Question 1: Write your name and student number.

Solution: Lionel Messi, 10

Question 2: Consider the following recurrence, where n is a power of 6:

$$T(n) = \begin{cases}
1 & \text{if } n = 1, \\
n^2 + 11 \cdot T(n/6) & \text{if } n \geq 6.
\end{cases}$$

- Solve this recurrence using the unfolding method. Give the final answer using Big-O notation.
- Solve this recurrence using the Master Theorem.
Solution: We write \(n = 6^k \). Unfolding gives

\[
T(n) = n^2 + 11 \cdot T(n/6) \\
= n^2 + 11 \left(\frac{n}{6} \right)^2 + 11 \cdot T(n/6^2) \\
= (1 + 11/36) n^2 + 11^2 \cdot T(n/6) \\
= (1 + 11/36) n^2 + 11^2 \left(\frac{n}{36} \right)^2 + 11 \cdot T(n/6^3) \\
= (1 + 11/36 + (11/36)^2) n^2 + 11^3 \cdot T(n/6^3) \\
= (1 + 11/36 + (11/36)^2 + (11/36)^3) n^2 + 11^4 \cdot T(n/6^4) \\
\vdots \\
= (1 + 11/36 + (11/36)^2 + \cdots + (11/36)^{k-1}) n^2 + 11^k \cdot T(n/6^k) \\
= \sum_{i=0}^{k-1} (11/36)^i n^2 + 11^k \cdot T(1) \\
= \sum_{i=0}^{k-1} (11/36)^i n^2 + 11^k \\
\leq \sum_{i=0}^{\infty} (11/36)^i n^2 + 11^k \\
= \frac{1}{1 - 11/36} n^2 + 11^k \\
= \frac{36}{25} n^2 + 11^k.
\]

Note that, since \(n = 6^k \), we have \(n^2 = 6^{2k} = 36^k > 11^k \). Therefore,

\[
T(n) \leq \frac{36}{25} n^2 + n^2 = \frac{61}{25} n^2 = O(n^2).
\]

Using the Master Theorem: We have \(a = 11, b = 6, \) and \(d = 2 \). Since

\[
\log_b a = \log_b 11 = \frac{\log 11}{\log 6} \approx 1.338 < d,
\]

the Master Theorem tells us that \(T(n) = O(n^d) = O(n^2) \).

Question 3: Consider the following recurrence:

\[
T(n) = n + T(n/5) + T(7n/10).
\]

In class, we have seen that \(T(n) = O(n) \). In this question, you will prove this using the recursion tree method.

Recall from class: The root represents the recursion tree on an input of size \(n \). Consider a node \(u \) in the recursion tree that represents a recursive call on an input of size \(m \). Then
we write the value \(m \) at this node \(u \), we give \(u \) a left subtree which is a recursion tree for an input of size \(m/5 \), and we give \(u \) a right subtree which is a recursion tree for an input of size \(7m/10 \). In this way, \(T(n) \) is the sum of the values stored at all nodes in the entire recursion tree.

Below, we assume that the levels in the recursion tree are numbered 0, 1, 2, \ldots, where the root is at level 0. For each \(i \geq 0 \), let \(S_i \) be the sum of the values of all nodes at level \(i \).

- Determine \(S_0 \).
- Determine \(S_1 \).
- Determine \(S_2 \).
- Use induction to prove the following claim: For every \(i \geq 0 \),
 \[
 S_i \leq (9/10)^i \cdot n.
 \]

 \textit{Hint:} Consider level \(i \), let \(k = 2^i \), and let the values stored at the nodes at level \(i \) be \(m_1, m_2, \ldots, m_k \). What are the values stored at the nodes at level \(i+1 \)?

- Complete the proof by showing that \(T(n) = O(n) \).

Solution: In the following figure, you see levels 0, 1, and 2, in the recursion tree:

From this figure, we see that \(S_0 = n \),

\[
S_1 = n/5 + 7n/10 = (9/10) \cdot n,
\]

and

\[
S_2 = n/25 + 7n/50 + 7n/50 + 49n/100 = (9/10)^2 \cdot n.
\]

There seems to be a pattern!

