
COMP 3804 — Solutions Assignment 1

Some useful facts:
1. for any real number x > 0, x = 2log x.

2. For any real number x 6= 1 and any integer k ≥ 1,

1 + x+ x2 + · · ·+ xk−1 =
xk − 1

x− 1
.

3. For any real number 0 < α < 1,

∞∑
i=0

αi =
1

1− α
.

Master Theorem:
1. Let a ≥ 1, b > 1, d ≥ 0, and

T (n) =

{
1 if n = 1,
a · T (n/b) +O

(
nd
)

if n ≥ 2.

2. If d > logb a, then T (n) = O(nd).

3. If d = logb a, then T (n) = O(nd log n).

4. If d < logb a, then T (n) = O(nlogb a).

Question 1: Write your name and student number.

Solution: Lionel Messi, 10

Question 2: Consider the following recurrence, where n is a power of 6:

T (n) =

{
1 if n = 1,
n2 + 11 · T (n/6) if n ≥ 6.

• Solve this recurrence using the unfolding method. Give the final answer using Big-O
notation.

• Solve this recurrence using the Master Theorem.

1



Solution: We write n = 6k. Unfolding gives

T (n) = n2 + 11 · T (n/6)

= n2 + 11
(
(n/6)2 + 11 · T (n/62)

)
= (1 + 11/36)n2 + 112 · T (n/62)

= (1 + 11/36)n2 + 112
(
(n/36)2 + 11 · T (n/63)

)
=

(
1 + 11/36 + (11/36)2

)
n2 + 113 · T (n/63)

=
(
1 + 11/36 + (11/36)2

)
n2 + 113

(
(n/63)2 + 11 · T (n/64)

)
=

(
1 + 11/36 + (11/36)2 + (11/36)3

)
n2 + 114 · T (n/64)

...

=
(
1 + 11/36 + (11/36)2 + · · ·+ (11/36)k−1

)
n2 + 11k · T (n/6k)

=
k−1∑
i=0

(11/36)in2 + 11k · T (1)

=
k−1∑
i=0

(11/36)in2 + 11k

≤
∞∑
i=0

(11/36)in2 + 11k

=
1

1− 11/36
n2 + 11k

=
36

25
n2 + 11k.

Note that, since n = 6k, we have n2 = 62k = 36k > 11k. Therefore,

T (n) ≤ 36

25
n2 + n2 =

61

25
n2 = O(n2).

Using the Master Theorem: We have a = 11, b = 6, and d = 2. Since

logb a = log6 11 =
log 11

log 6
≈ 1.338 < d,

the Master Theorem tells us that T (n) = O(nd) = O(n2).

Question 3: Consider the following recurrence:

T (n) = n+ T (n/5) + T (7n/10).

In class, we have seen that T (n) = O(n). In this question, you will prove this using the
recursion tree method.

Recall from class: The root represents the recursion tree on an input of size n. Consider
a node u in the recursion tree that represents a recursive call on an input of size m. Then

2



we write the value m at this node u, we give u a left subtree which is a recursion tree for an
input of size m/5, and we give u a right subtree which is a recursion tree for an input of size
7m/10. In this way, T (n) is the sum of the values stored at all nodes in the entire recursion
tree.

Below, we assume that the levels in the recursion tree are numbered 0, 1, 2, . . . ,, where
the root is at level 0. For each i ≥ 0, let Si be the sum of the values of all nodes at level i.

• Determine S0.

• Determine S1.

• Determine S2.

• Use induction to prove the following claim: For every i ≥ 0,

Si ≤ (9/10)i · n.

Hint: Consider level i, let k = 2i, and let the values stored at the nodes at level i be
m1,m2, . . . ,mk. What are the values stored at the nodes at level i+ 1?

• Complete the proof by showing that T (n) = O(n).

Solution: In the following figure, you see levels 0, 1, and 2, in the recursion tree:

n

n/5 7n/10

n/25 7n/50 7n/50 49n/100

From this figure, we see that S0 = n,

S1 = n/5 + 7n/10 = (9/10) · n,

and
S2 = n/25 + 7n/50 + 7n/50 + 49n/100 = (9/10)2 · n.

There seems to be a pattern!
Now we prove by induction on i that Si ≤ (9/10)i · n.
Base case: i = 0. We have seen above that S0 = n. Since (9/10)i · n = n, the claim is

true.

3



Induction step: Let i ≥ 0, and assume that Si ≤ (9/10)i · n. We follow the hint: Let
k = 2i, and let the values stored at the nodes at level i be m1,m2, . . . ,mk. Note that

m1 +m2 + · · ·+mk = Si ≤ (9/10)i · n.

