Question 1: Write your name and student number.

Solution: Santa Clause, 007

Question 2: Let $K \geq 3$ be an integer. A K-kite is a graph consisting of a clique of size K and a path with K vertices that is connected to one vertex of the clique; thus, the number of vertices is equal to $2K$. In the figure below, the graph with the black edges forms a 5-kite.

![Kite Graph](image)

The kite problem is defined as follows:

$$
\text{Kite} = \{(G, K) : \text{graph } G \text{ contains a } K\text{-kite}\}.
$$

Prove that the language Kite is in NP.

Solution: The verification algorithm V does the following:

- It takes as input
 - a graph $G = (V, E)$ and an integer $K \geq 3$,
 - a set V' of vertices and an ordered sequence S of vertices.

- The verification algorithm does the following:
 - Check that $V' \subseteq V$ and V has K vertices.
 - Check that1 $S \subseteq V$ and S has K vertices.
 - Check that2 $V' \cap S = \emptyset$.
 - Check that for each pair $u \neq v$ in V', $\{u, v\}$ is an edge in E.
 - Check that for each pair u, v of neighboring vertices in the sequence S, $\{u, v\}$ is an edge in E.
 - Let v be the first vertex in the sequence S. Check that there is a vertex u in V' such that $\{u, v\}$ is an edge in E.

1 this is bad notation, because S is not a set
2 again bad notation, because S is not a set
If all of these are correct, then it returns YES. Otherwise, it returns NO.

The certificate is of course the pair \((V,S)\):

\[(G,K) \in \text{Kite} \iff \text{there exists } (V',S) \text{ such that } V' \text{ and } S \text{ form a kite in } G \]

\[\iff \text{there exists a certificate } (V',S) \text{ such that } V(G,K,V',S) \text{ returns YES.} \]

Since \(V' \cap S = \emptyset\), the length of the certificate \((V',S)\) is at most \(|V|\), which is at most the length of the graph \(G\).

What is the running time of the verification algorithm:

- Checking that \(V' \subseteq V\) and \(V\) has \(K\) vertices can be done in \(O(K|V|) = O(|V|^2)\) time.
- Checking that \(S \subseteq V\) and \(S\) has \(K\) vertices can be done in \(O(K|V|) = O(|V|^2)\) time.
- Checking that \(V' \cap S = \emptyset\) can be done in \(O(K^2) = O(|V|^2)\) time.
- Checking that for each pair \(u \neq v\) in \(V'\), \(\{u,v\}\) is an edge in \(E\) can be done in \(O(K^2) = O(|V|^2)\) time (assuming that \(G\) is represented using an adjacency matrix).
- Checking that for each pair \(u,v\) of neighboring vertices in the sequence \(S\), \(\{u,v\}\) is an edge in \(E\) can be done in \(O(K) = O(|V|)\) time.
- Let \(v\) be the first vertex in the sequence \(S\). Checking that there is a vertex \(u\) in \(V'\) such that \(\{u,v\}\) is an edge in \(E\) can be done in \(O(K) = O(|V|)\) time.
- Thus, the total running time of the verification algorithm is \(O(|V|^2)\), which is polynomial in the length of \(G\).

This shows that \(\text{Kite} \in \text{NP}\).

Question 3: The clique problem is defined as follows:

\[
\text{CLIQUE} = \{(G,K) : \text{graph } G \text{ contains a clique of size } K\}.
\]

Prove that \(\text{CLIQUE} \leq_p \text{Kite}\), i.e., in polynomial time, \(\text{CLIQUE}\) can be reduced to \(\text{Kite}\).

Solution: We need a function \(f\) such that

- \(f\) maps an input \((G,K)\) to \(\text{CLIQUE}\) to an input \((G',K')\) to \(\text{Kite}\),
- \((G,K) \in \text{CLIQUE} \iff (G',K') \in \text{Kite},\)
- the time to compute \((G',K')\) is polynomial in the length of \((G,K)\).
Here is the function f: Consider an input (G, K) to CLIQUE. We set $K' = K$. The graph G' is obtained as follows:

- Make a copy of G.
- For every vertex v of G: create K new vertices, connect them into a path and connect the start vertex of this path to v.

Let $G = (V, E)$. We can compute (G', K') in time $O(|V| + |E| + K|V|) = O(|V|^2)$, which is polynomial in the length of G.

