Question 1: Write your name and student number.

Solution: Santa Clause, 007

Question 2: The set cover problem is defined as follows:

\[\text{SetCover} = \{(B, S_1, S_2, \ldots, S_m, K) : B \text{ is a finite set; } m \text{ is an integer; } \]
\[S_1, S_2, \ldots, S_m \text{ are sets with } \bigcup_{i=1}^{m} S_i = B; \]
\[K \text{ is an integer; there exists a subset } I \subseteq \{1, 2, \ldots, m\} \text{ of size } K, \text{ such that } \bigcup_{i \in I} S_i = B \} \]

Prove that the language SetCover is in \textbf{NP}.

Solution: The verification algorithm \(V \) does the following:

- It takes as input
 - a finite set \(B \), a sequence \(S_1, S_2, \ldots, S_m \) of sets such that \(\bigcup_{i=1}^{m} S_i = B \), and an integer \(K \),
 - and a set \(I \) of integers.

- The verification algorithm does the following:
 - Check that \(I \subseteq \{1, 2, \ldots, m\} \).
 - Check that the size of \(I \) is equal to \(K \).
 - Check that \(\bigcup_{i \in I} S_i = B \).
 - If all of these are correct, then it returns YES. Otherwise, it returns NO.

The certificate is of course the set \(I \):

\[(B, S_1, \ldots, S_m, K) \in \text{SetCover} \iff \text{there exists } I \subseteq \{1, \ldots, m\} \]
\[\text{such that } |I| = K \text{ and } \bigcup_{i \in I} S_i = B \]
\[\iff \text{there exists a certificate } I \text{ such that } \]
\[V(B, S_1, \ldots, S_m, K, I) \text{ returns YES.} \]

The length of \((B, S_1, \ldots, S_m, K) \) is proportional to

\[\sum_{i=1}^{m} (1 + |S_i|). \]

Note that if \(S_i \) is empty, then \(1 + |S_i| = 1 \); in this case, the input has to specify something like “here is an empty set”, which adds a constant to the length of \((B, S_1, \ldots, S_m, K) \).
The length of the certificate I is at most equal to m, which is polynomial in the length of (B, S_1, \ldots, S_m, K), because the length of (B, S_1, \ldots, S_m, K) is at least m.

What is the running time of the verification algorithm:

- Checking that $I \subseteq \{1, 2, \ldots, m\}$ can be done in $O(|I|) = O(m)$ time.
- Checking that $|I| = K$ can be done in $O(|I|) = O(m)$ time.
- Checking that $\bigcup_{i \in I} S_i = B$ can be done, using brute force, in time
 \[O \left(\sum_{i=1}^m |S_i| \cdot |B| \right), \]
 which is
 \[O \left(\left(\sum_{i=1}^m |S_i| + |B| \right)^2 \right), \]
 which is polynomial in the length of (B, S_1, \ldots, S_m, K). (Of course, there are much faster algorithms using sorting and hash tables and balanced binary search trees, etc.)

This shows that SetCover \in NP.

Question 3: The (0-1)-integer programming problem with K ones is defined as follows:

\[\text{IntProg} = \{(A, K) : \text{A is an integer } n \times m \text{ matrix all of whose entries are in } \{0, 1\}; \text{K is an integer; there exists a binary column vector } x \text{ of length } m \text{ with exactly } K \text{ ones, such that } Ax \geq 1 \text{ (componentwise) } \}, \]

where 1 denotes the column vector of length n, all of whose entries are equal to 1.

Prove that SetCover \leq_p IntProg, i.e., in polynomial time, SetCover can be reduced to IntProg.

Solution: We need a function f such that

- f maps (B, S_1, \ldots, S_m, K) to (A, K'),
- $(B, S_1, \ldots, S_m, K) \in$ SetCover $\Leftrightarrow (A, K') \in$ IntProg,
- the time to compute (A, K') is polynomial in the length of (B, S_1, \ldots, S_m, K).

