COMP 3804 — Assignment 1

Due: Thursday February 2, 23:59.

Assignment Policy:

- Your assignment must be submitted as one single PDF file through Brightspace.

Use the following format to name your file:

LastName_ StudentId_a1.pdf

- Late assignments will not be accepted. I will not reply to emails of the type “my internet connection broke down at 23:57” or “my scanner stopped working at 23:58”, or “my dog ate my laptop charger”.

- You are encouraged to collaborate on assignments, but at the level of discussion only. When writing your solutions, you must do so in your own words.

- Past experience has shown conclusively that those who do not put adequate effort into the assignments do not learn the material and have a probability near 1 of doing poorly on the exams.

- When writing your solutions, you must follow the guidelines below.
 - You must justify your answers.
 - The answers should be concise, clear and neat.
 - When presenting proofs, every step should be justified.

Some useful facts:

1. For any real number $x > 0$, $x = 2^{\log x}$.

2. For any real number $x \neq 1$ and any integer $k \geq 1$,

$$1 + x + x^2 + \cdots + x^{k-1} = \frac{x^k - 1}{x - 1}.$$

3. For any real number $0 < \alpha < 1$,

$$\sum_{i=0}^{\infty} \alpha^i = \frac{1}{1 - \alpha}.$$
Question 1: Write your name and student number.

Question 2: Consider the following recurrence, where \(n \) is a power of 6:

\[
T(n) = \begin{cases}
1 & \text{if } n = 1, \\
 n^2 + 11 \cdot T(n/6) & \text{if } n \geq 6.
\end{cases}
\]

- Solve this recurrence using the unfolding method. Give the final answer using Big-O notation.
- Solve this recurrence using the Master Theorem.

Question 3: Consider the following recurrence:

\[
T(n) = n + T(n/5) + T(7n/10).
\]

In class, we have seen that \(T(n) = O(n) \). In this question, you will prove this using the recursion tree method.

Recall from class: The root represents the recursion tree on an input of size \(n \). Consider a node \(u \) in the recursion tree that represents a recursive call on an input of size \(m \). Then we write the value \(m \) at this node \(u \), we give \(u \) a left subtree which is a recursion tree for an input of size \(m/5 \), and we give \(u \) a right subtree which is a recursion tree for an input of size \(7m/10 \). In this way, \(T(n) \) is the sum of the values stored at all nodes in the entire recursion tree.

Below, we assume that the levels in the recursion tree are numbered 0, 1, 2, \ldots, where the root is at level 0. For each \(i \geq 0 \), let \(S_i \) be the sum of the values of all nodes at level \(i \).

- Determine \(S_0 \).
- Determine \(S_1 \).
- Determine \(S_2 \).
- Use induction to prove the following claim: For every \(i \geq 0 \),

\[
S_i \leq (9/10)^i \cdot n.
\]

Hint: Consider level \(i \), let \(k = 2^i \), and let the values stored at the nodes at level \(i \) be \(m_1, m_2, \ldots, m_k \). What are the values stored at the nodes at level \(i + 1 \)?

- Complete the proof by showing that \(T(n) = O(n) \).
Question 4: Zoltan is not only your friendly TA, he is also the owner of the popular budget airline ZoltanJet that offers flights in Canada. As you all know, there are \(n \) airports in Canada. We denote these airports, in order from west to east, by \(A_1, A_2, \ldots, A_n \).

William, who is the CEO of ZoltanJet, has designed a flight plan which is a list of ordered pairs \((A_i, A_j)\) of airports such that there is a direct flight from \(A_i \) to \(A_j \). This flight plan has the following two properties:

- (P.1) Every flight is going eastwards\(^1\). In other words, if \((A_i, A_j)\) is in the flight plan, then \(i < j \).
- (P.2) For any two indices \(i \) and \(j \) with \(1 \leq i < j \leq n \), it is possible to fly from \(A_i \) to \(A_j \) in at most two hops. In other words, either \((A_i, A_j)\) is in the flight plan, or there is an index \(k \) such that both \((A_i, A_k)\) and \((A_k, A_j)\) are in the flight plan. Note that, because of (P.1), \(i < k < j \).

Observe that ZoltanJet can guarantee (P.1) and (P.2) by offering direct flights between all \(\binom{n}{2} = \Theta(n^2) \) pairs \((A_i, A_j)\) of airports, where \(1 \leq i < j \leq n \).

- Prove that ZoltanJet can guarantee (P.1) and (P.2) using a flight plan having only \(O(n \log n) \) pairs of airports. You may assume that \(n \) is a power of two.

Hint: Since this is the divide-and-conquer assignment, you probably have to use . . .

Question 5: Professor Justin Bieber needs a fast algorithm that searches for an arbitrary element \(x \) in a sorted array \(A[1 \ldots n] \) of \(n \) numbers. He remembers that there is something called “binary search”, which maintains an interval \([\ell, r]\) of indices such that, if \(x \) is present in the array, then it is contained in the subarray \(A[\ell \ldots r] \). In one iteration, the algorithm takes the middle index, say \(p \), in the interval \([\ell, r]\). Then the algorithm either finds \(x \) at the position \(p \), or it recurses in the interval \([\ell, p - 1]\), or it recurses in the interval \([p + 1, r]\).

Unfortunately, Professor Bieber does not remember the expression\(^2\) for \(p \) in terms of \(\ell \) and \(r \).

Professor Bieber does remember that, instead of choosing \(p \) in the middle of the interval \([\ell, r]\), it is often enough to choose \(p \) uniformly at random in this interval. Based on this, he obtains the following algorithm: The input consists of the sorted array \(A[1 \ldots n] \), its size \(n \), and a number \(x \). If \(x \) is in the array, then the algorithm returns the index \(p \) such that \(A[p] = x \). Otherwise, the algorithm returns “not present”. We assume that all numbers in \(A \) are distinct.

\(^1\)But how do I get home? A customer service representative will tell you “that is your problem”.

\(^2\)is it \(\lfloor (r - \ell)/2 \rfloor \), or \(\lceil (r - \ell)/2 \rceil \), or \(\lfloor (r - \ell + 1)/2 \rfloor \), or \(\lceil (r - \ell + 1)/2 \rceil \)?
Algorithm BieberSearch\((A, n, x)\):
\[
\ell = 1; \quad r = n;
\]
while \(\ell \leq r \)
\[
do \quad p = \text{uniformly random element in } \{\ell, \ell + 1, \ldots, r\};
\quad \text{if } A[p] < x \quad \text{then } \ell = p + 1
\quad \text{else if } A[p] > x \\
\quad \quad \quad \quad \text{then } r = p - 1
\quad \text{else return } p
\quad \text{endif}
\quad \text{endif}
\endwhile;
\]
return “not present”

Let \(T \) be the running time of this algorithm on an input array of length \(n \). Note that \(T \) is a random variable. Prove that the expected value of \(T \) is \(O(\log n) \).

Hint: Most solutions that you find on the internet are wrong.

Question 6: You are given a sequence \(S \) consisting of \(n \) numbers; not all of these numbers need to be distinct.

Describe an algorithm, in plain English, that decides, in \(O(n) \) time, whether or not this sequence \(S \) contains a number that occurs more than \(n/4 \) times.

You may use any result that was proven in class. Justify the correctness of your algorithm and explain why the running time is \(O(n) \).

Hint: The algorithm must be comparison-based; you are not allowed to use hashing, bucket-sort, or radix-sort.