Now we prove by induction on \(i \) that \(S_i \leq (9/10)^i \cdot n \).

Base case: \(i = 0 \). We have seen above that \(S_0 = n \). Since \((9/10)^i \cdot n = n \), the claim is true.
Induction step: Let $i \geq 0$, and assume that $S_i \leq (9/10)^i \cdot n$. We follow the hint: Let $k = 2^i$, and let the values stored at the nodes at level i be m_1, m_2, \ldots, m_k. Note that

$$m_1 + m_2 + \cdots + m_k = S_i \leq (9/10)^i \cdot n.$$ \hfill (1)

1. The values stored at the two children of m_1 are $m_1/5$ and $7m_1/10$. Their sum is $(9/10) \cdot m_1$. \hfill (2)

2. The values stored at the two children of m_2 are $m_2/5$ and $7m_2/10$. Their sum is $(9/10) \cdot m_2$. \hfill (3)

3. Etc. Etc. \hfill (4)

4. The values stored at the two children of m_k are $m_k/5$ and $7m_k/10$. Their sum is $(9/10) \cdot m_k$. \hfill (5)

It follows that the sum of the values stored at all nodes at level $i + 1$ is equal to

$$S_{i+1} = (9/10) \cdot (m_1 + m_2 + \cdots + m_k) = (9/10) \cdot S_i.$$ \hfill (6)

We conclude that

$$S_{i+1} = (9/10) \cdot S_i \leq (9/10) \cdot (9/10)^i \cdot n = (9/10)^{i+1} \cdot n.$$ \hfill (7)

For the last part of the question, we get

$$T(n) \leq \sum_{i=0}^{\infty} (9/10)^i \cdot n = \frac{n}{1 - 9/10} = 10n = O(n).$$ \hfill (8)

Question 4: Zoltan is not only your friendly TA, he is also the owner of the popular budget airline ZoltanJet that offers flights in Canada. As you all know, there are n airports in Canada. We denote these airports, in order from west to east, by A_1, A_2, \ldots, A_n.

William, who is the CEO of ZoltanJet, has designed a *flight plan* which is a list of ordered pairs (A_i, A_j) of airports such that there is a direct flight from A_i to A_j. This flight plan has the following two properties:

- (P.1) Every flight is going eastwards1. In other words, if (A_i, A_j) is in the flight plan, then $i < j$.

- (P.2) For any two indices i and j with $1 \leq i < j \leq n$, it is possible to fly from A_i to A_j in at most two hops. In other words, either (A_i, A_j) is in the flight plan, or there is an index k such that both (A_i, A_k) and (A_k, A_j) are in the flight plan. Note that, because of (P.1), $i < k < j$.

1But how do I get home? A customer service representative will tell you “that is your problem”.

4
Observe that ZoltanJet can guarantee (P.1) and (P.2) by offering direct flights between all \(\binom{n}{2} = \Theta(n^2)\) pairs \((A_i, A_j)\) of airports, where \(1 \leq i < j \leq n\).

- Prove that ZoltanJet can guarantee (P.1) and (P.2) using a flight plan having only \(O(n \log n)\) pairs of airports. You may assume that \(n\) is a power of two.

 \textit{Hint:} Since this is the divide-and-conquer assignment, you probably have to use . . .

\textbf{Solution:} We define \(P(n)\) to be the number of pairs of airports in the flight plan if the number of airports is \(n\).

The base case is when \(n = 1\). In this case, there is only one airport and, thus, there are no flights in the flight plan, i.e., \(P(1) = 0\).

Assume that \(n \geq 2\) is a power of two. Let \(k = \frac{n}{2}\) so that \(A_k\) is the airport in the middle.

1. For each \(i\) with \(1 \leq i \leq k - 1\), we add \((P_i, P_k)\) to the flight plan.
2. For each \(j\) with \(k + 1 \leq j \leq n\), we add \((P_k, P_j)\) to the flight plan.
3. Note: By doing this, we can fly from any airport \(A_i\), with \(1 \leq i \leq k\), to any airport \(A_j\), with \(k + 1 \leq j \leq n\), in at most two hops.
4. We now apply the construction recursively to the airports \(A_i\) with \(1 \leq i \leq k\).
5. We also apply the construction recursively to the airports \(A_j\) with \(k + 1 \leq j \leq n\).