Here is how we obtain this function f. Let $n = |B|$. The matrix A has n rows and m columns. The rows are indexed by the elements of B. The i-th column will be the characteristic vector c_i for the set S_i: The binary vector c_i has length n; there is a 1 at position j if and only if the j-th element of B is in S_i. We also let $K' = K$.

2
Using brute force, we can compute the matrix A in time

$$O \left(\sum_{i=1}^{m} |S_i| \cdot |B| \right),$$

which, as we have already seen, is polynomial in the length of (B, S_1, \ldots, S_m, K).

Consider a binary column vector x of length m. Let I be the set of indices i such that the i-th component of x is 1. Then Ax is a column vector of length n, which is equal to

$$\sum_{i \in I} c_i.$$

Note that $\bigcup_{i \in I} S_i = B$ if and only if every entry in the column vector Ax is at least 1. It follows that the following two conditions are equivalent:

- There exists a subset $I \subseteq \{1, 2, \ldots, m\}$ of size K, such that $\bigcup_{i \in I} S_i = B$.
- There exists a binary column vector x of length m with exactly K ones, such that $Ax \geq 1$ (componentwise).

Question 4: The subset sum problem is defined as follows:

$$\text{SUBSETSUM} = \{(a_1, a_2, \ldots, a_m, b) : \text{ } m, a_1, a_2, \ldots, a_m, b \text{ are integers and } \exists I \subseteq \{1, 2, \ldots, m\} \text{ such that } \sum_{i \in I} a_i = b \}.$$

Assume you have a polynomial-time algorithm A that decides, for any input sequence $(a_1, a_2, \ldots, a_m, b)$, whether or not $(a_1, a_2, \ldots, a_m, b) \in \text{SUBSETSUM}$. Note that this algorithm only returns YES or NO; it does not return anything else.

Design a polynomial-time algorithm B that takes an arbitrary sequence $(a_1, a_2, \ldots, a_m, b)$ as input.

- If $(a_1, a_2, \ldots, a_m, b) \in \text{SUBSETSUM}$, then B returns a subset I of $\{1, 2, \ldots, m\}$ such that $\sum_{i \in I} a_i = b$.
- If $(a_1, a_2, \ldots, a_m, b) \not\in \text{SUBSETSUM}$, then B returns NO.

Your algorithm B may use algorithm A as a black box. As always, justify your answer.

Solution: Here is the main approach:

- Assume that algorithm A tells us that $(a_1, a_2, \ldots, a_m, b) \in \text{SUBSETSUM}$. Our task is to compute a subset $I \subseteq \{1, 2, \ldots, m\}$ such that $\sum_{i \in I} a_i = b$.

- We “Ask” algorithm A if $(a_1, a_2, \ldots, a_{m-1}, b)$ is in SUBSETSUM.

 - If the answer is YES, then we know that $I \subseteq \{1, 2, \ldots, m-1\}$. Thus, we recurse with the input $(a_1, a_2, \ldots, a_{m-1}, b)$.

If the answer is NO, then we know that \(m \) belongs to \(I \). Thus, we recurse with the input \((a_1, a_2, \ldots, a_{m-1}, b - a_m)\) and remember that \(m \) is in the final output \(I \).

Based on this, algorithm \(B \) does the following:

- **Algorithm** \(B(a_1, \ldots, a_m, b) \):
 - Run \(A(a_1, \ldots, a_m, b) \).
 - If \(A \) returns NO, then \(B \) returns NO.
 - If \(A \) returns YES, then \(B \) runs \(C(a_1, \ldots, a_m, b, \emptyset) \), where \(C \) is specified below.

Before we give the pseudocode for algorithm \(C \), let us specify what its input and output parameters are:

- **Algorithm** \(C(a_1, \ldots, a_k, b', I') \):
 - \((a_1, \ldots, a_m, b)\) is a YES-instance for \textsc{SubsetSum}.
 - \((a_1, \ldots, a_k, b')\) is a YES-instance for \textsc{SubsetSum}.
 - \(I' \subseteq \{k+1, k+2, \ldots, n\} \).
 - This algorithm returns a set \(I \subseteq \{1, 2, \ldots, m\} \) such that \(I' \subseteq I \) and \(\sum_{i \in I} a_i = b \).

