Graphs

What is a graph: \(G = (V, E) \)

\(V = \text{set of vertices (nodes)} \)

Undirected: \(E \) is a set of edges

each edge is a pair \(\{u,v\} \), where \(u \in V, v \in V, u \neq v \).

\[
\begin{align*}
V &= \{1,2,3,4\} \\
E &= \{ \{1,2\}, \{1,4\}, \{2,3\}, \{2,4\} \}
\end{align*}
\]

Directed: each edge is an ordered pair \((u,v) \), where \(u \in V, v \in V, u \neq v \) ("one-way street")

\[
\begin{align*}
V &= \{1,2,3,4\} \\
E &= \{ (1,2), (1,4), (2,3), (3,2) \}
\end{align*}
\]
Examples of graphs

* map (= network of roads)

* facebook: vertices ⇨ users [end of 2020: 2.7 billion]

 edge \{u,v\} ⇨ u and v are friends

* WWW: vertices ⇨ webpages

 edge \(u,v\) ⇨ webpage u has a link to webpage v

* scheduling exams

 vertices ⇨ courses taught this term

 edge \{u,v\} ⇨ \exists\ student who takes both course u and course v

 \(\therefore\) exams for u and v cannot be scheduled at the same time

Let \(k\) be the smallest integer such that the following is possible:

1. each vertex gets as label one element of \(\{1, 2, \ldots, k\}\)
2. for each edge \{u,v\}: u and v have different labels
Then we can make an exam schedule with k time slots \(t_1, t_2, \ldots, t_k \):
all vertices (= courses) with label i have their exam in time slot \(t_i \).
In this way there are no conflicts.
Note: Computing k is very difficult!

Undirected graph \(G = (V, E) \).

- degree \((u) = \# \) edges that contain \(u \)

\[
\sum_{u \in V} \text{degree}(u) = 2|E|.
\]
How to store a graph?

\(G = (V, E) \), \(V = \{v_1, v_2, \ldots, v_n\} \)

* **Adjacency matrix**: \(n \times n \) matrix

 - if \(G \) is undirected:

 \[
 \text{entry } (i, j) = \begin{cases}
 1 & \text{if } \{v_i, v_j\} \text{ is an edge} \\
 0 & \text{otherwise}
 \end{cases}
 \]

 this gives a symmetric matrix

 - if \(G \) is directed:

 \[
 \text{entry } (i, j) = \begin{cases}
 1 & \text{if } (v_i, v_j) \text{ is an edge} \\
 0 & \text{otherwise}
 \end{cases}
 \]

Advantage: in \(O(1) \) time, we can test if there is an edge between two given vertices.
Disadvantage:
- uses $\Theta(n^2)$ space for any graph
- find all neighbors of a given vertex takes $\Theta(n)$ time.

* Adjacency lists: each vertex u stores a list.
 - if G is undirected: the list of u stores all neighbors of u: all v for which $\{u,v\} \in E$
 - if G is directed: the list of u stores all v for which $(u,v) \in E$ (outgoing edges)

Advantage:
- space = $\Theta(1V + 1E)$
- all neighbors of vertex u can be found in $O(1 + \text{degree}(u))$ time.
Disadvantage: Testing if \(\{u,v\}\) (or \((u,v)\)) is an edge takes \(O(1 + \text{degree}(u))\) time.

For most algorithms: adjacency lists are the best choice.

Exploring an undirected graph \(G = (V, E)\).

Given: vertex \(v\).

Task: find all vertices that can be reached from \(v\).

Algorithm `explore(v)`:

- `visited(v) = true;`
- `previsit(v);` // see later
- for each edge \(\{v, u\} \in E\):
 - if `visited(u) = false`: `explore(u)`
- `postvisit(v)` // see later

Initially, `visited(u) = false` for every vertex \(u\) before the first call to `explore`.
Run explore (A) in the for-loop: use alphabetical order (i.e., adjacency lists are sorted alphabetically). Each time an edge \(\{v,u\} \) is traversed (because \(\text{visited}(u) = \text{false} \)): \(u \) is discovered for the first time;

- draw \(\{v,u\} \) as a solid edge.
- all other edges: dotted.
Solid edges form a tree (connected, no cycles)
these edges are called: tree edges

dotted edges: back edges

Why is algorithm explore(v) correct?

Why does it terminate: number of vertices u with visited(u) = false decreases in each recursive call.