COMP 3804 — Solutions Assignment 4

Question 1: Write your name and student number.

Solution: Santa Clause, 007

Question 2: Let K > 3 be an integer. A K-kite is a graph consisting of a clique of size K
and a path with K vertices that is connected to one vertex of the clique; thus, the number of
vertices is equal to 2K. In the figure below, the graph with the black edges forms a 5-kite.

The kite problem is defined as follows:
KiTE = {(G, K) : graph G contains a K-kite}.

Prove that the language KITE is in NP.

Solution: The verification algorithm V does the following:
e It takes as input

— a graph G = (V, E) and an integer K > 3,

— a set V' of vertices and an ordered sequence S of vertices.
e The verification algorithm does the following:

— Check that V' C V and V has K vertices.

— Check that' S C V and S has K vertices.

— Check that? V' NS = 0.

Check that for each pair u # v in V', {u, v} is an edge in E.

Check that for each pair u, v of neighboring vertices in the sequence S, {u,v} is
an edge in F.

Let v be the first vertex in the sequence S. Check that there is a vertex u in V’
such that {u,v} is an edge in FE.

this is bad notation, because S is not a set
2again bad notation, because S is not a set



— If all of these are correct, then it returns YES. Otherwise, it returns NO.

The certificate is of course the pair (V,.S):

(G,K) € KITE < there exists (V/,5)
such that V' and S form a kite in G
& there exists a certificate (V',S) such that
V(G, K, V', S) returns YES.

Since V' NS = 0, the length of the certificate (V’,S) is at most [V|, which is at most the
length of the graph G.
What is the running time of the verification algorithm:

e Checking that V' C V and V has K vertices can be done in O(K|V|) = O(|V|?) time.
e Checking that S C V and S has K vertices can be done in O(K|V|) = O(|]V|?) time.
e Checking that V' NS = @ can be done in O(K?) = O(|V]?) time.

e Checking that for each pair u # v in V', {u,v} is an edge in F can be done in
O(K?) = O(|]V[?) time (assuming that G is represented using an adjacency matrix).

e Checking that for each pair u, v of neighboring vertices in the sequence S, {u, v} is an
edge in E can be done in O(K) = O(|V]) time.

e Let v be the first vertex in the sequence S. Checking that there is a vertex u in V'
such that {u,v} is an edge in F can be done in O(K) = O(|V]) time.

e Thus, the total running time of the verification algorithm is O(|V'|?), which is polyno-
mial in the length of G.

This shows that KITE € NP.

Question 3: The clique problem is defined as follows:
CLIQUE = {(G, K) : graph G contains a clique of size K}.

Prove that CLIQUE <p KITE, i.e., in polynomial time, CLIQUE can be reduced to KITE.

Solution: We need a function f such that
e f maps an input (G, K) to CLIQUE to an input (G’, K') to KITE,
e (G,K) € CLIQUE & (G, K') € KITE,

e the time to compute (G’, K’) is polynomial in the length of (G, K).



Here is the function f: Consider an input (G, K) to CLIQUE. We set K/ = K. The graph
G’ is obtained as follows:

e Make a copy of G.

e For every vertex v of G: create K new vertices, connect them into a path and connect
the start vertex of this path to v.

Let G = (V, E). We can compute (G’, K') in time O(|V| + |E| + K|V]) = O(|V|?), which is
polynomial in the length of G.

Assume that (G, K) € CLIQUE. Let V' C V be a clique in G of size K. Take an
arbitrary vertex v in this clique. In G’, this vertex v has a path with K vertices attached
to it. This path does not share vertices with the clique. Thus, G’ contains a K-kite, i.e.,
(G',K') € KITE.

Assume that (G', K') € KiTE. Let (V',S) be a K-kite in G’, where V' represents the
clique of size K and S represents the path with K vertices that is attached to the clique.
Observe that V' must be a subset of the vertex set of the graph G: If V' contains a new
vertex in G’, then this vertex has degree two and, thus, cannot be part of the clique (we
assume here that K > 4, the other cases can be handled as well). Therefore, V' is a clique

in G, i.e., (G,K) € CLIQUE.
Question 4: The subset sum problem is defined as follows:

SUBSETSUM = {(S,t) : S is a set of integers, ¢ is an integer,
35" C S such that >, .oz =1 }.

