
COMP 3804 — Solutions Assignment 4

Question 1: Write your name and student number.

Solution: Santa Clause, 007

Question 2: Let K ≥ 3 be an integer. A K-kite is a graph consisting of a clique of size K
and a path with K vertices that is connected to one vertex of the clique; thus, the number of
vertices is equal to 2K. In the figure below, the graph with the black edges forms a 5-kite.

The kite problem is defined as follows:

Kite = {(G,K) : graph G contains a K-kite}.

Prove that the language Kite is in NP.

Solution: The verification algorithm V does the following:

• It takes as input

– a graph G = (V,E) and an integer K ≥ 3,

– a set V ′ of vertices and an ordered sequence S of vertices.

• The verification algorithm does the following:

– Check that V ′ ⊆ V and V has K vertices.

– Check that1 S ⊆ V and S has K vertices.

– Check that2 V ′ ∩ S = ∅.
– Check that for each pair u 6= v in V ′, {u, v} is an edge in E.

– Check that for each pair u, v of neighboring vertices in the sequence S, {u, v} is
an edge in E.

– Let v be the first vertex in the sequence S. Check that there is a vertex u in V ′

such that {u, v} is an edge in E.

1this is bad notation, because S is not a set
2again bad notation, because S is not a set
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– If all of these are correct, then it returns YES. Otherwise, it returns NO.

The certificate is of course the pair (V, S):

(G,K) ∈ Kite ⇔ there exists (V ′, S)

such that V ′ and S form a kite in G

⇔ there exists a certificate (V ′, S) such that

V(G,K, V ′, S) returns YES.

Since V ′ ∩ S = ∅, the length of the certificate (V ′, S) is at most |V |, which is at most the
length of the graph G.

What is the running time of the verification algorithm:

• Checking that V ′ ⊆ V and V has K vertices can be done in O(K|V |) = O(|V |2) time.

• Checking that S ⊆ V and S has K vertices can be done in O(K|V |) = O(|V |2) time.

• Checking that V ′ ∩ S = ∅ can be done in O(K2) = O(|V |2) time.

• Checking that for each pair u 6= v in V ′, {u, v} is an edge in E can be done in
O(K2) = O(|V |2) time (assuming that G is represented using an adjacency matrix).

• Checking that for each pair u, v of neighboring vertices in the sequence S, {u, v} is an
edge in E can be done in O(K) = O(|V |) time.

• Let v be the first vertex in the sequence S. Checking that there is a vertex u in V ′

such that {u, v} is an edge in E can be done in O(K) = O(|V |) time.

• Thus, the total running time of the verification algorithm is O(|V |2), which is polyno-
mial in the length of G.

This shows that Kite ∈ NP.

Question 3: The clique problem is defined as follows:

Clique = {(G,K) : graph G contains a clique of size K}.

Prove that Clique ≤P Kite, i.e., in polynomial time, Clique can be reduced to Kite.

Solution: We need a function f such that

• f maps an input (G,K) to Clique to an input (G′, K ′) to Kite,

• (G,K) ∈ Clique ⇔ (G′, K ′) ∈ Kite,

• the time to compute (G′, K ′) is polynomial in the length of (G,K).
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Here is the function f : Consider an input (G,K) to Clique. We set K ′ = K. The graph
G′ is obtained as follows:

• Make a copy of G.

• For every vertex v of G: create K new vertices, connect them into a path and connect
the start vertex of this path to v.

Let G = (V,E). We can compute (G′, K ′) in time O(|V |+ |E|+ K|V |) = O(|V |2), which is
polynomial in the length of G.

Assume that (G,K) ∈ Clique. Let V ′ ⊆ V be a clique in G of size K. Take an
arbitrary vertex v in this clique. In G′, this vertex v has a path with K vertices attached
to it. This path does not share vertices with the clique. Thus, G′ contains a K-kite, i.e.,
(G′, K ′) ∈ Kite.

Assume that (G′, K ′) ∈ Kite. Let (V ′, S) be a K-kite in G′, where V ′ represents the
clique of size K and S represents the path with K vertices that is attached to the clique.
Observe that V ′ must be a subset of the vertex set of the graph G: If V ′ contains a new
vertex in G′, then this vertex has degree two and, thus, cannot be part of the clique (we
assume here that K ≥ 4, the other cases can be handled as well). Therefore, V ′ is a clique
in G, i.e., (G,K) ∈ Clique.

Question 4: The subset sum problem is defined as follows:

SubsetSum = {(S, t) : S is a set of integers, t is an integer,
∃S ′ ⊆ S such that

∑
x∈S′ x = t }.

The partition problem is defined as follows:

Partition = {S : S is a set of integers,
∃S ′ ⊆ S such that

∑
x∈S′ x =

∑
y∈S\S′ y }.

