
COMP 3804 — Solutions Assignment 2

Question 1: Write your name and student number.

Solution: Uriah Heep, 1969

Question 2: You are given k sorted lists L1, L2, . . . , Lk of numbers. Let n denote the total
length of all these lists.

Describe an algorithm that returns one list containing all these n numbers in sorted order.
The running time of your algorithm must be O(n log k).

Explain why your algorithm is correct and why the running time is O(n log k).
Hint: If k = 2, this should look familiar.

Solution: The basic approach is as follows: We are going to traverse all lists simultaneously.
The k numbers that we are currently visiting (one per list) are stored in a min-heap. In one
iteration, we take the smallest number, say x, in the heap and remove it from the min-heap.
This number x is added at the end of the output list (which, at the end, will contain all
elements in sorted order). Let i be the index such that x is in Li. Then, in Li, we delete x,
take the new first number, say y, and insert it into the heap. More formally:

1. For each i = 1, 2, . . . , k, let xi be the smallest number in Li; this is the first number in
Li. Build a min-heap H for the numbers x1, x2, . . . , xk.

2. Initialize an empty list R.

3. While the min-heap is not empty:

(a) Find the smallest number, say x, in H and delete it. Note that this is the Ex-
tractMin operation.

(b) Add x at the end of the list R.

(c) Let i be such that x is in Li. (Using indices/pointers, x “knows” the value of i.)

(d) Delete x from Li, and let y be the new first number in Li. Insert y into the
min-heap H.

4. Return the list R.

The reason this is correct is the same as for the merge function in merge-sort (in which
case k = 2). Since all lists are sorted, the overall smallest number, say x, must be the
smallest among the first elements in all lists. The algorithm finds x in the first iteration
of the while-loop. It then removes x, and repeats the same process. Thus, in the second
iteration of the while-loop, the algorithm finds the overall second smallest element, in the
third iteration, the algorithm finds the overall third smallest element, in the fourth iteration,
the algorithm finds the overall fourth element, etc.

1

https://www.youtube.com/watch?v=9CbfoJdIQk8

What is the running time: Step 1 takes O(k) time. Step 2 takes O(1) time. One iteration
of the while-loop in Step 3 takes O(log k) time. Since there are n iterations, the total time
for Step 3 is O(n log k). Step 4 takes O(k) time. Thus, the total running time is

O(k) + O(1) + O(n log k) + O(k).

Since k ≤ n, this is O(n log k).

Question 3: This is a long question. Don’t be intimidated! As always, for each
part in this question, you must justify your answer.

Professor Justin Bieber needs a data structure that maintains a collection A,B,C, . . . of
sets under the following operations:

1. Maximum(X): return the largest element in the set X.

2. Insert(X, y): add the number y to the set X.

3. ExtractMax(X): delete and return the largest element in the set X.

4. Combine(X, Y): take the union X ∪ Y of the sets X and Y , and call the resulting
set X.

Professor Bieber knows how to support the first three operations: Store each set X in a
max-heap. The fourth operation seems to be more problematic, because we have to take two
max-heaps and combine them into one max-heap.

To support all four operations, Professor Bieber has invented the following sequence
B0, B1, B2, . . . of trees, which are now universally known as Bieber trees :

1. B0 is a tree with one node.

2. For each i ≥ 1, the tree Bi is obtained as follows: Take two copies of Bi−1 and make
the root of one copy a child of the root of the other copy.

B0
B1 B2

B3

Bi−1

Bi−1
Bi

Question 3.1: Let i ≥ 0. How many nodes does the tree Bi have?
Solution: Let ni denote the number of nodes in Bi. Then n0 = 1 and, for i ≥ 1, ni = 2·ni−1.
A straightforward induction shows that ni = 2i for all i ≥ 0.

2

Question 3.2: Let i ≥ 0. What is the height of the tree Bi?
Solution: Let hi denote the height of Bi. Then h0 = 0 and, for i ≥ 1, hi = 1 + hi−1. A
straightforward induction shows that hi = i for all i ≥ 0.

Question 3.3: Let i ≥ 1. Prove that the subtrees of the root of Bi are the Bieber trees
B0, B1, . . . , Bi−1.
Solution: The proof is by induction. For i = 1, the subtree of the root of B1 is the tree B0.