The partition problem is defined as follows:

PARTITION = {S: S is a set of integers,
ElS/ g S such that ers/ xr = ZyGS\Sl Yy }

e Prove that SUBSETSUM <p PARTITION, i.e., in polynomial time, SUBSETSUM can be
reduced to PARTITION.

e Prove that PARTITION <p SUBSETSUM, i.e., in polynomial time, PARTITION can be
reduced to SUBSETSUM.

Solution: We start with
SUBSETSUM <p PARTITION.

We need a function f such that
e f maps an input (S,t) to SUBSETSUM to an input 7" to PARTITION,
e (S,t) € SUBSETSUM < T € PARTITION,

e the time to compute 7" is polynomial in the length of (S,¢).



Here is the function f: Consider an input (5, ¢) to SUBSETSUM, where S = {a1, as, . ..

The input to PARTITION is the set
T ={ay,as,...,a,,s— 2t},

where
s=ay+as+ -+ a,.

The time to compute T" is O(n), which is polynomial in the length of S.
Assume that (S,t) € SUBSETSUM. Let S C S be such that

Z ai:t.

a; €S’
Note that
Z a; =8—1
a;€S\S’
and

Y x=s+(s—2t) =252t

zeT

Let 7" = S"U {s — 2t}. Then

Y ox= <Z ai)—l—(s—Qt)—t—i-(s—Qt)—s—t

z€T! a; €S’

and
Z w:(z ai)zs—t.
xe€T\T' a; €S\S’

Thus, T' € PARTITION.

For the other direction, we assume that 7" € PARTITION. Let 7" C T be such that

Yo=Y o

zeT" 2€T\T'

Since Y .7 * = 25 — 2t, we have

Za:: Z T =s—1t.

xeT’ z€T\T’
Assume first that s — 2t € T". Let S’ =T\ {s — 2t}. Then
Sa=Y x| -(s=2)=(s—t)—(s—2t)=t
zes’ €'

and, therefore, (S,t) € SUBSETSUM.

,an}.



Now assume that s — 2t € T\ T". Let 8" = (T'\T") \ {s — 2t}. Then

Zx:( > x)—(s—Qt):(s—t)—(s—Qt):t

z€s’ z€T\T’

and, therefore, (S,t) € SUBSETSUM.

Next we show that
PARTITION <p SUBSETSUM.

We need a function f such that
e f maps an input S to PARTITION to an input (7',¢) to SUBSETSUM,
e S € PARTITION < (T, t) € SUBSETSUM,
e the time to compute (7, t) is polynomial in the length of S.

Here is the function f: Consider an input S to PARTITION, where S = {a;,as,...,a,}.
The input to SUBSETSUM is the set

T = {2a4,2as, . ..,2a,},

and the integer
t=a1+ax+- -+ a,.

The time to compute (7', t) is O(n), which is polynomial in the length of S.
Assume that S € PARTITION. Let S’ C S be such that

o= > a

a; €S’ aZES\S’

Note that each of these two sums is equal to ¢/2 (which must be an integer, because S €
PARTITION). Let
T/ = {2&1 Ta; € S/}

Then

owx=2-> a=2-t/2=t

xzeT’ a; €S’

Thus, (T,t) € SUBSETSUM.
For the other direction, we assume that (7',t) € SUBSETSUM. Let 7" C T be such that

Z T =t.
zeT’

Let
S"'={a; €S :2a; €T},



Then

Y ox= L Y w=t/2
zeSsS’ 2 zeT’
and
oox=> x> z=t—-t/2=1/2.
zeS\S’ z€S zes’

Thus, S € PARTITION.
Question 5: The clique and independent set problem is defined as follows:

CLIQUEINDEPSET = {(G, K) : graph G contains a clique of size K and
G contains an independent set of size K }.

Prove that CLIQUE <p CLIQUEINDEPSET, i.e., in polynomial time, CLIQUE can be reduced
to CLIQUEINDEPSET.

Solution: We need a function f such that
e f maps an input (G, K) to CLIQUE to an input (G’, K') to CLIQUEINDEPSET,
e (G,K) € CLIQUE < (G', K') € CLIQUEINDEPSET,
e the time to compute (G’, K’) is polynomial in the length of (G, K).

Here is the function f: Consider an input (G, K) to CLIQUE. We set K’ = K. The graph
G’ is obtained as follows:

e Make a copy of G.

e Add K new vertices, each of them having degree zero.