1. The values stored at the two children of m1 are m1/5 and 7m1/10. Their sum is
(9/10) ·m1.

2. The values stored at the two children of m2 are m2/5 and 7m2/10. Their sum is
(9/10) ·m2.

3. Etc. Etc.

4. The values stored at the two children of mk are mk/5 and 7mk/10. Their sum is
(9/10) ·mk.

It follows that the sum of the values stored at all nodes at level i+ 1 is equal to

Si+1 = (9/10) · (m1 +m2 + · · ·+mk) = (9/10) · Si.

We conclude that

Si+1 = (9/10) · Si ≤ (9/10) · (9/10)i · n = (9/10)i+1 · n.

For the last part of the question, we get

T (n) ≤
∞∑
i=0

(9/10)i · n =
n

1− 9/10
= 10n = O(n).

Question 4: Zoltan is not only your friendly TA, he is also the owner of the popular budget
airline ZoltanJet that offers flights in Canada. As you all know, there are n airports in
Canada. We denote these airports, in order from west to east, by A1, A2, . . . , An.

William, who is the CEO of ZoltanJet, has designed a flight plan which is a list of ordered
pairs (Ai, Aj) of airports such that there is a direct flight from Ai to Aj. This flight plan has
the following two properties:

• (P.1) Every flight is going eastwards1. In other words, if (Ai, Aj) is in the flight plan,
then i < j.

• (P.2) For any two indices i and j with 1 ≤ i < j ≤ n, it is possible to fly from Ai to
Aj in at most two hops. In other words, either (Ai, Aj) is in the flight plan, or there
is an index k such that both (Ai, Ak) and (Ak, Aj) are in the flight plan. Note that,
because of (P.1), i < k < j.

1But how do I get home? A customer service representative will tell you “that is your problem”.

4



Observe that ZoltanJet can guarantee (P.1) and (P.2) by offering direct flights between all(
n
2

)
= Θ(n2) pairs (Ai, Aj) of airports, where 1 ≤ i < j ≤ n.

• Prove that ZoltanJet can guarantee (P.1) and (P.2) using a flight plan having only
O(n log n) pairs of airports. You may assume that n is a power of two.

Hint: Since this is the divide-and-conquer assignment, you probably have to use . . .

Solution: We define P (n) to be the number of pairs of airports in the flight plan if the
number of airports is n.

The base case is when n = 1. In this case, there is only one airport and, thus, there are
no flights in the flight plan, i.e., P (1) = 0.

Assume that n ≥ 2 is a power of two. Let k = n/2 so that Ak is the airport in the middle.

1. For each i with 1 ≤ i ≤ k − 1, we add (Pi, Pk) to the flight plan.

2. For each j with k + 1 ≤ j ≤ n, we add (Pk, Pj) to the flight plan.

3. Note: By doing this, we can fly from any airport Ai, with 1 ≤ i ≤ k, to any airport
Aj, with k + 1 ≤ j ≤ n, in at most two hops.

4. We now apply the construction recursively to the airports Ai with 1 ≤ i ≤ k.

5. We also apply the construction recursively to the airports Aj with k + 1 ≤ j ≤ n.

From this, we obtain the recurrence

P (n) = (n− 1) + 2 · P (n/2) ≤ n+ 2 · P (n/2).

This is the merge-sort recurrence (with a different base case). We have seen in class that
this recurrence solves to P (n) = O(n log n).

Question 5: Professor Justin Bieber needs a fast algorithm that searches for an arbitrary
element x in a sorted array A[1 . . . n] of n numbers. He remembers that there is something
called “binary search”, which maintains an interval [`, r] of indices such that, if x is present
in the array, then it is contained in the subarray A[` . . . r]. In one iteration, the algorithm
takes the middle index, say p, in the interval [`, r]. Then the algorithm either finds x at
the position p, or it recurses in the interval [`, p− 1], or it recurses in the interval [p+ 1, r].
Unfortunately, Professor Bieber does not remember the expression2 for p in terms of ` and r.

Professor Bieber does remember that, instead of choosing p in the middle of the interval
[`, r], it is often enough to choose p uniformly at random in this interval. Based on this,
he obtains the following algorithm: The input consists of the sorted array A[1 . . . n], its size
n, and a number x. If x is in the array, then the algorithm returns the index p such that
A[p] = x. Otherwise, the algorithm returns “not present”. We assume that all numbers in
A are distinct.

2is it b(r − `)/2c, or d(r − `)/2e, or b(r − `+ 1)/2c, or d(r − `+ 1)/2e?

