A more formal approach using languages

The language of a decision problem is the set of all inputs for which the answer is YES, encoded as finite strings.

\[\text{HAMCYCLE} = \{ G : G \text{ is a graph that contains a Hamilton cycle} \} \]

\[\text{TSP} = \{ (C,K) : C \text{ is an integer nxn matrix,} \]
\[K \text{ is an integer,} \]
\[\exists \text{ permutation } \pi \text{ of } 1, \ldots, n \text{ such that} \]
\[\sum_{i=1}^{n-1} C_{\pi_i \pi_{i+1}} + C_{\pi_n \pi_1} \leq K \} \]
\text{SUBSETSUM} = \{(S, t) : S \text{ is a set of integers, } t \text{ is an integer, } \\
\exists S \subseteq S : \sum_{x \in S} x = t \}\}

\text{CLIQUE} = \{(G, K) : G \text{ is a graph, } \\
K \text{ is an integer, } \\
G \text{ contains a clique with } K \text{ vertices } \}$
Definition of the class \mathcal{P}:

The language L is in \mathcal{P}, if the following is true:

There exists an algorithm A and a constant $c \geq 1$, such that for any input x:

* if $x \in L$, then $A(x)$ returns YES
* if $x \notin L$, then $A(x)$ returns NO
* the running time of $A(x)$ is $O(n^c)$, where n is the length of x.
Definition of the class NP:
The language L is in NP, if the following is true:

There exists an algorithm V and a constant $c \geq 1$, verification algorithm, takes 2 input parameters such that for any input x:

$x \in L \iff$ there exists a certificate y such that

$|y| = O(|x|^c)$,

$V(x,y)$ returns YES, and

the running time of $V(x,y)$ is polynomial in the length of x.

NP stands for non-deterministic polynomial time.
We show that
\[\text{HAMCYCLE} = \{ G : G \text{ is a graph that has a Hamilton cycle} \} \]
is in NP:

Verification algorithm V takes as input

* graph G
* certificate \(v_1, \ldots, v_n \)

Step 1: check if \(\{ v_1, \ldots, v_n \} = \text{vertex set of } G \).

Step 2: check if \(|\{ v_1, \ldots, v_n \}| = n \).

Step 3: check if \(\{ v_1, v_2 \}, \{ v_2, v_3 \}, \ldots, \{ v_{n-1}, v_n \}, \{ v_n, v_1 \} \)
are edges in G.

Step 4: if Steps 1-3 were successful, return YES; otherwise, return NO.
G is in HAMCYCLE

$\Leftrightarrow \exists$ permutation v_1, \ldots, v_n of G's vertex set such that

$\{v_1, v_2\}, \{v_2, v_3\}, \ldots, \{v_{n-1}, v_n\}, \{v_n, v_1\}$

are edges in G

$\Leftrightarrow \exists$ certificate (v_1, \ldots, v_n) such that

$V(G, (v_1, \ldots, v_n))$ returns YES.

The length of the certificate

$= \# \text{ vertices in } G = O(\text{ size of } G)$.

Running time of V: $O((\text{ size of } G)^2)$.
Claim: $P \subseteq NP$.

Proof: Let L be an arbitrary language in P.
By definition, there is an algorithm A such that for any input x:
- $x \in L \implies A(x)$ returns YES
- running time of $A(x)$ is polynomial in the length of x.

We have to show that L is in NP.
The verification algorithm V takes as input
- the input x for L,
- certificate y.
$V(x, y)$ does the following: run $A(x)$.

(thus, V ignores y)
\(x \in L \iff A(x) \text{ returns YES} \)

\(\iff \forall (x, \text{ empty string } y) \text{ returns YES} \)

\(\iff \exists \text{ certificate } y \text{ such that } \)

\[\text{length of } y = 0 = \text{ polynomial in the length of } x, \]

\(V(x, y) \text{ returns YES} \)

and running time of \(V(x, y) = \)

running time of \(A(x) = \text{ polynomial in the length of } x. \)

Therefore, \(L \) is in \(NP \).

\(\square \)

Big Question: Is \(P = NP \) or \(P \neq NP \)?

Most people believe that \(P \neq NP \).
If we want to prove that $P \neq NP$, then we have to show that there exists a language L such that:

* $L \in NP$
* $L \not\in P$

Such an L must be "difficult".

\Rightarrow Look at the "most difficult" problems in NP.

What does this mean?

how to compare problems by their difficulty?

\Rightarrow reductions
Definition of reduction

Let \(L \) and \(L' \) be languages.

\[
L \leq_P L' \quad \text{if } L \text{ is polynomial-time reducible to } L',
\]

\(L' \) is at least as difficult as \(L \)

if the following is true:

There exists a function \(f \) such that

1. \(f \) maps inputs to \(L \) to inputs to \(L' \)
2. for every input \(x \) to \(L \):
 \[
 x \in L \iff f(x) \in L'
 \]
3. for every input \(x \) to \(L \):
 \(f(x) \) can be computed in time that is polynomial in the length of \(x \).