• Prove that SubsetSum ≤P Partition, i.e., in polynomial time, SubsetSum can be
reduced to Partition.

• Prove that Partition ≤P SubsetSum, i.e., in polynomial time, Partition can be
reduced to SubsetSum.

Solution: We start with
SubsetSum ≤P Partition.

We need a function f such that

• f maps an input (S, t) to SubsetSum to an input T to Partition,

• (S, t) ∈ SubsetSum ⇔ T ∈ Partition,

• the time to compute T is polynomial in the length of (S, t).
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Here is the function f : Consider an input (S, t) to SubsetSum, where S = {a1, a2, . . . , an}.
The input to Partition is the set

T = {a1, a2, . . . , an, s− 2t},

where
s = a1 + a2 + · · ·+ an.

The time to compute T is O(n), which is polynomial in the length of S.
Assume that (S, t) ∈ SubsetSum. Let S ′ ⊆ S be such that∑

ai∈S′
ai = t.

Note that ∑
ai∈S\S′

ai = s− t

and ∑
x∈T

x = s + (s− 2t) = 2s− 2t.

Let T ′ = S ′ ∪ {s− 2t}. Then

∑
x∈T ′

x =

 ∑
ai∈S′

ai

+ (s− 2t) = t + (s− 2t) = s− t

and ∑
x∈T\T ′

x =

 ∑
ai∈S\S′

ai

 = s− t.

Thus, T ∈ Partition.
For the other direction, we assume that T ∈ Partition. Let T ′ ⊆ T be such that∑

x∈T ′
x =

∑
x∈T\T ′

x.

Since
∑

x∈T x = 2s− 2t, we have ∑
x∈T ′

x =
∑

x∈T\T ′

x = s− t.

Assume first that s− 2t ∈ T ′. Let S ′ = T ′ \ {s− 2t}. Then

∑
x∈S′

x =

∑
x∈T ′

x

− (s− 2t) = (s− t)− (s− 2t) = t

and, therefore, (S, t) ∈ SubsetSum.
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Now assume that s− 2t ∈ T \ T ′. Let S ′ = (T \ T ′) \ {s− 2t}. Then

∑
x∈S′

x =

 ∑
x∈T\T ′

x

− (s− 2t) = (s− t)− (s− 2t) = t

and, therefore, (S, t) ∈ SubsetSum.

Next we show that
Partition ≤P SubsetSum.

We need a function f such that

• f maps an input S to Partition to an input (T, t) to SubsetSum,

• S ∈ Partition ⇔ (T, t) ∈ SubsetSum,

• the time to compute (T, t) is polynomial in the length of S.

Here is the function f : Consider an input S to Partition, where S = {a1, a2, . . . , an}.
The input to SubsetSum is the set

T = {2a1, 2a2, . . . , 2an},

and the integer
t = a1 + a2 + · · ·+ an.

The time to compute (T, t) is O(n), which is polynomial in the length of S.
Assume that S ∈ Partition. Let S ′ ⊆ S be such that∑

ai∈S′
ai =

∑
ai∈S\S′

ai.

Note that each of these two sums is equal to t/2 (which must be an integer, because S ∈
Partition). Let

T ′ = {2ai : ai ∈ S ′}.

Then ∑
x∈T ′

x = 2 ·
∑
ai∈S′

ai = 2 · t/2 = t.

Thus, (T, t) ∈ SubsetSum.
For the other direction, we assume that (T, t) ∈ SubsetSum. Let T ′ ⊆ T be such that∑

x∈T ′
x = t.

Let
S ′ = {ai ∈ S : 2ai ∈ T ′}.
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Then ∑
x∈S′

x =
1

2
·
∑
x∈T ′

x = t/2

and ∑
x∈S\S′

x =
∑
x∈S

x−
∑
x∈S′

x = t− t/2 = t/2.

Thus, S ∈ Partition.

Question 5: The clique and independent set problem is defined as follows:

CliqueIndepSet = {(G,K) : graph G contains a clique of size K and
G contains an independent set of size K }.

Prove that Clique ≤P CliqueIndepSet, i.e., in polynomial time, Clique can be reduced
to CliqueIndepSet.

Solution: We need a function f such that

• f maps an input (G,K) to Clique to an input (G′, K ′) to CliqueIndepSet,

• (G,K) ∈ Clique ⇔ (G′, K ′) ∈ CliqueIndepSet,

• the time to compute (G′, K ′) is polynomial in the length of (G,K).

Here is the function f : Consider an input (G,K) to Clique. We set K ′ = K. The graph
G′ is obtained as follows:

• Make a copy of G.

• Add K new vertices, each of them having degree zero.

Let G = (V,E). We can compute (G′, K ′) in time O(|V |+ |E|+ K) = O(|V |+ |E|), which
is polynomial in the length of G.