Algorithm \(C \) does the following:

- **Algorithm** \(C(a_1, \ldots, a_k, b', I') \):
 - If \(k = 1 \): Let \(I = I' \cup \{1\} \). Return \(I \) and terminate.
 - If \(k \geq 2 \):
 - Run \(A(a_1, \ldots, a_{k-1}, b') \).
 - If \(A \) returns YES: Run \(C(a_1, \ldots, a_{k-1}, b', I') \).
 - If \(A \) returns NO: Run \(C(a_1, \ldots, a_{k-1}, b' - a_k, I' \cup \{k\}) \).

What is the running time of algorithm \(B \)? We assumed that algorithm \(A \) has polynomial running time; say \(O(m^c) \), where \(c \) is some constant. It follows from the pseudocode that algorithm \(B \) runs algorithm \(A \) at most \(m \) times. Therefore, the running time of algorithm \(B \) is \(O(m^{c+1}) \).

Question 5: The Hamilton cycle problem is defined as follows:

\[
\text{HAMILTONCycle} = \{ G : G \text{ is an undirected graph that has a Hamilton cycle} \}.
\]

Let \(\varphi \) be a Boolean formula in the variables \(x_1, x_2, \ldots, x_n \). We say that \(\varphi \) is in conjunctive normal form (CNF) if it is of the form

\[
\varphi = C_1 \land C_2 \land \ldots \land C_m,
\]
where each C_i, $1 \leq i \leq m$, is of the following form:

$$C_i = l_1^i \lor l_2^i \lor \ldots \lor l_k^i.$$

Each l_j^i is a literal, which is either a variable or the negation of a variable.

The satisfiability problem is defined as follows:

$$\text{SAT} = \{ \varphi : \varphi \text{ is in CNF-form and is satisfiable} \}.$$

Prove that $\text{HamiltonCycle} \leq_P \text{SAT}$, i.e., in polynomial time, HamiltonCycle can be reduced to SAT.

Solution: We need a function f such that

- f maps a graph G to a Boolean formula φ in CNF-form,
- G has a Hamilton cycle \iff φ is satisfiable,
- the time to compute φ is polynomial in the length of G.

Let $G = (V, E)$ be an undirected graph with $V = \{v_1, v_2, \ldots, v_n\}$. Recall that a Hamilton cycle is a permutation u_1, u_2, \ldots, u_n of V such that $\{u_1, u_2\}, \{u_2, u_3\}, \ldots, \{u_{n-1}, u_n\}, \{u_n, u_1\}$ are edges in E. We are going to encode the existence of such a cycle as a Boolean formula.

We will use n^2 Boolean variables x_{ij}, $1 \leq i \leq n$, $1 \leq j \leq n$. The meaning of these variables is as follows:

$$x_{ij} = true \iff \text{vertex } v_i \text{ is at position } j \text{ in the permutation.}$$

Consider a vertex v_i. We note that

$$x_{i1} \lor x_{i2} \lor \ldots \lor x_{in} = true \iff v_i \text{ occurs at least once.}$$

For two indices $j \neq k$, $x_{ij} \land x_{ik} = true$ if and only if v_i is at positions j and k. Thus, $x_{ij} \land x_{ik}$ must be false, which is the same as saying that $\neg(x_{ij} \land x_{ik})$ must be true, which is the same as saying that

$$\neg x_{ij} \lor \neg x_{ik}$$

must be true. Thus,

$$\bigwedge_{j \neq k} (\neg x_{ij} \lor \neg x_{ik}) = true \iff v_i \text{ occurs at most once.}$$

Let

$$\varphi_1 = \bigwedge_{i=1}^n \left((x_{i1} \lor x_{i2} \lor \ldots \lor x_{in}) \land \bigwedge_{j \neq k} (\neg x_{ij} \lor \neg x_{ik}) \right).$$

Then

$$\varphi_1 = true \iff \text{each } v_i \text{ occurs exactly once.}$$
The size of φ_1 is $O(n^3)$ and it can be constructed in time $O(n^3)$.

