Zero-Knowledge Proofs

Customer wants to access his bank account
→ he shows his password to the bank
But: then the bank knows the password.

Question: Can the customer convince the bank that he knows the password **without** showing his password?

We will see that this is possible! (→ the bank **never** needs to know the password)
Recall: Hamilton cycle in a graph is a cycle that visits each vertex exactly once.

Assumption 1: Given a large graph G that contains a Hamilton cycle, it is not possible to compute such a cycle in a reasonable amount of time.

It is easy to generate a large graph that contains a Hamilton cycle:
* vertex set $V = \{1, 2, \ldots, n^3\}$.
* compute a permutation (A_1, \ldots, A_n) of V.
* include the edges $(A_i, A_{i+1}), (A_{i+1}, A_{i+2}), \ldots, (A_{n-1}, A_n), (A_n, A_1)$ in the graph.
* add some more edges.
graphs $G = (V,E)$ and $G' = (V',E')$ are isomorphic if there exists a bijection $\varphi : V \rightarrow V'$ such that

$$(u,v) \in E \implies (\varphi(u),\varphi(v)) \in E'$$

This means: G and G' are the same, except that their vertices have different names.

Assumption 2: Given 2 graphs G and G' that are isomorphic, it is not possible to compute the bijection φ in a reasonable amount of time.
Given \(G = (V,E) \), it is easy to compute a graph \(G' = (V',E') \) that is isomorphic to \(G \):

* \(V = \{1,2,...,n\} \)
* compute a permutation \((A_1,...,A_n)\) of \(V \)
* take \(G = (V,E) \) and replace each occurrence of \(i \) by \(A_i \) (for \(1 \leq i \leq n \)),

This gives \(G' \).

When the customer opens his bank account:

* customer computes a large graph \(G \) that contains a Hamilton cycle \(C \),
* customer sends \(G \) to the bank,
* customer keeps \(C \) secret (\(C = \text{password} \)),
* bank only knows \(G \).
When customer wants to access his account:

* he must convince the bank that he knows the password C (= Hamilton cycle) for the graph G.

Protocol:

Step 1: Customer computes a graph G' which is isomorphic to G

* Customer keeps the isomorphism ψ secret
* Customer sends G' to the bank.

Step 2: Bank asks customer exactly one of the following questions:

Q_1: show us a Hamilton cycle in G'

Q_2: show us the isomorphism ψ
Step 3: If bank asks Q₁, then
 * customer knows Hamilton cycle in G and
 knows the isomorphism \(\phi \)

 \(\Rightarrow \) customer can compute a Hamilton cycle
 in G

 \(\Rightarrow \) customer can answer Q₁

If bank asks Q₂: customer can answer this question by showing \(\phi \)

Step 4:
 * if Q₁ was asked: bank verifies if the
 customer's answer is a Hamilton cycle in G
 * if Q₂ was asked: bank verifies if the
 customer's answer is an isomorphism.
Conclusion: if customer really knows the Hamilton cycle C in G, then the protocol is successfully completed.

Since bank asks only Q_1 or Q_2, the bank is not able to compute the customer's password in a reasonable amount of time.

Now assume a customer x has graph G and password C and person y wants to access x's account.

* y knows G

* y does not know C

Is it possible for y to make the bank believe that he knows x's password C?
Y runs the protocol pretending that he is X:

Case 1: In Step 1, \(y \) computes a graph \(G' \) which is isomorphic to \(G \).

* If bank asks \(Q_1 \): \(y \) cannot answer this question

 \(\left\{ \begin{array}{l}
 y \text{ does not know Hamilton cycle in } G \\
 y \text{ knows the isomorphism } \phi
 \end{array} \right. \)

 \(\therefore \) \(y \) does not know Hamilton cycle in \(G' \)

* If bank asks \(Q_2 \): \(y \) can answer this question.

Thus: with probability \(\frac{1}{2} \): \(y \) can answer the question

with probability \(\frac{1}{2} \): \(y \) gets caught.
Case 2: In Step 1, y cheats and computes a graph \(G' \) for which he knows a Hamilton cycle \(C' \), (but \(G' \) not isomorphic to \(G \))

* If bank asks \(Q_1 \): y can answer this question.
* If bank asks \(Q_2 \): y cannot answer this question.

Again: with probability \(\frac{1}{2} \): y can answer the question with probability \(\frac{1}{2} \): y gets caught.

Conclusion: With probability \(\frac{1}{2} \), y can make the bank believe that he is x.
Repeat the protocol 1000 times.

\[\Pr \left(y \text{ makes the bank believe that he is } x \right) = \left(\frac{1}{2} \right)^{1000} \]

\[\Pr \left(y \text{ gets caught} \right) = 1 - \left(\frac{1}{2} \right)^{1000} \]

Purpose of Q₁: to verify that a customer really knows his password.

Purpose of Q₂: to force a customer to follow the protocol.

It is important that the customer has no idea which question (Q₁ or Q₂) is going to be asked (otherwise, y does not get caught).