Assume that $(G, K) \in \text{CLIQUE}$. Let $V' \subseteq V$ be a clique in G of size K. Take an arbitrary vertex v in this clique. In G', this vertex v has a path with K vertices attached to it. This path does not share vertices with the clique. Thus, G' contains a K-kite, i.e., $(G', K') \in \text{KITE}$.

Assume that $(G', K') \in \text{KITE}$. Let (V', S) be a K-kite in G', where V' represents the clique of size K and S represents the path with K vertices that is attached to the clique. Observe that V' must be a subset of the vertex set of the graph G: If V' contains a new vertex in G', then this vertex has degree two and, thus, cannot be part of the clique (we assume here that $K \geq 4$, the other cases can be handled as well). Therefore, V' is a clique in G, i.e., $(G, K) \in \text{CLIQUE}$.

Question 4: The subset sum problem is defined as follows:

\[
\text{SubsetSum} = \{(S, t) : \quad S \text{ is a set of integers, } t \text{ is an integer, } \\
\exists S' \subseteq S \text{ such that } \sum_{x \in S'} x = t \}.
\]

The partition problem is defined as follows:

\[
\text{Partition} = \{S : \quad S \text{ is a set of integers, } \\
\exists S' \subseteq S \text{ such that } \sum_{x \in S'} x = \sum_{y \in S \setminus S'} y \}.
\]

- Prove that SubsetSum \(\leq_P\) Partition, i.e., in polynomial time, SubsetSum can be reduced to Partition.

- Prove that Partition \(\leq_P\) SubsetSum, i.e., in polynomial time, Partition can be reduced to SubsetSum.

Solution: We start with

\[
\text{SubsetSum} \leq_P \text{Partition}.
\]

We need a function f such that

- f maps an input (S, t) to SubsetSum to an input T to Partition,

- $(S, t) \in \text{SubsetSum} \iff T \in \text{Partition},$

- the time to compute T is polynomial in the length of (S, t).
Here is the function f: Consider an input (S, t) to SubsetSum, where $S = \{a_1, a_2, \ldots, a_n\}$. The input to Partition is the set

$$T = \{a_1, a_2, \ldots, a_n, s - 2t\},$$

where

$$s = a_1 + a_2 + \cdots + a_n.$$

The time to compute T is $O(n)$, which is polynomial in the length of S.

Assume that $(S, t) \in \text{SubsetSum}$. Let $S' \subseteq S$ be such that

$$\sum_{a_i \in S'} a_i = t.$$

Note that

$$\sum_{a_i \in S \setminus S'} a_i = s - t$$

and

$$\sum_{x \in T} x = s + (s - 2t) = 2s - 2t.$$

Let $T' = S' \cup \{s - 2t\}$. Then

$$\sum_{x \in T'} x = \left(\sum_{a_i \in S'} a_i \right) + (s - 2t) = t + (s - 2t) = s - t$$

and

$$\sum_{x \in T \setminus T'} x = \left(\sum_{a_i \in S \setminus S'} a_i \right) = s - t.$$

Thus, $T \in \text{Partition}$.

For the other direction, we assume that $T \in \text{Partition}$. Let $T' \subseteq T$ be such that

$$\sum_{x \in T'} x = \sum_{x \in T \setminus T'} x.$$

Since $\sum_{x \in T} x = 2s - 2t$, we have

$$\sum_{x \in T'} x = \sum_{x \in T \setminus T'} x = s - t.$$

Assume first that $s - 2t \in T'$. Let $S' = T' \setminus \{s - 2t\}$. Then

$$\sum_{x \in S'} x = \left(\sum_{x \in T'} x \right) - (s - 2t) = (s - t) - (s - 2t) = t$$

and, therefore, $(S, t) \in \text{SubsetSum}$.

4
Now assume that $s - 2t \in T \setminus T'$. Let $S' = (T \setminus T') \setminus \{s - 2t\}$. Then
\[
\sum_{x \in S'} x = \left(\sum_{x \in T \setminus T'} x \right) - (s - 2t) = (s - t) - (s - 2t) = t
\]
and, therefore, $(S, t) \in \text{SubsetSum}$.

Next we show that $\text{Partition} \leq_p \text{SubsetSum}$.

We need a function f such that

- f maps an input S to Partition to an input (T, t) to SubsetSum,
- $S \in \text{Partition} \iff (T, t) \in \text{SubsetSum}$,
- the time to compute (T, t) is polynomial in the length of S.

