COMP 3804 — Winter 2026 — Problem Set 2

Some useful facts:
1.1424+3+---+n=n(n+1)/2.

2. for any real number z > 0, x = Qlog,
3. For any real number x # 1 and any integer k > 1,

k-1

l+o+a?+ - +a" = :
z—1

4. For any real number 0 < o < 1,

;a T 1-a

Master Theorem:
1. Leta>1,b>1,d>0, and

1 ifn=1,
T(n) = { a-T(n/b)+0(n) ifn>2.

2. If d > logy a, then T'(n) = O(n?).

3. If d = logy a, then T'(n) = ©(n%logn).

4. If d < log, a, then T'(n) = O(n'°& 7).

Question 1: You are given an array A(1...n) of n distinct numbers, and an integer k with
1<k <n.

Describe a comparison-based algorithm that returns, in O(n) time, k numbers in A that
are closest to the number 2026. (The k& output numbers do not have to be in sorted order.
The output may not be unique.)

For example, if £ = 3 and

A = (2028, 10,2, 2022, 1949, —16, 2025, 2030),

then both (2028, 2025,2022) and (2028, 2025, 2030) are valid outputs.

You may describe your algorithm in plain English or in pseudocode. Justify the correct-
ness of your algorithm and explain why the running time is O(n). You may use any result
that was proven in class.

Question 2: Consider the following recurrence, where n > 1 is an integer:

1 if n =1,
ﬂm:{l+T@ﬁm if n > 2.

Solve this recurrence, i.e., use Big-O notation to express T'(n) as a function of n.

Question 3: Justin Bieber is really impressed by the analysis of the expected running time
of the randomized selection algorithm:

Algorithm RSELECT(S, k):
Input: Sequence S of numbers; integer k with 1 < k < |S|
Output: k-th smallest number in S
if |5]=1
then return the only element in S
else p = uniformly random element in S;
by scanning S and making |S| — 1 comparisons, divide it into
L={zxe€S:z<p}
M={xe€S:z=p},
R={zeS:2>p}
if £ <|L]
then RSELECT(L, k)
else if k > 1+ |L| + | M|
then RSELECT(R, k — |L| — |M])
else return p
endif
endif

endif

Let n be the size of the sequence in the first call to RSELECT. In class, the entire
computation was divided into phases: For any integer ¢ > 0, a call to algorithm RSELECT
is in phase 1, if

(3/4)! . n < the length of the sequence in this call < (3/4)" - n.

Justin wonders why the number 3/4 is used. He thinks that it is much more natural to
say that a call to algorithm RSELECT is in Bieber-phase 1, if

(1/2)""' . n < the length of the sequence in this call < (1/2)"-n.

e Use Bieber-phases to prove that the expected running time of algorithm RSELECT on
an input sequence of length n is O(n).

Question 4: Let n > 2 be an integer, and let A[l...n]| be an array storing n pairwise
distinct numbers.

It is easy to compute the two smallest numbers in the array A: Using n — 1 comparisons,
we find the smallest number in A. Then, using n — 2 comparisons, we find the smallest
number among the remaining n — 1 numbers. The total number of comparisons made is
2n — 3. By a similar argument, we can find the smallest and largest numbers in A using
2n — 3 comparisons. In this question, you will show that the number of comparisons can be
improved.

(4.1) Consider the following algorithm TwWOSMALLEST(A,n), which computes the two
smallest numbers in the array A:

Algorithm TWOSMALLEST(A, n):

if A[1] < A[2] (*)

then smallest = A[l]; secondsmallest = A[2]

else smallest = A[2]; secondsmallest = A[1]

endif;

fori=3ton

do if A[i] < smallest (**)
then secondsmallest = smallest; smallest = Ai]
else if A[i] < secondsmallest (**%)

then secondsmallest = Ali]
endif

endif
endfor;
return smallest and secondsmallest

In each of the lines (*), (**), and (***), the algorithm compares two input numbers.

Assume that A stores a uniformly random permutation of the set {1,2,... n}. Let X
be the total number of comparisons made when running algorithm TWOSMALLEST(A,n).
Observe that X is a random variable. Prove that the expected value of X satisfies

E(X) =2n — 6(logn).
Hint: For each ¢ = 3,4,...,n, use an indicator random variable X; that indicates whether
or not line (***) is executed in iteration i.

(4.2) Consider the following algorithm SMALLESTLARGEST(A, n), which computes the small-
est and largest numbers in the array A:

Algorithm SMALLESTLARGEST(A, n):
if A[1] < A[2] (*)
then smallest = A[l]; largest = A[2]
else smallest = A[2]; largest = A[l]
endif:
fori=3ton
do if A[i] < smallest (**)
then smallest = Al
else if Afi] > largest (**%)
then largest = Ali]
endif
endif

endfor;
return smallest and largest

Observe that this algorithm is very similar to algorithm TWOSMALLEST(A, n).

Assume that A stores a uniformly random permutation of the set {1,2,...,n}. Let Y be
the total number of comparisons made when running algorithm SMALLESTLARGEST(A,n).
Observe that Y is a random variable. Argue, in a few sentences, that the same analysis as
for (4.1) implies that

E(Y) =2n — O(logn).

(4.3) Assume that n > 2 is a power of 2. Furthermore, assume that the array A[l...n| stores
an arbitrary sequence of n pairwise distinct numbers. Describe, in English, an algorithm that
computes the two smallest numbers in the array A, and that makes n+logn—2 comparisons.
Justify your answer.

Hint: Consider a tennis tournament with n players. The players are numbered from 1 to n.
For each player i, the number A[i] is the ATP-ranking of this player.

The n players play as they do in any Grand Slam tournament: They play against each
other in pairs; after any game, the winner goes to the next round and the loser goes home.
This is a special tournament: If player ¢ plays against player j, then the player with the
smaller A-value (i.e., higher ATP ranking) is guaranteed to win.

4

In this way, the smallest number in A corresponds to the tennis player who wins the
tournament. The second smallest number in A corresponds to the second best player. This
second best player must lose some game. Who can beat the second best player?

(4.4) Assume that n > 2 is an even integer. Furthermore, assume that the array A[l...n]
stores an arbitrary sequence of n pairwise distinct numbers. Describe, in English, an algo-
rithm that computes the smallest and largest numbers in the array A, and that makes %n -2
comparisons. Justify your answer.

Hint: If A[1] < A[2], is it possible that A[1] is the largest number? If A[l] > A[2], is it
possible that A[l] is the smallest number? If A[3] < A[4], is it possible that A[3] is the
largest number? If A[3] > A[4], is it possible that A[3] is the smallest number?

