Carleton University
Midterm COMP 3804

March 1, 2024

All questions must be answered on the scantron sheet.

Write your name and student number on the scantron sheet.

You do not have to hand in this examination paper.

Calculators are allowed.

Marking scheme: Each of the 17 questions is worth 1 mark.

Some useful facts:
1.1424+3+---+n=n(n+1)/2.

2. for any real number z > 0, x = Qlog,
3. For any real number x # 1 and any integer k > 1,

k-1

l+a+a®+ - +a" ! = .
r—1

4. For any real number 0 < o < 1,

Sat= g

Master Theorem:
1. Leta>1,b>1,d >0, and

1 ifn=1,
T(n) = { a-T(n/b) +0O(nd) ifn>2.

2. If d > logy a, then T'(n) = O(n?).
3. If d = logy a, then T'(n) = ©(n%logn).
4. If d < log, a, then T'(n) = O(n'& 7).

. Recall that N = {1,2,3,...} denotes the set of all positive integers. Let f : N — N and
g : N — N be two functions such that f(n) = O(g(n)). Is it true that, for any two such
functions f and g,
of(n) — O (Qg(n))?

(a) This is true.

(b) This is not true.
. Consider the recurrence
T(n)=+vn+T(n/3).

Which of the following is true?

(a) T(n) = 6(v/n).

(b) T(n) = ©(v/nlogn)
(¢) T(n) = O(n).

(d) T'(n) = ©(nlogn)

. Consider the recurrence
T(n)=n+T(n/31)+T(29n/31).

Which of the following is true?

(a) T(n) =0O(n)
(b) T'(n) = ©(nlogn).
(c) T(n) = ©(n?)
(d) None of the above.

4. Consider the following recursive algorithm POWER(a, b), which takes as input two integers
a>1and b> 1, and returns a’:

Algorithm POWER(a, b):

ifb=1

then return a

else c = a?;
ANSWER = POWER(c, |b/2]);
if b is even
then return ANSWER
else return a - ANSWER
endif

endif

Assume that each multiplication, division, and floor-operation in this algorithm takes O(1)
time. What is the running time of algorithm POWER(a, b)?

(a) T'(n) = O(log(a +b)).
(b) T(n) = ©(log(ab))
(c) T(n) = ©(loga)
(d) T(n) = ©(logb)
5. You are given m sorted arrays Ai, As, ..., A,,, each of length n. Consider the following

algorithm that merges these arrays into one single sorted array of length mn:

e B = MERGE(A;, As), where MERGE is the algorithm from class that merges the two
sorted arrays A; and A, into one sorted array B.

e Fori=3,4,...,m, B= MERGE(B, 4;).

What is the running tims of this algorithm?

(a) ©(mn).
(b) ©(mnlog(mn))
(c) ©(m?n).
(d) ©(mn?)

6. You are given m sorted arrays Aj, As, ..., A,,, each of length n. Assume that m is a power
of two. Consider the following algorithm MERGEMANYARRAYS that merges these arrays
into one single sorted array of length mn:

Base case: If m = 1, then there is nothing to do.

Non-base case: If m > 2:

e For each i = 1,2,...,m/2, run the MERGE algorithm from class on the two arrays
Ag;_1 and As;, resulting in a sorted array B; of length 2n.

e Recursively run the algorithm MERGEMANYARRAYS on the sorted arrays
By, By, ..., Bys.

Let T(m,n) denote the running time of this algorithm. Which of the following is correct?

(a) T(m,n) =O(mn)+T(m/2,n).

(b) T(m,n) =0O(mn)+T(m/2,2n).
(c) T(m,n) =O(m+n)+T(m/2,n).
(d) T(m,n) =0O(m+n)+T(m/2,2n).

