

COMP 3804 — Winter 2026 — Problem Set 1

Some useful facts:

1. $1 + 2 + 3 + \cdots + n = n(n + 1)/2$.
2. for any real number $x > 0$, $x = 2^{\log x}$.
3. For any real number $x \neq 1$ and any integer $k \geq 1$,

$$1 + x + x^2 + \cdots + x^{k-1} = \frac{x^k - 1}{x - 1}.$$

4. For any real number $0 < \alpha < 1$,

$$\sum_{i=0}^{\infty} \alpha^i = \frac{1}{1 - \alpha}.$$

Master Theorem:

1. Let $a \geq 1$, $b > 1$, $d \geq 0$, and

$$T(n) = \begin{cases} 1 & \text{if } n = 1, \\ a \cdot T(n/b) + \Theta(n^d) & \text{if } n \geq 2. \end{cases}$$

2. If $d > \log_b a$, then $T(n) = \Theta(n^d)$.
3. If $d = \log_b a$, then $T(n) = \Theta(n^d \log n)$.
4. If $d < \log_b a$, then $T(n) = \Theta(n^{\log_b a})$.

Question 1: After having attended the first lecture of COMP 3804, Justin Bieber is intrigued by the recursive algorithm $\text{FIB}(n)$ that computes the n -th Fibonacci number in exponential time. He is convinced that a simple modification should run much faster. Here is Justin's algorithm.

Algorithm $\text{FIBBIEBER}(n)$:
comment: $n \geq 0$ is an integer
 initialize an array $f(0 \dots n)$;
for $i = 0, 1, \dots, n$ **do** $f(i) = -1$
endfor;
 $\text{BIEBER}(n)$;
 return $f(n)$

Algorithm $\text{BIEBER}(m)$:
comment: $0 \leq m \leq n$, this algorithm has access to the array $f(0 \dots n)$
if $m = 0$
then $f(0) = 0$
endif;
if $m = 1$
then $f(0) = 0$; $f(1) = 1$
endif;
if $m \geq 2$
then if $f(m - 2) = -1$
then $\text{BIEBER}(m - 2)$
endif;
 $x = f(m - 2)$;
if $f(m - 1) = -1$
then $\text{BIEBER}(m - 1)$
endif;
 $y = f(m - 1)$;
 $f(m) = x + y$
endif

- Is algorithm FIBBIEBER correct? That is, is it true that for every integer $n \geq 0$, the output of algorithm $\text{FIBBIEBER}(n)$ is the n -th Fibonacci number? As always, justify your answer.
- What is the running time of algorithm $\text{FIBBIEBER}(n)$? You may assume that two integers can be added in constant time. As always, justify your answer.

Question 2: Taylor Swift is not impressed by Justin's algorithm in the previous question. Taylor is convinced that there is a much simpler algorithm. Here is Taylor's algorithm:

Algorithm FIBSWIFT(n):
comment: $n \geq 0$ is an integer
 initialize an array $f(0 \dots n)$;
for $i = 0, 1, \dots, n$ **do** $f(i) = -1$
endfor;
 SWIFT(n);
 return $f(n)$

Algorithm SWIFT(m):
comment: $0 \leq m \leq n$, this algorithm has access to the array $f(0 \dots n)$
if $m = 0$
then $f(0) = 0$
endif;
if $m = 1$
then $f(0) = 0$; $f(1) = 1$
endif;
if $m \geq 2$
then SWIFT($m - 1$);
 $f(m) = f(m - 1) + f(m - 2)$;
endif

- Is algorithm FIBSWIFT correct? That is, is it true that for every integer $n \geq 0$, the output of algorithm FIBSWIFT(n) is the n -th Fibonacci number? As always, justify your answer.
- What is the running time of algorithm FIBSWIFT(n)? You may assume that two integers can be added in constant time. As always, justify your answer.

Question 3: Consider the following recurrence, where n is a power of 7:

$$T(n) = \begin{cases} 1 & \text{if } n = 1, \\ n^3 + 12 \cdot T(n/7) & \text{if } n \geq 7. \end{cases}$$

- Solve this recurrence using the *unfolding method*. Give the final answer using Big-O notation.
- Solve this recurrence using the *Master Theorem*.

Question 4: You are given an array $A(1 \dots n)$ of n distinct numbers. This array has the following property: There is an index i with $1 \leq i \leq n$, such that

1. the subarray $A(1 \dots i)$ is sorted in increasing order, and
2. the subarray $A(i \dots n)$ is sorted in decreasing order.

Describe a recursive algorithm that returns, in $O(\log n)$ time, the largest number in the array A . (At the start of the algorithm, you do not know the above index i .)

You may describe your algorithm in plain English or in pseudocode. Justify the correctness of your algorithm and explain why the running time is $O(\log n)$. You may use any result that was proven in class.

Question 5: You are given a sequence $S = (a_1, a_2, \dots, a_n)$ of n distinct numbers. A pair (a_i, a_j) is called *Out-of-Order*, if $i < j$ and $a_i > a_j$; in words, a_i is to the left of a_j and a_i is larger than a_j .

If the sequence S is sorted then the number of Out-of-Order pairs is zero. On the other hand, if S is sorted in decreasing order, then there are $\binom{n}{2}$ Out-of-Order pairs.

Describe a comparison-based divide-and-conquer algorithm that returns, in $O(n \log n)$ time, the number of Out-of-Order pairs in the sequence S .

You may describe your algorithm in plain English or in pseudocode. Justify the correctness of your algorithm and explain why the running time is $O(n \log n)$. You may use any result that was proven in class.

Hint: Think of Merge-Sort.