From this, we obtain the recurrence

\[P(n) = (n - 1) + 2 \cdot P(n/2) \leq n + 2 \cdot P(n/2). \]

This is the merge-sort recurrence (with a different base case). We have seen in class that this recurrence solves to \(P(n) = O(n \log n)\).

Question 5: Professor Justin Bieber needs a fast algorithm that searches for an arbitrary element \(x\) in a sorted array \(A[1 \ldots n]\) of \(n\) numbers. He remembers that there is something called “binary search”, which maintains an interval \([\ell, r]\) of indices such that, if \(x\) is present in the array, then it is contained in the subarray \(A[\ell \ldots r]\). In one iteration, the algorithm takes the middle index, say \(p\), in the interval \([\ell, r]\). Then the algorithm either finds \(x\) at the position \(p\), or it recurses in the interval \([\ell, p - 1]\), or it recurses in the interval \([p + 1, r]\). Unfortunately, Professor Bieber does not remember the expression\(^2\) for \(p\) in terms of \(\ell\) and \(r\).

Professor Bieber does remember that, instead of choosing \(p\) in the middle of the interval \([\ell, r]\), it is often enough to choose \(p\) uniformly at random in this interval. Based on this, he obtains the following algorithm: The input consists of the sorted array \(A[1 \ldots n]\), its size \(n\), and a number \(x\). If \(x\) is in the array, then the algorithm returns the index \(p\) such that \(A[p] = x\). Otherwise, the algorithm returns “not present”. We assume that all numbers in \(A\) are distinct.

\(^2\)is it \([r - \ell)/2]\), or \([r - \ell]/2]\), or \([r - \ell + 1)/2]\), or \([r - \ell + 1]/2]\)?
Algorithm BieberSearch\((A, n, x)\):

\[
\ell = 1; \quad r = n;
\]

\[
\text{while } \ell \leq r \\
\quad \text{do } p = \text{uniformly random element in } \{\ell, \ell + 1, \ldots, r\}; \\
\quad \text{if } A[p] < x \\
\qquad \text{then } \ell = p + 1 \\
\quad \text{else if } A[p] > x \\
\qquad \text{then } r = p - 1 \\
\quad \text{else return } p \\
\quad \text{endif} \\
\text{endif} \\
\text{endwhile}; \\
\text{return “not present”}
\]

Let \(T\) be the running time of this algorithm on an input array of length \(n\). Note that \(T\) is a random variable. Prove that the expected value of \(T\) is \(O(\log n)\).

Hint: Most solutions that you find on the internet are wrong.

Solution: In one iteration of the while-loop, the algorithm searches for \(x\) in the subarray \(A[\ell \ldots r]\); this subarray has length \(r - \ell + 1\). In each iteration, if the algorithm does not terminate, either \(\ell\) increases or \(r\) decreases; thus, the next iteration searches a smaller subarray.

Let \(i \geq 0\) be an integer. We say that the while-loop is in *phase* \(i\) if, at the beginning of this iteration,

\[
(3/4)^{i+1} \cdot n < r - \ell + 1 \leq (3/4)^i \cdot n.
\]

At the start of the first iteration, \(r - \ell + 1 = n\) and, thus, the while-loop is in phase 0.