Let i ≥ 2, and assume the claim is true for i− 1. Consider the root, say r, of the tree Bi.
By the definition of Bi, one subtree of r is Bi−1. The other subtrees of r are the subtrees of
the root of Bi−1; by induction, these are B0, B1, . . . , Bi−2.

Let X be a set of n numbers, assume that n ≥ 1, and let

n = (bm, bm−1, . . . , b1, b0)

be the binary representation of n. Note that bm = 1 and

n =
m∑
i=0

bi · 2i.

The Bieber max-heap for the set X is obtained as follows:

1. Partition the set X, arbitrarily, into subsets such that for each i for which bi = 1, there
is exactly one subset of size 2i.

For example, if n = 11 = 23 + 21 + 20, the set X is partitioned into three subsets: one
of size 23, one of size 21, and one of size 20.

2. Each subset of size 2i is stored in a Bieber tree Bi. Each node in Bi stores one element
of the subset. Each node in Bi has pointers to its parent and all its children. There is
a pointer to the root of Bi.

3. Each Bieber tree has the property that the value stored at a node is larger than the
values stored at any of its children.

4. The roots of all these Bieber trees are connected using a doubly-linked list.

The figure below gives an example when n = 11.

3

Question 3.4: Let X be a non-empty set of numbers, and assume that this set is stored in
a Bieber max-heap. Describe an algorithm that implements the operation Maximum(X) in
O(log |X|) time.
Solution: To find the largest number in the Bieber max-heap, traverse the list that connects
the roots of all Bieber trees. The largest number in this list is the largest number in the set
X.

How much time does this take: The size of the list is equal to the number of 1’s in the
binary representation of |X|, which is O(log |X|). Thus, the entire operation takes O(log |X|)
time.

Question 3.5: Let X and Y be two sets of numbers, and assume that both sets have the
same size 2i. A Bieber max-heap for X consists of one single Bieber tree Bi. Similarly, a
Bieber max-heap for Y consists of one single Bieber tree Bi. Describe an algorithm that
implements the operation Combine(X, Y) in O(1) time.
Solution: The Bieber max-heap for X ∪ Y consists of one tree Bi+1. To obtain this tree,
we do the following:

1. Let x be the number stored at the root of the tree BX
i for X.

2. Let y be the number stored at the root of the tree BY
i for Y .

3. If x < y, then we make the root of BX
i a child of the root of BY

i .

4. If x ≥ y, then we make the root of BY
i a child of the root of BX

i .

This takes O(1) time.

Question 3.6: Let X and Y be two non-empty sets of numbers, and assume that X is
stored in a Bieber max-heap and Y is stored in a Bieber max-heap. Describe an algorithm
that implements the operation Combine(X, Y) in O(log |X|+ log |Y |) time.
Hint: This operation computes one Bieber max-heap storing the union X ∪ Y . If you take
the sum of two integers, both given in binary, then you go through the bits from right to left
and keep track of a carry bit.
Solution: Consider the binary representations of the sizes of X and Y :

|X| = (ak, ak−1, . . . , a1, a0)

and
|Y | = (b`, b`−1, . . . , b1, b0),

where ak = 1 and b` = 1. We may assume that k ≥ `; if this is not the case, then we swap
X and Y . We define

ak+1 = bk+1 = bk = · · · = b`+1 = 0.

The Bieber max-heap BMHX for X has one tree BX
i for every i for which ai = 1. The

Bieber max-heap BMH Y for Y has one tree BY
i for every i for which bi = 1.

4

Let Z = X ∪ Y . We show below how to obtain a Bieber max-heap BMH Z for the set Z.
This max-heap will have one tree BZ

i for every i such that the i-th bit (from the right) in
the binary representation of |Z| is equal to one.

1. Initialize c = null . Note: c will be the “carry Bieber tree”.

2. For each i = 0, 1, 2, . . . , k + 1, do the following:

(a) If c = null :

i. If ai = 0 and bi = 0: Do nothing (there is no BZ
i in BMH Z).

ii. If ai = 1 and bi = 0: Set BZ
i = BX

i .

iii. If ai = 0 and bi = 1: Set BZ
i = BY

i .

iv. If ai = 1 and bi = 1: Set c = Combine(BX
i , BY

i).