Assume that (G,K) ∈ Clique. Let V ′ ⊆ V be a clique in G of size K. Let V ′′ be the
set of K new vertices. Then V ′ is a clique of size K in G′ and V ′′ is an independent set of
size K in G′. Thus, (G′, K) ∈ CliqueIndepSet.

Assume that (G′, K) ∈ CliqueIndepSet. Let V ′ be a clique of size K in G′ and let
V ′′ be an independent set of size K in G′. Then V ′ cannot contain any of the new vertices.
Thus, V ′ is a clique of size K in G, i.e., (G,K) ∈ Clique.

Question 6: Let ϕ be a Boolean formula in the variables x1, x2, . . . , xn. We say that ϕ is
in conjunctive normal form (CNF) if it is of the form

ϕ = C1 ∧ C2 ∧ . . . ∧ Cm,

where each Ci, 1 ≤ i ≤ m, is of the following form:

Ci = li1 ∨ li2 ∨ . . . ∨ liki .
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Each lij is a literal, which is either a variable or the negation of a variable.
The satisfiability problem is defined as follows:

Sat = {ϕ : ϕ is in CNF-form and is satisfiable}.

Prove that Clique ≤P Sat, i.e., in polynomial time, Clique can be reduced to Sat.

Solution: We need a function f such that

• f maps an input (G,K) to Clique to a Boolean formula ϕ in CNF-form,

• G has a clique of size K ⇔ ϕ is satisfiable,

• the time to compute ϕ is polynomial in the length of G.

Consider an input (G,K) to Clique, where G = (V,E) and V = {v1, v2, . . . , vn}. A
clique of size K, if it exists, will be represented by an ordered sequence of K vertices.

We will use Kn Boolean variables xij, where 1 ≤ i ≤ K and 1 ≤ j ≤ n. The meaning of
these variables is as follows:

xij = true ⇔ the vertex at position i in the clique is vj.

vj

1 i K

· · · · · ·

A clique of size K exists if and only if all of the following are true:

1. For each i = 1, 2, . . . , K: There is at least one vertex at position i.

2. For each i = 1, 2, . . . , K: There is at most one vertex at position i.

3. For each 1 ≤ i < i′ ≤ K: The vertices at positions i and i′ are distinct.

4. For each 1 ≤ i < i′ ≤ K: The vertices at positions i and i′ form an edge in G.

We are going to describe each of these four conditions by clauses.

Item 1: For position i, we get the clause

xi1 ∨ xi2 ∨ · · · ∨ xin =
n∨

j=1

xij.

For all positions i, we get K clauses
K∧
i=1

n∨
j=1

xij.

The total size of all these clauses is Kn, which is at most n2.
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Item 2: Consider one position i and two distinct vertices vj and vj′ . If xij ∧ xij′ is true,
then both vi and vj′ are at position i. Thus, xij ∧ xij′ must be false, i.e., ¬(xij ∧ xij′) must
be true, which is the same as the clause

¬xij ∨ ¬xij′ .

For all positions i and all distinct vertices vj and vj′ , we get K ·
(
n
2

)
clauses

K∧
i=1

∧
1≤j<j′≤n

(¬xij ∨ ¬xij′) .

The total size of all these clauses is

K ·
(
n

2

)
· 2 = O(n3).

Item 3: Consider two distinct positions i and i′, and one vertex vj. If xij ∧xi′j is true, then
vertex vj is at both positions i and i′. Thus, xij ∧ xi′j must be false, i.e., ¬(xij ∧ xi′j) must
be true, which is the same as the clause

¬xij ∨ ¬xi′j.

For all distinct positions i and i′, and all vertices vj, we get
(
K
2

)
· n clauses

∧
1≤i<i′≤K

n∧
j=1

(¬xij ∨ ¬xi′j) .

The total size of all these clauses is(
K

2

)
· n · 2 = O(n3).

Item 4: Consider two distinct positions i and i′, and an non-edge {vj, vj′}. If xij ∧ xi′j′ is
true, then the vertices vj and vj′ at positions i and i′ do not form an edge. Thus, xij ∧ xi′j′

must be false, i.e., ¬(xij ∧ xi′j′) must be true, which is the same as the clause

¬xij ∨ ¬xi′j′ .

For all distinct positions i and i′, and all non-edges {vj, vj′}, we get
(
K
2

)
·
((

n
2

)
− |E|

)
clauses∧

1≤i<i′≤K

∧
{vj ,vj′}6∈E

(¬xij ∨ ¬xi′j′) .

The total size of all these clauses is(
K

2

)
·
((

n

2

)
− |E|

)
· 2 ≤

(
K

2

)
·
(
n

2

)
· 2 = O(n4).

The final Boolean formula ϕ that we are looking for is the conjunction (logical AND) of
all clauses in Items 1—4. The total size of ϕ is O(n4), which is polynomial in the length of
the graph G.
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