5



Algorithm BieberSearch(A, n, x):
` = 1; r = n;
while ` ≤ r
do p = uniformly random element in {`, `+ 1, . . . , r};

if A[p] < x
then ` = p+ 1
else if A[p] > x

then r = p− 1
else return p
endif

endif
endwhile;
return “not present”

Let T be the running time of this algorithm on an input array of length n. Note that T
is a random variable. Prove that the expected value of T is O(log n).
Hint: Most solutions that you find on the internet are wrong.

Solution: In one iteration of the while-loop, the algorithm searches for x in the subar-
ray A[` . . . r]; this subarray has length r − ` + 1. In each iteration, if the algorithm does
not terminate, either ` increases or r decreases; thus, the next iteration searches a smaller
subarray.

Let i ≥ 0 be an integer. We say that the while-loop is in phase i if, at the beginning of
this iteration,

(3/4)i+1 · n < r − `+ 1 ≤ (3/4)i · n.
At the start of the first iteration, r − `+ 1 = n and, thus, the while-loop is in phase 0.

We first determine the largest possible phase number: If an iteration takes place in
phase i, then ` ≤ r (this is the condition in the while-loop) and, thus, 1 ≤ r − ` + 1. It
follows that

1 ≤ (3/4)i · n,
which is equivalent to

(4/3)i ≤ n,

which is equivalent to
i · log(4/3) ≤ log n,

which is equivalent to

i ≤ log n

log(4/3)
.

Consider one phase i. Let m = r − `+ 1. Divide {`, `+ 1, . . . , r} into three pieces: The
first m/4 elements, the middle m/2 elements, the last m/4 elements. If p belongs to the
middle piece and if there is a next iteration, with values `′ and r′, then

`′ − r′ + 1 ≤ m−m/4 = (3/4) ·m ≤ (3/4)i+1 · n.

6



Thus, the next iteration is in a phase with number at least i+ 1.
Let Xi be the random variable whose value is the number of iterations in phase i. Since

p is in the middle piece with probability 1/2, we have E(Xi) ≤ 2. (We have seen this in
lecture 5.)

Let c be a constant such that one iteration takes at most c time. Let L = logn
log(4/3)

. Then
the running time T satisfies

T ≤
L∑
i=0

c ·Xi.

Thus,

E(T ) ≤ E

(
L∑
i=0

c ·Xi

)

=
L∑
i=0

c · E(Xi)

≤
L∑
i=0

2c

= 2c(L+ 1)

= O(log n).

Question 6: You are given a sequence S consisting of n numbers; not all of these numbers
need to be distinct.

Describe an algorithm, in plain English, that decides, in O(n) time, whether or not this
sequence S contains a number that occurs more than n/4 times.

You may use any result that was proven in class. Justify the correctness of your algorithm
and explain why the running time is O(n).
Hint: The algorithm must be comparison-based; you are not allowed to use hashing, bucket-
sort, or radix-sort.

Solution: We assume for simplicity that n is divisible by four.
The main observation is the following: If there is a number a that occurs more than n/4

times, then a is the (n/4)-th smallest number in S, or a is the (n/2)-th smallest number in
S, or a is the (3n/4)-th smallest number in S.

Let us first prove that this observation is correct. Let x be the (n/4)-th smallest number
in S, let y be the (n/2)-th smallest number in S, and let z be the (3n/4)-th smallest number
in S. We assume, by contradiction, that a 6= x, a 6= y, and a 6= z. There are four possibilities:

1. a < x. This is a contradiction, because the number of elements in S that are less than
x is less than n/4.

2. x < a < y. This is a contradiction, because the number of elements in S that are
between x and y is less than n/4.

7



3. y < a < z. This is a contradiction, because the number of elements in S that are
between y and z is less than n/4.

4. z < a. This is a contradiction, because the number of elements in S that are larger
than z is less than n/4.

Thus, our main observation is correct.
Based on this, we get the following algorithm:

1. Compute the (n/4)-th smallest number, say x, in S. Walk along S and count the
number of times that x occurs. If x occurs more than n/4 times, then we return x.

2. Compute the (n/2)-th smallest number, say y, in S. Walk along S and count the
number of times that y occurs. If y occurs more than n/4 times, then we return y.

3. Compute the (3n/4)-th smallest number, say z, in S. Walk along S and count the
number of times that z occurs. If z occurs more than n/4 times, then we return z.

4. If the algorithm did not return anything yet, then we know that there is no element in
the input that occurs more than n/4 times.

Using results proven in class. The entire algorithm runs in O(n) time.

8