We need more to guarantee that we have a permutation of the vertex set. Note that we can make φ_1 true by placing all vertices at the same position.

Consider a position j. We note that

$$x_1j \lor x_2j \lor \ldots \lor x_nj = true \iff \text{there is at least one vertex at position } j.$$

Let

$$\varphi_2 = \bigwedge_{j=1}^{n} (x_1j \lor x_2j \lor \ldots \lor x_nj).$$

Then

$$\varphi_2 = true \iff \text{each position has at least one vertex.}$$

The size of φ_2 is $O(n^2)$ and it can be constructed in time $O(n^2)$.

So far, we have that

$$\varphi_1 \land \varphi_2 = true \iff \text{we have a permutation of the vertex set.}$$

Let $\{v_i, v_i'\}$ not be an edge in the edge set of G. We note that

$$(x_{ij} \land x_{i',j+1}) \lor (x_{i',j} \land x_{i,j+1})$$

must be false. Thus,

$$\neg((x_{ij} \land x_{i',j+1}) \lor (x_{i',j} \land x_{i,j+1}))$$

must be true, which is the same as

$$(\neg x_{ij} \lor \neg x_{i',j+1}) \land (\neg x_{i',j} \lor x_{i,j+1}).$$

Let

$$\varphi_3 = \bigwedge_{\{v_i, v_i'\} \not\in E} \bigwedge_{j=1}^{n-1} ((\neg x_{ij} \lor \neg x_{i',j+1}) \land (\neg x_{i',j} \lor x_{i,j+1}))$$

and

$$\varphi_4 = \bigwedge_{\{v_i, v_i'\} \not\in E} ((\neg x_{i,n} \lor \neg x_{i',1}) \land (\neg x_{i',n} \lor x_{i,1})).$$

Then

$$\varphi_3 \land \varphi_4 = true \iff \text{each neighboring pair of vertices is an edge.}$$

The size of $\varphi_3 \land \varphi_4$ is $O(n^3)$ and it can be constructed in time $O(n^3)$.

To conclude, if we let

$$\varphi = \varphi_1 \land \varphi_2 \land \varphi_3 \land \varphi_4,$$

then φ is satisfiable if and only if the graph G has a Hamilton cycle. The total time to construct φ is $O(n^3)$.

Question 6: After being successful in implementing a superfast sorting algorithm, Lionel Messi decides to continue working as a software developer. Lionel looks again at his previous
assignment, where he used Dijkstra’s algorithm to sort a sequence of numbers. He realizes that he showed that the sorting problem can be reduced to one run of Dijkstra’s algorithm. Suddenly, Lionel actually understands the notion of polynomial-time reductions. Because of this, he decides to solve the P versus NP problem. Below, you find the proof of what is now known as

Messi’s Theorem: P = NP.

Let φ be a Boolean formula in the variables x_1, x_2, \ldots, x_n.

We say that φ is in *conjunctive normal form* (CNF) if it is of the form

$$\varphi = C_1 \land C_2 \land \ldots \land C_m,$$

where each C_i, $1 \leq i \leq m$, is of the following form:

$$C_i = l^i_1 \lor l^i_2 \lor \ldots \lor l^i_{k_i}.$$

Each l^i_j is a *literal*, which is either a variable or the negation of a variable.

We say that φ is in *disjunctive normal form* (DNF) if it is of the form

$$\varphi = C_1 \lor C_2 \lor \ldots \lor C_m,$$

where each C_i, $1 \leq i \leq m$, is of the following form:

$$C_i = l^i_1 \land l^i_2 \land \ldots \land l^i_{k_i}.$$

Again, each l^i_j is a literal.

