Selection

Input: sequence S of n numbers, and an integer k with $1 \leq k \leq n$

Output: k-th smallest element in S.

$k = 1$: smallest element in S
$k = n$: largest element in S
$k = \frac{n}{2}$: median in S

Algorithm:
1. sort S
2. return the element at position k in the sorted sequence.

Running time: $O(n \log n)$.

We will see: $O(n)$ time is possible.

:: we can find the k-th smallest element without sorting S.
Algorithm Select (S, k):

// S is a sequence of numbers, $1 \leq k \leq |S|$

if $|S| = 1$: return the only element of S

if $|S| > 2$:

choose an element p in S; (pivot)

divide S into $S_<$, $S_=$, $S_>$

\[
\begin{array}{ccc}
< p & = p & > p \\
S_< & S_=& & S_> \\
\end{array}
\]

if $k \leq |S_<|$: run $\text{Select}(S_<, k)$

else if $k > |S_<| + |S_=|$:

run $\text{Select}(S_>, k - |S_<| - |S_=|)$

else return p
Since \(p \in S \): \(|S| \geq 1 \)

:: recursive call on a sequence of length \(< |S|\)

:: algorithm terminates

Running time: depends on the pivot \(p \).

worst case: \(S \) is sorted already

\[k = 1 \]

in each recursive call: \(p \) = largest element

\(O(n^2) \) running time

good case: in each recursive call: \(p \) = median

this gives the recurrence \(T(n) = n + T(\frac{n}{2}) \)

\[\therefore T(n) \leq \sum_{i=0}^{\infty} \frac{n}{2^i} = 2n = O(n). \]

how to get the "good case":

in each recursive call: choose \(p \) randomly.

intuition: on average, \(p \) will be close to the median

(for details: COMP 4804)

See my separate notes
Blum, Floyd, Pratt, Rivest, Tarjan (1973): selection in \(O(n) \) worst-case time.

General approach:

- **Input:** sequence \(S \) of \(n \) numbers, \(1 \leq k \leq n \).
 - (assume all numbers distinct)

Assume: in \(O(n) \) time, we can find an element \(p \) in \(S \), such that \(|S_p| \leq \alpha n \) and \(|S_p| \leq \alpha n \), where \(0 < \alpha < 1 \) is a constant.

<table>
<thead>
<tr>
<th><p</th>
<th>p</th>
<th>>p</th>
</tr>
</thead>
</table>

\[\leq \alpha n \] \[\leq \alpha n \]

Then the running time \(T(n) \) satisfies

\[T(n) = n + T(\alpha n) \]

\[\therefore T(n) = n \left(1 + \alpha + \alpha^2 + \alpha^3 + \ldots\right) \]

\[\leq \frac{1}{1-\alpha} n = O(n) \]
Here is the algorithm:

Step 1: Divide the input sequence into \(\frac{n}{5} \) groups, each of length 5.

Step 2: for \(i = 1, 2, \ldots, \frac{n}{5} \) : compute the median of the \(i \)-th group; call this median \(m_i \)

Step 3: Compute the median \(p \) of \(m_1, m_2, \ldots, m_{n/5} \).

Step 4: Use \(p \) as the pivot; proceed as on page 34.

Why is \(p \) a good pivot:

How many of the \(n \) elements are \(\geq p \)?

In the following figure, each column is a group of 5 elements; the middle row is the sequence of medians; for the purpose of the figure, assume each column is sorted, and the middle row is sorted from left to right from bottom to top.
all elements in the $3 \times \frac{n}{10}$ rectangle are $\geq p$

$\therefore \geq \frac{3}{10} n$ elements are $\geq p$

$\therefore \leq \frac{7}{10} n$ elements are $< p$

$\therefore |S_\leq| \leq \frac{7}{10} n$

By a symmetric argument: $|S_\geq| \leq \frac{7}{10} n$

\therefore on page 36, we can take $\alpha = \frac{7}{10}$
Define $T(n) = \text{worst-case running time on an input of length } n.$

$$T(n) = O(n) \quad \leftarrow \text{Step 1}$$

$$+ O(n) \quad \leftarrow \text{Step 2}$$

$$+ ? \quad \leftarrow \text{Step 3}$$

$$+ O(n) + T(\frac{7}{10}n) \quad \leftarrow \text{Step 4}$$

How to do Step 3: Recursively compute the $\frac{n}{10}$-th smallest element of the sequence $m_1, \ldots, m_{n/5};$ this takes $T(\frac{n}{5})$ time.

We obtain the recurrence

$$T(n) = n + T(\frac{n}{5}) + T(\frac{7}{10}n).$$

How to solve this:

- unfolding: becomes very messy,
- Master Theorem: does not cover this recurrence,
- use induction to show that $T(n) = O(n).$
Claim: $T(n) \leq cn$ for some constant c.

Proof: By choosing c sufficiently large, the claim is true for "small" n. (This is the base case of the induction.)

Let n be "large" and assume $T(m) \leq cm$ for all $1 \leq m < n$.

Then $T(n) = n + T\left(\frac{n}{5}\right) + T\left(\frac{7}{10} n\right)$

\[\leq n + c \cdot \frac{n}{5} + c \cdot \frac{7}{10} n \]

\[= n + \frac{9}{10} cn \]

\[\leq cn \text{ if } n \leq \frac{1}{10} cn \text{ iff } c \geq 10. \]

Conclusion: The k-th smallest element in a sequence of n numbers can be computed in $O(n)$ time.