Let G = (V, E). We can compute (G', K') in time O(|V| + |E| + K) = O(|V| + | E|), which
is polynomial in the length of G.

Assume that (G, K) € CLIQUE. Let V' C V be a clique in G of size K. Let V" be the
set of K new vertices. Then V' is a clique of size K in G’ and V" is an independent set of
size K in G'. Thus, (G’, K) € CLIQUEINDEPSET.

Assume that (G', K) € CLIQUEINDEPSET. Let V' be a clique of size K in G’ and let
V" be an independent set of size K in G'. Then V' cannot contain any of the new vertices.
Thus, V' is a clique of size K in G, i.e., (G, K) € CLIQUE.

Question 6: Let ¢ be a Boolean formula in the variables zq, xs,...,z,. We say that ¢ is
in congunctive normal form (CNF) if it is of the form

90201/\02/\.../\07”,
where each C;, 1 < i < m, is of the following form:
Ci=UVIEV.. VI,
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Each l;'. is a literal, which is either a variable or the negation of a variable.
The satisfiability problem is defined as follows:

SAT = {p : ¢ is in CNF-form and is satisfiable}.

Prove that CLIQUE <p SAT, i.e., in polynomial time, CLIQUE can be reduced to SAT.

Solution: We need a function f such that
e f maps an input (G, K) to CLIQUE to a Boolean formula ¢ in CNF-form,
e (G has a clique of size K < ¢ is satisfiable,
e the time to compute ¢ is polynomial in the length of G.

Consider an input (G, K) to CLIQUE, where G = (V,E) and V = {vy,v9,...,0,}. A
clique of size K, if it exists, will be represented by an ordered sequence of K vertices.

We will use Kn Boolean variables z;;, where 1 <¢ < K and 1 < j < n. The meaning of
these variables is as follows:

x;i; = true < the vertex at position ¢ in the clique is v;.

Uj

1 1 K
A clique of size K exists if and only if all of the following are true:
1. For each i =1,2,..., K: There is at least one vertex at position i.
2. For each i =1,2,..., K: There is at most one vertex at position 1.
3. For each 1 <i < i < K: The vertices at positions ¢ and 7' are distinct.

4. For each 1 <1i < i’ < K: The vertices at positions ¢ and i’ form an edge in G.

We are going to describe each of these four conditions by clauses.

Item 1: For position ¢, we get the clause
n
l‘il\/xﬂ\/---\/xm: \/ZL’Z]
j=1
For all positions i, we get K clauses
K n
AV i
i=1j=1

The total size of all these clauses is Kn, which is at most n?.
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Item 2: Consider one position ¢ and two distinct vertices v; and vy. If x;; A @ is true,
then both v; and v are at position i. Thus, z;; A x;; must be false, i.e., =(z;; A x;;) must
be true, which is the same as the clause

44 V L.

n

For all positions ¢ and all distinct vertices v; and v;/, we get K - (2

) clauses

AN N bz Vo).

i=1 1<j<j'<n

The total size of all these clauses is

K- (Z) .2 = 0(n?).

Item 3: Consider two distinct positions ¢ and 4, and one vertex v;. If x;; A x;; is true, then
vertex v; is at both positions ¢ and ¢'. Thus, z;; A z;; must be false, i.e., =(x;; A x;;) must
be true, which is the same as the clause

iy \Y Lyt
For all distinct positions ¢ and ¢, and all vertices v;, we get (I;) - n clauses
n
/\ /\ (_h’lfij V ﬁl'i/j) .
I<i<i'<K  j=1

The total size of all these clauses is

K -n-2=0(n%.
2

Item 4: Consider two distinct positions ¢ and ¢, and an non-edge {v;,v;}. If z;; A zy; is
true, then the vertices v; and v, at positions ¢ and i" do not form an edge. Thus, x;; A
must be false, i.e., =(z;; A z;7j;) must be true, which is the same as the clause

Lij vV L gt

For all distinct positions ¢ and ¢, and all non-edges {v;, v; }, we get (12{) : ((g) — |E|) clauses

A N (i Vwag).

1Si<i'<K  {vj,0}¢E

The total size of all these clauses is

@ | (@ . |E|> < (g) . @ 2=0(n").

The final Boolean formula ¢ that we are looking for is the conjunction (logical AND) of
all clauses in Items 1—4. The total size of ¢ is O(n*), which is polynomial in the length of
the graph G.