Here is the function f: Consider an input S to Partition, where $S = \{a_1, a_2, \ldots, a_n\}$. The input to SubsetSum is the set

\[
T = \{2a_1, 2a_2, \ldots, 2a_n\},
\]

and the integer

\[
t = a_1 + a_2 + \cdots + a_n.
\]

The time to compute (T, t) is $O(n)$, which is polynomial in the length of S.

Assume that $S \in \text{Partition}$. Let $S' \subseteq S$ be such that

\[
\sum_{a_i \in S'} a_i = \sum_{a_i \in S \setminus S'} a_i.
\]

Note that each of these two sums is equal to $t/2$ (which must be an integer, because $S \in \text{Partition}$). Let

\[
T' = \{2a_i : a_i \in S'\}.
\]

Then

\[
\sum_{x \in T'} x = 2 \cdot \sum_{a_i \in S'} a_i = 2 \cdot t/2 = t.
\]

Thus, $(T, t) \in \text{SubsetSum}$.

For the other direction, we assume that $(T, t) \in \text{SubsetSum}$. Let $T' \subseteq T$ be such that

\[
\sum_{x \in T'} x = t.
\]

Let

\[
S' = \{a_i \in S : 2a_i \in T'\}.
\]
Then
\[\sum_{x \in S'} x = \frac{1}{2} \cdot \sum_{x \in T'} x = t/2 \]
and
\[\sum_{x \in S \setminus S'} x = \sum_{x \in S} x - \sum_{x \in S'} x = t - t/2 = t/2. \]

Thus, \(S \in \text{Partition}. \)

Question 5: The **clique and independent set problem** is defined as follows:

\[\text{CliqueIndepSet} = \{(G, K) : \text{graph } G \text{ contains a clique of size } K \text{ and } G \text{ contains an independent set of size } K \} \]

Prove that \(\text{Clique} \leq_P \text{CliqueIndepSet}, \) i.e., in polynomial time, \(\text{Clique} \) can be reduced to \(\text{CliqueIndepSet}. \)

Solution: We need a function \(f \) such that

- \(f \) maps an input \((G, K) \) to \(\text{Clique} \) to an input \((G', K') \) to \(\text{CliqueIndepSet}, \)

- \((G, K) \in \text{Clique} \iff (G', K') \in \text{CliqueIndepSet}, \)

- the time to compute \((G', K') \) is polynomial in the length of \((G, K) \).

Here is the function \(f \): Consider an input \((G, K) \) to \(\text{Clique} \). We set \(K' = K \). The graph \(G' \) is obtained as follows:

- Make a copy of \(G \).
- Add \(K \) new vertices, each of them having degree zero.

Let \(G = (V, E) \). We can compute \((G', K') \) in time \(O(|V| + |E| + K) = O(|V| + |E|) \), which is polynomial in the length of \(G \).

Assume that \((G, K) \in \text{Clique} \). Let \(V' \subseteq V \) be a clique in \(G \) of size \(K \). Let \(V'' \) be the set of \(K \) new vertices. Then \(V' \) is a clique of size \(K \) in \(G' \) and \(V'' \) is an independent set of size \(K \) in \(G' \). Thus, \((G', K) \in \text{CliqueIndepSet} \).

Assume that \((G', K) \in \text{CliqueIndepSet} \). Let \(V' \) be a clique of size \(K \) in \(G' \) and let \(V'' \) be an independent set of size \(K \) in \(G' \). Then \(V' \) cannot contain any of the new vertices. Thus, \(V' \) is a clique of size \(K \) in \(G \), i.e., \((G, K) \in \text{Clique} \).

Question 6: Let \(\varphi \) be a Boolean formula in the variables \(x_1, x_2, \ldots, x_n \). We say that \(\varphi \) is in **conjunctive normal form** (CNF) if it is of the form

\[\varphi = C_1 \land C_2 \land \ldots \land C_m, \]

where each \(C_i, 1 \leq i \leq m \), is of the following form:

\[C_i = l_1^i \lor l_2^i \lor \ldots \lor l_{k_i}^i. \]
Each l_j is a literal, which is either a variable or the negation of a variable.

The **satisfiability problem** is defined as follows:

\[
\text{Sat} = \{ \varphi : \varphi \text{ is in CNF-form and is satisfiable} \}.
\]

Prove that CLIQUE \leq_P SAT, i.e., in polynomial time, CLIQUE can be reduced to SAT.