We first determine the largest possible phase number: If an iteration takes place in phase \(i\), then \(\ell \leq r\) (this is the condition in the while-loop) and, thus, \(1 \leq r - \ell + 1\). It follows that

\[
1 \leq (3/4)^i \cdot n,
\]

which is equivalent to

\[
(4/3)^i \leq n,
\]

which is equivalent to

\[
i \cdot \log(4/3) \leq \log n,
\]

which is equivalent to

\[
i \leq \frac{\log n}{\log(4/3)}.
\]

Consider one phase \(i\). Let \(m = r - \ell + 1\). Divide \(\{\ell, \ell + 1, \ldots, r\}\) into three pieces: The first \(m/4\) elements, the middle \(m/2\) elements, the last \(m/4\) elements. If \(p\) belongs to the middle piece and if there is a next iteration, with values \(\ell'\) and \(r'\), then

\[
\ell' - r' + 1 \leq m - m/4 = (3/4) \cdot m \leq (3/4)^{i+1} \cdot n.
\]
Thus, the next iteration is in a phase with number at least \(i + 1 \).

Let \(X_i \) be the random variable whose value is the number of iterations in phase \(i \). Since \(p \) is in the middle piece with probability \(1/2 \), we have \(\mathbb{E}(X_i) \leq 2 \). (We have seen this in lecture 5.)

Let \(c \) be a constant such that one iteration takes at most \(c \) time. Let \(L = \frac{\log n}{\log(4/3)} \). Then the running time \(T \) satisfies

\[
T \leq \sum_{i=0}^{L} c \cdot X_i.
\]

Thus,

\[
\mathbb{E}(T) \leq \mathbb{E} \left(\sum_{i=0}^{L} c \cdot X_i \right) = \sum_{i=0}^{L} c \cdot \mathbb{E}(X_i) \leq \sum_{i=0}^{L} 2c = 2c(L + 1) = O(\log n).
\]

Question 6: You are given a sequence \(S \) consisting of \(n \) numbers; not all of these numbers need to be distinct.

Describe an algorithm, in plain English, that decides, in \(O(n) \) time, whether or not this sequence \(S \) contains a number that occurs more than \(n/4 \) times.

You may use any result that was proven in class. Justify the correctness of your algorithm and explain why the running time is \(O(n) \).

Hint: The algorithm must be comparison-based; you are not allowed to use hashing, bucket-sort, or radix-sort.

Solution: We assume for simplicity that \(n \) is divisible by four.

The main observation is the following: If there is a number \(a \) that occurs more than \(n/4 \) times, then \(a \) is the \((n/4)\)-th smallest number in \(S \), or \(a \) is the \((n/2)\)-th smallest number in \(S \), or \(a \) is the \((3n/4)\)-th smallest number in \(S \).

Let us first prove that this observation is correct. Let \(x \) be the \((n/4)\)-th smallest number in \(S \), let \(y \) be the \((n/2)\)-th smallest number in \(S \), and let \(z \) be the \((3n/4)\)-th smallest number in \(S \). We assume, by contradiction, that \(a \neq x \), \(a \neq y \), and \(a \neq z \). There are four possibilities:

1. \(a < x \). This is a contradiction, because the number of elements in \(S \) that are less than \(x \) is less than \(n/4 \).
2. \(x < a < y \). This is a contradiction, because the number of elements in \(S \) that are between \(x \) and \(y \) is less than \(n/4 \).
3. \(y < a < z \). This is a contradiction, because the number of elements in \(S \) that are between \(y \) and \(z \) is less than \(n/4 \).

4. \(z < a \). This is a contradiction, because the number of elements in \(S \) that are larger than \(z \) is less than \(n/4 \).

Thus, our main observation is correct.

Based on this, we get the following algorithm:

1. Compute the \((n/4)\)-th smallest number, say \(x \), in \(S \). Walk along \(S \) and count the number of times that \(x \) occurs. If \(x \) occurs more than \(n/4 \) times, then we return \(x \).

2. Compute the \((n/2)\)-th smallest number, say \(y \), in \(S \). Walk along \(S \) and count the number of times that \(y \) occurs. If \(y \) occurs more than \(n/4 \) times, then we return \(y \).

3. Compute the \((3n/4)\)-th smallest number, say \(z \), in \(S \). Walk along \(S \) and count the number of times that \(z \) occurs. If \(z \) occurs more than \(n/4 \) times, then we return \(z \).

4. If the algorithm did not return anything yet, then we know that there is no element in the input that occurs more than \(n/4 \) times.

Using results proven in class. The entire algorithm runs in \(O(n) \) time.