Correctness of Dijkstra's algorithm:

Claim: for every vertex \(v \):

* at the moment when \(d(v) \) is minimum in \(Q \), we have
 \[d(v) = \delta(s, v). \]
* from that moment, \(d(v) \) does not change any more.

1. At any moment: \(\delta(s,v) \leq d(v) \) for every vertex.

 Proof: as on page 93.

2. Assume at some moment, \(d(v) \) becomes equal to \(\delta(s,v) \). Then, during the rest of the algorithm, \(d(v) \) does not change.

 Proof: as on page 93.
Let \(v \neq s \). Consider the shortest path from \(s \) to \(v \).

Consider the iteration in which \(u \) is chosen as the vertex in \(Q \) whose \(d \)-value is minimum.

If \(d(u) = \delta(s, u) \) at the beginning of this iteration, then \(d(v) = \delta(s, v) \) at the end of this iteration.

Proof: As on page 94: At the end of this iteration,

\[
d(v) \leq d(u) + wt(u, v) \quad \text{// from algorithm}
= \delta(s, u) + wt(u, v) \quad \text{// from assumption}
= \delta(s, v) \quad \text{// property of shortest paths}
\leq d(v) \quad \text{// from 1}
\]

\[\therefore d(v) = \delta(s, v).\]
The minimum d-value in Q never decreases.

Proof: Consider an iteration of the while-loop, and let $u \in Q$ be such that $d(u)$ is minimum.

Before the for-loop: $d(u) \leq d(v)$ for all $v \in Q$.

During the for-loop, some values $d(v)$ may change.

If $d(v)$ is changed, its new value is

$$d(v) = d(u) + wt(u,v) > d(u).$$

\therefore At the end of the for-loop: $d(u) \leq d(v)$ for all $v \in Q$.

\therefore In the next iteration of the while-loop:

all d-values in $Q \setminus \{u\}$ are $\geq d(u)$

\[\text{this is the new set } Q^{\text{new}}\]

\therefore minimum d-value in Q^{new} is $\geq d(u)$.

\square
Proof of the claim on page 102:
First observe: in each iteration of the while-loop, the set Q gets smaller.

For each vertex v, at some moment, $d(v)$ is minimum over all vertices in Q.

For $v = s$: the claim is true.

Consider a vertex v with $v \neq s$. Consider the shortest path P from s to v:

$$S \rightarrow u_1 \rightarrow u_2 \rightarrow u_3 \rightarrow \ldots \rightarrow u_k \rightarrow v$$

Observe: for each i with $1 \leq i \leq k$: the path $S \rightarrow u_1 \rightarrow u_2 \rightarrow \ldots \rightarrow u_i$ is the shortest path from s to u_i.
Consider the first iteration of the while-loop:

Vertex s is chosen.

At that moment: $d(s) = 0 = \delta(s,s)$.

From (3): at the end of the iteration in which s is chosen as the vertex in Q with minimum d-value: $d(u_1) = \delta(s,u_1)$.

From (2): $d(u_1)$ does not change afterwards.

Observe: u_1 is still in Q at the end of the iteration in which u_1 is chosen: $d(u_1) = \delta(s,u_1)$.

From (3): At the end of the iteration in which u_1 is chosen: $d(u_2) = \delta(s,u_2)$.

From (2): $d(u_2)$ does not change afterwards.

Observe: $d(u_2) = \delta(s,u_2) = \delta(s,u_1) + \omega(t(u_1,u_2)) > \delta(s,u_1) = d(u_1)$

From (4): At the end of the iteration in which u_1 is chosen: u_2 is still in Q.

At the beginning of the iteration in which \(u_2 \) is chosen: \(d(u_2) = \delta(s, u_2) \).

From (3): At the end of the iteration in which \(u_2 \) is chosen: \(d(u_3) = \delta(s, u_3) \).

From (2): \(d(u_3) \) does not change afterwards.

Observe: \(d(u_3) = \delta(s, u_3) = \delta(s, u_2) + \omega(t(u_2, u_3)) \geq \delta(s, u_2) = d(u_2) \)

From (4): At the end of the iteration in which \(u_2 \) is chosen: \(u_3 \) is still in \(Q \).

At the beginning of the iteration in which \(u_k \) is chosen: \(d(u_k) = \delta(s, u_k) \).

From (3): At the end of the iteration in which \(u_k \) is chosen: \(d(v) = \delta(s, v) \).

From (2): \(d(v) \) does not change afterwards.
Observe: \(d(v) = \delta(s,v) = \delta(s,u_k) + wt(u_k,v) \)

\[\geq \delta(s,u_k) = d(u_k) \]

From (4) : at the end of the iteration in which \(u_k \) is chosen: \(v \) is still in \(Q \).

\[\therefore \text{the answer} \] At the beginning of the iteration in which \(v \) is chosen: \(d(v) = \delta(s,v) \). From (2) : \(d(v) \) does not change afterwards.