(b) Else (i.e., c 6= null):

i. If ai = 0 and bi = 0: Set BZ
i = c.

ii. If ai = 1 and bi = 0: Set c = Combine(c, BX
i).

iii. If ai = 0 and bi = 1: Set c = Combine(c, BY
i).

iv. If ai = 1 and bi = 1: Set BZ
i = BX

i and c = Combine(c, BY
i).

What is the running time: First note that k = O(log |X|) and ` = O(log |Y |). Recall that
we assumed that k ≥ `. Using 3.5, one iteration of the for-loop takes O(1) time. Thus, the
entire for-loop takes time O(log k), which is O(log |X|+ log |Y |).
Question 3.7: Let X be a non-empty set of numbers, and assume that this set is stored in
a Bieber max-heap. Describe an algorithm that implements the operation Insert(X, y) in
O(log |X|) time.

Note that this operation computes a Bieber max-heap for the set X ∪ {y}.
Solution: Let Y = {y}. We construct, in O(1) time, a Bieber max-heap for the set Y ; it
consists of one single tree BY

0 storing the number y. Then we call Combine(X, Y). By 3.6,
this takes O(log |X|) time.

Question 3.8: Let X be a non-empty set of numbers, and assume that this set is stored in a
Bieber max-heap. Describe an algorithm that implements the operation ExtractMax(X)
in O(log |X|) time.

Note that this operation computes a Bieber max-heap for the set X \ {y}, where y is the
largest number in X.
Solution: First we call Maximum(X), which, by 3.4, takes O(log |X|) time. The largest
number, say y, in X will be returned at the end of the operation. Let i be the index such that
the largest element in X is the root of the tree BX

i . Let X ′ be the set obtained by removing
all numbers stored in BX

i from the set X, and let Y ′ be the set obtained by removing y from
the set of all numbers that are stored in BX

i . Our goal is to compute a Bieber max-heap for
X ′ ∪ Y ′.

5

We remove BX
i from the Bieber max-heap for X. This gives a Bieber max-heap for X ′.

Next we remove the root from BX
i . By 3.3, the subtrees of the (now removed) root are trees

B0, B1, . . . , Bi−1; these form a Bieber max-heap for Y ′. Thus, we can call Combine(X ′, Y ′)
to obtain a Bieber max-heap for X ′∪Y ′. From the previous results, all of this takes O(log |X|)
time.

Question 3.9: Let X be a non-empty set of numbers, and assume that this set is stored
in a Bieber max-heap. How would you extend this data structure such that the operation
Maximum(X) only takes O(1) time, whereas the running times for the other operations
Combine, Insert, and ExtractMax remain as above?
Solution:

1. We store a variable maxX , whose value is the largest number in X.

2. Obviously, the operation Maximum(X) takes O(1) time.

3. At the end of the operation Combine(X, Y): Let Z = X ∪ Y . We set maxZ to the
larger of maxX and maxY .

4. At the end of the operation Insert(X, y), we set maxX to the larger of maxX and y.

5. At the end of the operation ExtractMax(X), we set maxX to the value obtained by
running Maximum on the resulting Bieber max-heap.

Remark: As you can imagine, Justin Bieber did not invent this data structure. The “merge-
able” heap in this question is called binomial heap. See wikipedia.

Question 4: Consider the following undirected graph:

A B C D

E F G H

I J K L

Draw the DFS-forest obtained by running algorithm DFS on this graph. The pseudocode
is given at the end of this assignment. Algorithm DFS uses algorithm Explore as a
subroutine; the pseudocode for this subroutine is also given at the end of this assignment.

In the forest, draw each tree edge as a solid edge, and draw each back edge as a dotted
edge.

Whenever there is a choice of vertices, pick the one that is alphabetically last.

6

Solution: In case there is more than choice, we pick the alphabetically largest one. Thus,
the for-loop in algorithm DFS(G) goes through the vertices in the order L,K, J, . . . , A. In
the for-loop of algorithm Explore, we also go in reverse alphabetical order. For example,
the for-loop of Explore(H) goes through H’s neighbors in the order K,G,D,C. Here is
the resulting DFS-forest:

A

BC

D

E

F

G

H I

J

K

L

Question 5: Tyler is not only your friendly TA, he is also the inventor of Tyler paths and
Tyler cycles in graphs: A Tyler path in an undirected graph is a path that contains every
vertex exactly once. In the figure below, you see a Tyler path in red. A Tyler cycle is a
cycle that contains every vertex exactly once. In the figure below, if you add the black edge
{s, t} to the red Tyler path, then you obtain a Tyler cycle.

s

t

If G = (V,E) is an undirected graph, then the graph G3 is defined as follows:

1. The vertex set of G3 is equal to V .

2. For any two distinct vertices u and v in V , {u, v} is an edge in G3 if and only if there
is a path in G between u and v consisting of at most three edges.

