ into three pieces: The first m/4 elements, the middle m/2 elements, the last m/4 elements. If *p* belongs to the middle piece and if there is a next iteration, with values ℓ' and r', then

$$\ell' - r' + 1 \le m - m/4 = (3/4) \cdot m \le (3/4)^{i+1} \cdot m$$

Thus, the next iteration is in a phase with number at least i + 1.

Let X_i be the random variable whose value is the number of iterations in phase *i*. Since *p* is in the middle piece with probability 1/2, we have $\mathbb{E}(X_i) \leq 2$. (We have seen this in lecture 5.)

Let c be a constant such that one iteration takes at most c time. Let $L = \frac{\log n}{\log(4/3)}$. Then the running time T satisfies

$$T \le \sum_{i=0}^{L} c \cdot X_i.$$

Thus,

$$\mathbb{E}(T) \leq \mathbb{E}\left(\sum_{i=0}^{L} c \cdot X_{i}\right)$$
$$= \sum_{i=0}^{L} c \cdot \mathbb{E}(X_{i})$$
$$\leq \sum_{i=0}^{L} 2c$$
$$= 2c(L+1)$$
$$= O(\log n).$$

Question 6: You are given a sequence S consisting of n numbers; not all of these numbers need to be distinct.

Describe an algorithm, in plain English, that decides, in O(n) time, whether or not this sequence S contains a number that occurs more than n/4 times.

You may use any result that was proven in class. Justify the correctness of your algorithm and explain why the running time is O(n).

Hint: The algorithm must be comparison-based; you are not allowed to use hashing, bucketsort, or radix-sort.

Solution: We assume for simplicity that n is divisible by four.

The main observation is the following: If there is a number a that occurs more than n/4 times, then a is the (n/4)-th smallest number in S, or a is the (n/2)-th smallest number in S, or a is the (3n/4)-th smallest number in S.

Let us first prove that this observation is correct. Let x be the (n/4)-th smallest number in S, let y be the (n/2)-th smallest number in S, and let z be the (3n/4)-th smallest number in S. We assume, by contradiction, that $a \neq x$, $a \neq y$, and $a \neq z$. There are four possibilities:

- 1. a < x. This is a contradiction, because the number of elements in S that are less than x is less than n/4.
- 2. x < a < y. This is a contradiction, because the number of elements in S that are between x and y is less than n/4.

- 3. y < a < z. This is a contradiction, because the number of elements in S that are between y and z is less than n/4.
- 4. z < a. This is a contradiction, because the number of elements in S that are larger than z is less than n/4.

Thus, our main observation is correct.

Based on this, we get the following algorithm:

- 1. Compute the (n/4)-th smallest number, say x, in S. Walk along S and count the number of times that x occurs. If x occurs more than n/4 times, then we return x.
- 2. Compute the (n/2)-th smallest number, say y, in S. Walk along S and count the number of times that y occurs. If y occurs more than n/4 times, then we return y.
- 3. Compute the (3n/4)-th smallest number, say z, in S. Walk along S and count the number of times that z occurs. If z occurs more than n/4 times, then we return z.
- 4. If the algorithm did not return anything yet, then we know that there is no element in the input that occurs more than n/4 times.

Using results proven in class. The entire algorithm runs in O(n) time.