Y

Y

7. Professor Uriah Heep has designed a new data structure that stores any sequence of numbers,
and supports the following two operations:

e Insert(z): Add the number z to the data structure. This operation takes ©(y/n) time,
where n is the current number of elements.

e ExtractMin: Delete, and return, the smallest element stored in the data structure. This
operation takes O(logn) time, where n is the current number of elements.

You use Professor Heep’s data structure (and nothing else) to design a sorting algorithm.
What is the running time of this sorting algorithm on an input of n numbers?

a) O(nlogn).

b) ©(nY?)

(c) ©(n?).

(d) None of the above.

8. Let S be a set of n distinct numbers. Assume this set S is stored in a min-heap A[l...n].
How much time does it take to use this heap to find the largest number of S7

10.

11.

12.

Let G = (V, E) be a connected undirected graph, and let n = |V|. What are the minimum
and maximum number of edges that this graph can have?

Let G = (V, E) be a directed graph that is given using adjacency lists: Each vertex u has a
list OuT(u) storing all edges (u,v) going out of u.

What is the running time of the fastest algorithm that computes, for each vertex v, a list
IN(v) of all edges (u,v) going into v?

(a) O(V]+|£E]).

(b) ©(V[log [V|+ |E]).
(¢) ©(VI]+|E[log |E]).
(d) (V] +[E])log V).

Let G = (V, E) be an undirected graph with n = |V vertices, and assume that the vertex
set is stored in an array V/[1...n|. For each i, let v; = V[i].

Is it possible to give each edge {v;,v;} a direction (i.e., replace it by exactly one of (v;,v;)
and (v;,v;)) such that the resulting directed graph is acyclic?

(a) This is not possible.
(b) This is possible.

Let G = (V,E) be an undirected graph, and assume that this graph is stored using the
adjacency matrix. What is the running time of the fastest depth-first search algorithm for
this graph?

(a) O(VI]+|E]).
(b) OV + [E).
(c) O(VI*).

(d) ©(E).

13. Let G = (V, E) be a directed acyclic graph, and let s and ¢ be two distinct vertices of V.
What is the running time of the fastest algorithm that computes the number of directed
paths in G from s to t?

(&) O(V]-|£]).

(b) O((V] +[E])log [V).
(c) OV +[E]).

(d) O(E]).

14. Let G = (V, E) be a directed graph. We run depth-first search on G, i.e, algorithm DFS(G).
Recall that this classifies each edge of E as a tree edge, forward edge, back edge, or cross
edge.

Let (u,v) be an edge of E that is not classified as a tree edge.

Is the following true or false?

It is possible to run algorithm DFS(G), where vertices and edges are processed in a different
order, such that (u,v) is classified as a tree edge.

(a) True.
(b) False.
15. Let G = (V, E) be a directed graph. We run depth-first search on G, i.e, algorithm DFS(G).
Is the following true or false?
If the graph G has a directed cycle that contains a forward edge, then G also contains a
directed cycle that does not contain a forward edge.
(a) True.
(b) False.
16. Let G = (V, E) be a directed acyclic graph and, for each edge (u,v) in E, let wT(u,v)
denote its positive weight. Let s be a source vertex, and for each vertex v, let dyax(s,v) be
the weight of a longest path in G from s to v.

What is the running time of the fastest algorithm that computes dpmax(s,v) for all vertices
v?

(a) Since there can be exponentially many paths from s to some vertex v, the running time
must be at least exponential.

(b) O(([V] +[E])log [V]).
(c) O(E] +[V]log V).
(d) e(V|+[E]).

17. After this midterm, you go to a Karaoke Bar and sing the following randomized and recursive
song AWESOMEST(n), which takes as input an integer n > 1:

Algorithm AWESOMEST(n):

sing the following line n times:

COMP 3804 is the awesomest course I have ever taken;

ifn>2

then let k& be a uniformly random element in {1,2,...,n};
AWESOMEST (k)

endif

What is the expected number of times you sing COMP 380/ is the awesomest course I have
ever taken?

10

