Prim (1957) [Jarník (1930), Dijkstra (1959)]

Start: \(A = \) set consisting of one (arbitrary) vertex of \(V \)

\(T = \) empty edge set

One iteration:

\[
\begin{align*}
A & \quad \text{and} \quad \mathcal{Q} = V \setminus A \\
\end{align*}
\]

* take edge \(\{u,v\} \) of minimum weight such that \(u \in A, v \in \mathcal{Q} \).
* add the edge \(\{u,v\} \) to \(T \).
* move \(v \) from \(\mathcal{Q} \) to \(A \).

Repeat until \(A = V \) (i.e., \(\mathcal{Q} = \emptyset \)).
Prim:
\[r = \text{arbitrary vertex of } V; \]
\[A = \{ r \}; \]
\[T = \emptyset; \]
while \(A \neq V \):
 find edge \(\{u,v\} \) of minimum weight such that \(u \in A, v \notin V \setminus A \);
 \[A = A \cup \{v\}; \]
 \[T = T \cup \{\{u,v\}\}; \]

How to find the edge \(\{u,v\} \): by brute force in \(O(m) \) time.

Total running time = \(O(mn) \),
where \(n = |V|, m = |E| \).
To improve the running time: maintain extra information.

\[Q = V \setminus A \]

For each vertex \(y \) in \(Q \):

- \(\text{minweight}(y) = \text{minimum weight of any edge between } y \text{ and a vertex of } A \).
- \(\text{closest}(y) = \text{vertex } x \text{ in } A \text{ for which } wt(x, y) = \text{minweight}(y) \).

Observe: Shortest edge \(\{u,v\} \) connecting \(A \) and \(Q \) has weight \(\min \{ \text{minweight}(y) : y \in Q \} \).
What happens if we move v from Q to A:

$Q = V \setminus A$

update $\text{minweight}(w)$ and $\text{closest}(w)$ for $w = x, y, z$.
Prim:
r = arbitrary vertex of V;
A = \{r\};
T = \\emptyset;
for each vertex \(y \neq r \): \(\text{minweight}(y) = \infty \); \(\text{closest}(y) = \text{nil} \);
for each edge \(\{r, y\} \): \(\text{minweight}(y) = \text{wt}(r, y) \);
\(\text{closest}(y) = r \);
\(Q = V \setminus \{r\} \); \(k = 1 \);
while \(k \neq n \) : // \(k = |A| \)
\(v = \text{vertex of } Q \text{ for which } \text{minweight}(v) \text{ is minimum} \);
\(u = \text{closest}(v) \);
\(A = A \cup \{v3\}; Q = Q \setminus \{v\}; T = T \cup \{\{u, v3\}\}; \)
\(k = k + 1 \);
for each edge \(\{v, y\} \):
 if \(y \in Q \) and \(\text{wt}(v, y) < \text{minweight}(y) \):
 \(\text{minweight}(y) = \text{wt}(v, y) \);
 \(\text{closest}(y) = v \);
Store the vertices of \mathcal{Q} in a min-heap, for each v, the key of v is $\text{minweight}(v)$.

Store T in a list.

With each vertex of V: store one bit indicating whether the vertex belongs to A or to \mathcal{Q}.

Running time:

Up to the while-loop: $O(n)$
(this includes the time to build the heap)

One iteration of the while-loop:

- extract-min: $O(\log n)$ time
- $\leq \text{degree}(v)$ many decrease-key operations:
 - $O(\text{degree}(v) \cdot \log n)$ time.
Total time for the while-loop:

\[O\left(\sum_{v \in V} \text{degree}(v) \cdot \log n\right) = O(m \log n). \]

= 2m

Conclusion: Prim's algorithm computes MST in \(O(m \log n) \) time.