Solution: We need a function f such that

1. f maps an input (G, K) to CLIQUE to a Boolean formula φ in CNF-form,
2. G has a clique of size $K \iff \varphi$ is satisfiable,
3. the time to compute φ is polynomial in the length of G.

Consider an input (G, K) to CLIQUE, where $G = (V, E)$ and $V = \{v_1, v_2, \ldots, v_n\}$. A clique of size K, if it exists, will be represented by an ordered sequence of K vertices.

We will use Kn Boolean variables x_{ij}, where $1 \leq i \leq K$ and $1 \leq j \leq n$. The meaning of these variables is as follows:

\[
x_{ij} = \text{true} \iff \text{the vertex at position } i \text{ in the clique is } v_j.
\]

A clique of size K exists if and only if all of the following are true:

1. For each $i = 1, 2, \ldots, K$: There is at least one vertex at position i.
2. For each $i = 1, 2, \ldots, K$: There is at most one vertex at position i.
3. For each $1 \leq i < i' \leq K$: The vertices at positions i and i' are distinct.
4. For each $1 \leq i < i' \leq K$: The vertices at positions i and i' form an edge in G.

We are going to describe each of these four conditions by clauses.

Item 1: For position i, we get the clause

\[
x_{i1} \lor x_{i2} \lor \cdots \lor x_{in} = \bigvee_{j=1}^{n} x_{ij}.
\]

For all positions i, we get K clauses

\[
\bigwedge_{i=1}^{K} \bigvee_{j=1}^{n} x_{ij}.
\]

The total size of all these clauses is Kn, which is at most n^2.
Item 2: Consider one position i and two distinct vertices v_j and $v_{j'}$. If $x_{ij} \land x_{ij'}$ is true, then both v_j and $v_{j'}$ are at position i. Thus, $x_{ij} \land x_{ij'}$ must be false, i.e., $\neg(x_{ij} \land x_{ij'})$ must be true, which is the same as the clause

$$\neg x_{ij} \lor \neg x_{ij'}.$$

For all positions i and all distinct vertices v_j and $v_{j'}$, we get $K \cdot \binom{n}{2}$ clauses

$$\bigwedge_{i=1}^{K} \bigwedge_{1 \leq j < j' \leq n} (\neg x_{ij} \lor \neg x_{ij'}).$$

The total size of all these clauses is

$$K \cdot \binom{n}{2} \cdot 2 = O(n^3).$$

Item 3: Consider two distinct positions i and i', and one vertex v_j. If $x_{ij} \land x_{i'j}$ is true, then vertex v_j is at both positions i and i'. Thus, $x_{ij} \land x_{i'j}$ must be false, i.e., $\neg(x_{ij} \land x_{i'j})$ must be true, which is the same as the clause

$$\neg x_{ij} \lor \neg x_{i'j}.$$

For all distinct positions i and i', and all vertices v_j, we get $\binom{K}{2} \cdot n$ clauses

$$\bigwedge_{1 \leq i < i' \leq K} \bigwedge_{j=1}^{n} (\neg x_{ij} \lor \neg x_{i'j}).$$

The total size of all these clauses is

$$\binom{K}{2} \cdot n \cdot 2 = O(n^3).$$

Item 4: Consider two distinct positions i and i', and an non-edge $\{v_j, v_{j'}\}$. If $x_{ij} \land x_{i'j'}$ is true, then the vertices v_j and $v_{j'}$ at positions i and i' do not form an edge. Thus, $x_{ij} \land x_{i'j'}$ must be false, i.e., $\neg(x_{ij} \land x_{i'j'})$ must be true, which is the same as the clause

$$\neg x_{ij} \lor \neg x_{i'j'}.$$

For all distinct positions i and i', and all non-edges $\{v_j, v_{j'}\}$, we get $\binom{K}{2} \cdot \left(\binom{n}{2} - |E| \right)$ clauses

$$\bigwedge_{1 \leq i < i' \leq K} \bigwedge_{\{v_j, v_{j'}\} \notin E} (\neg x_{ij} \lor \neg x_{i'j'}).$$

The total size of all these clauses is

$$\binom{K}{2} \cdot \left(\binom{n}{2} - |E| \right) \cdot 2 \leq \binom{K}{2} \cdot \binom{n}{2} \cdot 2 = O(n^4).$$

The final Boolean formula φ that we are looking for is the conjunction (logical AND) of all clauses in Items 1—4. The total size of φ is $O(n^4)$, which is polynomial in the length of the graph G.

8