Question 5.1: Describe a recursive algorithm TylerPath that has the following specifi-
cation:

7

Algorithm TylerPath(T, u, v):
Input: A tree T with at least two vertices; two distinct vertices u and v in T such
that {u, v} is an edge in T .
Output: A Tyler path in T 3 that starts at vertex u and ends at vertex v.

Hint: You do not have to analyze the running time. The base case is easy. Now assume
that T has at least three vertices. If you remove the edge {u, v} from T , then you obtain
two trees Tu (containing u) and Tv (containing v).

1. One of these two trees, say, Tu, may consist of the single vertex u. How does your
recursive algorithm proceed?

2. If each of Tu and Tv has at least two vertices, how does your recursive algorithm
proceed?

Solution: Algorithm TylerPath(T, u, v) does the following:

1. If T consists of two vertices: Return the path consisting of the single edge {u, v}.

2. If T has at least three vertices: Let Tu and Tv be the two trees obtained by removing
the edge {u, v} from T .

(a) If each of Tu and Tv has at least two vertices (see the left figure below): Let u′

be a neighbor of u in Tu, and let v′ be a neighbor of v in Tv. Run algorithm
TylerPath(Tu, u, u

′) and let P be the path returned; note that P is a Tyler
path in T 3

u that starts at u and ends at u′. Run algorithm TylerPath(Tv, v
′, v)

and let Q be the path returned; note that Q is a Tyler path in T 3
v that starts at

v′ and ends at v. Note that, since u′ and v′ have distance three in T , the edge
{u′, v′} is in T 3. Thus, we return the path that starts by following P , then takes
the edge {u′, v′}, and then follows Q. This is a Tyler path in T 3 that starts at u
and ends at v.

(b) If Tu consists of the single vertex u and Tv has at least two vertices (see the right
figure below): Let v′ be a neighbor of v in Tv. Run algorithm TylerPath(Tv, v

′, v)
and let Q be the path returned; note that Q is a Tyler path in T 3

v that starts
at v′ and ends at v. Note that, since u and v′ have distance two in T , the edge
{u, v′} is in T 3. Thus, we return the path that starts with the edge {u, v′} and
then follows Q. This is a Tyler path in T 3 that starts at u and ends at v.

(c) If Tu has at least two vertices and Tv consists of the single vertex v: Swap u and
v and proceed as in the previous case.

u
v

u′

v′

u
v

v′

8

Question 5.2: Prove the following lemma:

Tuttle’s Lemma: For every tree T that has at least three vertices, the graph T 3 contains
a Tyler cycle.
Solution: Take an arbitrary edge {u, v} in T . Algorithm TylerPath(T, u, v) gives us a
Tyler path in T 3 that starts at u and ends at v. This path does not contain the edge {u, v}:
This is because T has at least three vertices. If we connect the end-vertices u and v of this
path using the edge {u, v}, then we obtain a Tyler cycle in T 3.

Question 5.3: Prove the following theorem:

Tuttle’s Theorem: For every connected undirected graph G that has at least three vertices,
the graph G3 contains a Tyler cycle.
Solution: We run algorithm DFS(G). Since G is connected, this gives us a spanning tree,
say T , of G. We have seen above that T 3 contains a Tyler cycle. Since T 3 is a subgraph of
G3, this is also a Tyler cycle in G3.
Remark: As you can imagine, Tyler did not invent the paths and cycles in this question.
They are known as Hamiltonian paths and cycles. See wikipedia.

9

Algorithm DFS(G):
for each vertex u
do visited(u) = false
endfor;
cc = 0;
for each vertex v
do if visited(v) = false

then cc = cc + 1
Explore(v)

endif
endfor

Algorithm Explore(v):
visited(v) = true;
ccnumber(v) = cc;
for each edge {v, u}
do if visited(u) = false

then Explore(u)
endif

endfor

10

