
COMP 3804 — Winter 2026 — Problem Set 2

Some useful facts:
1. 1 + 2 + 3 + · · ·+ n = n(n+ 1)/2.

2. for any real number x > 0, x = 2log x.

3. For any real number x 6= 1 and any integer k ≥ 1,

1 + x+ x2 + · · ·+ xk−1 =
xk − 1

x− 1
.

4. For any real number 0 < α < 1,

∞∑
i=0

αi =
1

1− α
.

Master Theorem:
1. Let a ≥ 1, b > 1, d ≥ 0, and

T (n) =

{
1 if n = 1,
a · T (n/b) + Θ(nd) if n ≥ 2.

2. If d > logb a, then T (n) = Θ(nd).

3. If d = logb a, then T (n) = Θ(nd log n).

4. If d < logb a, then T (n) = Θ(nlogb a).

1

Question 1: You are given an array A(1 . . . n) of n distinct numbers, and an integer k with
1 ≤ k ≤ n.

Describe a comparison-based algorithm that returns, in O(n) time, k numbers in A that
are closest to the number 2026. (The k output numbers do not have to be in sorted order.
The output may not be unique.)

For example, if k = 3 and

A = (2028, 10, 2, 2022, 1949,−16, 2025, 2030),

then both (2028, 2025, 2022) and (2028, 2025, 2030) are valid outputs.
You may describe your algorithm in plain English or in pseudocode. Justify the correct-

ness of your algorithm and explain why the running time is O(n). You may use any result
that was proven in class.

Question 2: Consider the following recurrence, where n ≥ 1 is an integer:

T (n) =

{
1 if n = 1,
1 + T (b

√
nc) if n ≥ 2.

Solve this recurrence, i.e., use Big-O notation to express T (n) as a function of n.

Question 3: Justin Bieber is really impressed by the analysis of the expected running time
of the randomized selection algorithm:

Algorithm RSelect(S, k):
Input: Sequence S of numbers, integer k with 1 ≤ k ≤ |S|
Output: k-th smallest number in S
if |S| = 1
then return the only element in S
else p = uniformly random element in S;

by scanning S and making |S| − 1 comparisons, divide it into
L = {x ∈ S : x < p},
M = {x ∈ S : x = p},
R = {x ∈ S : x > p};
if k ≤ |L|
then RSelect(L, k)
else if k ≥ 1 + |L|+ |M |

then RSelect(R, k − |L| − |M |)
else return p
endif

endif
endif

2

Let n be the size of the sequence in the first call to RSelect. In class, the entire
computation was divided into phases : For any integer i ≥ 0, a call to algorithm RSelect
is in phase i, if

(3/4)i+1 · n < the length of the sequence in this call ≤ (3/4)i · n.

Justin wonders why the number 3/4 is used. He thinks that it is much more natural to
say that a call to algorithm RSelect is in Bieber-phase i, if

(1/2)i+1 · n < the length of the sequence in this call ≤ (1/2)i · n.

• Use Bieber-phases to prove that the expected running time of algorithm RSelect on
an input sequence of length n is O(n).

Question 4: Let n ≥ 2 be an integer, and let A[1 . . . n] be an array storing n pairwise
distinct numbers.

It is easy to compute the two smallest numbers in the array A: Using n− 1 comparisons,
we find the smallest number in A. Then, using n − 2 comparisons, we find the smallest
number among the remaining n − 1 numbers. The total number of comparisons made is
2n − 3. By a similar argument, we can find the smallest and largest numbers in A using
2n− 3 comparisons. In this question, you will show that the number of comparisons can be
improved.

(4.1) Consider the following algorithm TwoSmallest(A, n), which computes the two
smallest numbers in the array A:

Algorithm TwoSmallest(A, n):
if A[1] < A[2] (*)
then smallest = A[1]; secondsmallest = A[2]
else smallest = A[2]; secondsmallest = A[1]
endif;
for i = 3 to n
do if A[i] < smallest (**)

then secondsmallest = smallest ; smallest = A[i]
else if A[i] < secondsmallest (***)

then secondsmallest = A[i]
endif

endif
endfor;
return smallest and secondsmallest

In each of the lines (*), (**), and (***), the algorithm compares two input numbers.

3

Assume that A stores a uniformly random permutation of the set {1, 2, . . . , n}. Let X
be the total number of comparisons made when running algorithm TwoSmallest(A, n).
Observe that X is a random variable. Prove that the expected value of X satisfies

E(X) = 2n−Θ(log n).

Hint: For each i = 3, 4, . . . , n, use an indicator random variable Xi that indicates whether
or not line (***) is executed in iteration i.

(4.2) Consider the following algorithm SmallestLargest(A, n), which computes the small-
est and largest numbers in the array A:

Algorithm SmallestLargest(A, n):
if A[1] < A[2] (*)
then smallest = A[1]; largest = A[2]
else smallest = A[2]; largest = A[1]
endif;
for i = 3 to n
do if A[i] < smallest (**)

then smallest = A[i]
else if A[i] > largest (***)

then largest = A[i]
endif

endif
endfor;
return smallest and largest

Observe that this algorithm is very similar to algorithm TwoSmallest(A, n).
Assume that A stores a uniformly random permutation of the set {1, 2, . . . , n}. Let Y be

the total number of comparisons made when running algorithm SmallestLargest(A, n).
Observe that Y is a random variable. Argue, in a few sentences, that the same analysis as
for (4.1) implies that

E(Y) = 2n−Θ(log n).

(4.3) Assume that n ≥ 2 is a power of 2. Furthermore, assume that the array A[1 . . . n] stores
an arbitrary sequence of n pairwise distinct numbers. Describe, in English, an algorithm that
computes the two smallest numbers in the array A, and that makes n+log n−2 comparisons.
Justify your answer.
Hint: Consider a tennis tournament with n players. The players are numbered from 1 to n.
For each player i, the number A[i] is the ATP-ranking of this player.

The n players play as they do in any Grand Slam tournament: They play against each
other in pairs; after any game, the winner goes to the next round and the loser goes home.
This is a special tournament: If player i plays against player j, then the player with the
smaller A-value (i.e., higher ATP ranking) is guaranteed to win.

4

In this way, the smallest number in A corresponds to the tennis player who wins the
tournament. The second smallest number in A corresponds to the second best player. This
second best player must lose some game. Who can beat the second best player?

(4.4) Assume that n ≥ 2 is an even integer. Furthermore, assume that the array A[1 . . . n]
stores an arbitrary sequence of n pairwise distinct numbers. Describe, in English, an algo-
rithm that computes the smallest and largest numbers in the array A, and that makes 3

2
n−2

comparisons. Justify your answer.
Hint: If A[1] < A[2], is it possible that A[1] is the largest number? If A[1] > A[2], is it
possible that A[1] is the smallest number? If A[3] < A[4], is it possible that A[3] is the
largest number? If A[3] > A[4], is it possible that A[3] is the smallest number?

5