We define the following two languages:

$$\text{Sat} = \{ \varphi : \varphi \text{ is in CNF-form and is satisfiable} \}$$

and

$$\text{DNFSAT} = \{ \varphi : \varphi \text{ is in DNF-form and is satisfiable} \}.$$

(6.1) Lionel starts by proving that $\text{DNFSAT} \in \text{P}$. Your task is to present a proof of this fact.

Solution: Consider a Boolean formula

$$\varphi = C_1 \lor C_2 \lor \ldots \lor C_m$$

in DNF-form. Thus, each C_i, $1 \leq i \leq m$, is of the form

$$C_i = l^i_1 \land l^i_2 \land \ldots \land l^i_{k_i}.$$

We need two observations:

- φ is satisfiable if and only if at least one clause C_i is satisfiable.
• The clause C_i is satisfiable if and only if it does not contain a variable, say x_j, and its negation $\neg x_j$.

This leads to the following algorithm:

1. For each $i = 1, 2, \ldots, m$:
 (a) For each $j = 1, 2, \ldots, n$: Check if the clause C_i contains both x_j and $\neg x_j$.
 (b) If there is no such j: return “input is satisfiable” and terminate the algorithm.

2. Return “input is not satisfiable”.

The running time of the algorithm is

$$O \left(\sum_{i=1}^{m} n \cdot k_i \right).$$

The size of the Boolean formula φ is something like

$$n + \sum_{i=1}^{m} k_i.$$

Therefore, the running time is at most quadratic in the size of φ.

Note that there are faster algorithms to do this. However, a quadratic running time is enough, because we only care that it is polynomial.

(6.2) Here is Lionel’s argument to complete the proof of Messi’s Theorem:

• Let φ be an arbitrary Boolean formula in CNF-form. We can use the basic rules of logic (such as De Morgan’s Law) to rewrite φ as an equivalent Boolean formula in DNF-form. Therefore,

$$\text{Sat} \leq_P \text{DNFSAT}.$$

• We have seen in (6.1) that $\text{DNFSAT} \in \text{P}$.

• Since $\text{Sat} \leq_P \text{DNFSAT}$ and $\text{DNFSAT} \in \text{P}$, we have $\text{Sat} \in \text{P}$.

• Lionel remembers from COMP 3804 that Sat is NP-complete.

• Thus, the NP-complete problem Sat belongs to P.

• Therefore, $\text{P} = \text{NP}$.

Is Lionel’s proof of Messi’s Theorem correct? As always, justify your answer.

Solution: As you can guess, Lionel’s proof is wrong. The mistake is in the claim that

$$\text{Sat} \leq_P \text{DNFSAT}.$$
Consider the CNF Boolean formula
\[\varphi = (x_1 \lor y_1 \lor z_1) \land (x_2 \lor y_2 \lor z_2) \land \cdots \land (x_m \lor y_m \lor z_m) \]
where the variables are \(x_i, y_i, \) and \(z_i, \) for \(i = 1, 2, \ldots, m. \)

In COMP 1805, you learned that
\[x \lor (y \land z) \]
and
\[(x \lor y) \land (x \lor z) \]
are logically equivalent. Also
\[x \land (y \lor z) \]
and
\[(x \land y) \lor (x \land z) \]
are logically equivalent.

If we use these rules to convert \(\varphi \) to an equivalent DNF formula, we get a formula with \(3^m \) clauses. Each such clause is of the form
\[c_1 \land c_2 \land \cdots \land c_m, \]
where \(c_1 \in \{x_1, y_1, z_1\}, c_2 \in \{x_2, y_2, z_2\}, \ldots, c_m \in \{x_m, y_m, z_m\}. \) The size of this DNF formula is proportional to \(3^m; \) the time to write it down is thus \(\Omega(3^m), \) which is not polynomial in the length of \(\varphi. \)

Sorry Lionel! No million dollars for you.