Theorem: The relation \preceq is transitive:

$$L \preceq L' \quad \land \quad L' \preceq L'' \quad \Rightarrow \quad L \preceq L''.$$

Proof:

\[\begin{array}{c}
\text{Input } x \\
\text{for } L \\
\xrightarrow{f} \\
\text{Input } y = f(x) \text{ for } L' \\
\xrightarrow{g} \\
\text{Input } g(y) \text{ for } L''
\end{array} \]

$x \in L \quad \Rightarrow \quad y = f(x) \in L' \quad \Rightarrow \quad g(y) \in L''$

$\therefore \quad x \in L \quad \Rightarrow \quad g(f(x)) \in L''.$

Reduction from L to L'' is given by the function $g \circ f$.

Given x, $(g \circ f)(x) = g(f(x))$ can be computed in time that is polynomial in the length of x. (Why?)
Definition:

1. Language L is **NP-hard** if
 for every L' in NP: $L' \leq_{p} L$.

2. Language L is **NP-complete** if
 - $L \in \text{NP}$ and
 - for every L' in NP: $L' \leq_{p} L$.

In English: L is NP-complete means
 - L is in NP,
 - L is at least as difficult as every problem in NP.

$\therefore L$ belongs to the most difficult problems in NP.

[This is what we wanted on page 182]
Theorem: Assume L is NP-complete. Then:

$$L \in \mathbb{P} \iff \mathbb{P} = \mathbb{NP}.$$

Proof:

In formally:

-if $L \in \mathbb{P}$: L is easy,

L is NP-complete: L belongs to the most difficult problems in NP.

\[\therefore \text{ the most difficult problem in } \mathbb{NP} \text{ is easy} \]
\[\therefore \text{ all problems in } \mathbb{NP} \text{ are easy} \]
\[\therefore \mathbb{P} = \mathbb{NP}. \]

formally:

\iff Assume $\mathbb{P} = \mathbb{NP}$.

Since L is NP-complete: $L \in \mathbb{NP}$.

$\therefore L \in \mathbb{P}$.

Assume $L \in \mathbb{P}$.

We have to show that $\mathbb{P} = \mathbb{NP}$.

We know that $\mathbb{P} \subseteq \mathbb{NP}$.
To show that \(NP \subset P \):

Let \(L' \in NP \).

Since \(L \) is \(NP \)-complete: \(L' \leq_p L \).

Since \(L \in P \): \(L' \in P \) (see page 184).

\[\square \]

Theorem:

\[
\begin{align*}
L & \text{ NP-complete} \\
L & \leq_p L' \\
L' & \in NP
\end{align*}
\]

\[
\Rightarrow L' \text{ NP-complete.}
\]

Proof:

'Informally:

\(L \) is at least as difficult as every problem in \(NP \)

and

\(L' \) at least as difficult as \(L \)

\(\Rightarrow \) \(L' \) is at least as difficult as every problem in \(NP \).
formally: To show that \(L' \) is NP-complete, we have to show:

* \(L' \in \text{NP} \): this is given.
* for each \(L'' \in \text{NP} \): \(L'' \leq_{p} L' \).

why is this true:

* since \(L \) is NP-complete: \(L'' \leq_{p} L \).
* we are given: \(L \leq_{p} L' \).
* by transitivity (page 203): \(L'' \leq_{p} L' \).

How to use this: To show that \(L' \) is NP-complete:

1. show that \(L' \in \text{NP} \).
2. look for a problem \(L \) that is "similar" to \(L' \) and that is known to be NP-complete.
3. show that \(L \leq_{p} L' \).
In order to apply this, we need a first

NP-complete problem:

We need one language L in NP such that

$\text{HAMCYCLE} \leq^p L$,

$\text{TSP} \leq^p L$,

$\text{SUBSETSUM} \leq^p L$,

$\text{CLIQUE} \leq^p L$,

$\text{INDEPENDENT-SET} \leq^p L$,

$\text{VERTEX-COVER} \leq^p L$,

$\text{3SAT} \leq^p L$,

$\text{3COLOR} \leq^p L$,

\vdots

for every L' in NP: $L' \leq^p L$.

Not obvious that NP-complete problems exist!
1971: Stephen Cook proved that SAT is NP-complete.

Independentely in Russia:

1972: Leonid Levin proved that a certain tiling problem is NP-complete.