

COMP 3804 — Winter 2026

Solutions Problem Set 1

Some useful facts:

1. $1 + 2 + 3 + \cdots + n = n(n + 1)/2$.
2. for any real number $x > 0$, $x = 2^{\log x}$.
3. For any real number $x \neq 1$ and any integer $k \geq 1$,

$$1 + x + x^2 + \cdots + x^{k-1} = \frac{x^k - 1}{x - 1}.$$

4. For any real number $0 < \alpha < 1$,

$$\sum_{i=0}^{\infty} \alpha^i = \frac{1}{1 - \alpha}.$$

Master Theorem:

1. Let $a \geq 1$, $b > 1$, $d \geq 0$, and

$$T(n) = \begin{cases} 1 & \text{if } n = 1, \\ a \cdot T(n/b) + \Theta(n^d) & \text{if } n \geq 2. \end{cases}$$

2. If $d > \log_b a$, then $T(n) = \Theta(n^d)$.
3. If $d = \log_b a$, then $T(n) = \Theta(n^d \log n)$.
4. If $d < \log_b a$, then $T(n) = \Theta(n^{\log_b a})$.

Question 1: After having attended the first lecture of COMP 3804, Justin Bieber is intrigued by the recursive algorithm $\text{FIB}(n)$ that computes the n -th Fibonacci number in exponential time. He is convinced that a simple modification should run much faster. Here is Justin's algorithm.

Algorithm $\text{FIBBIEBER}(n)$:
comment: $n \geq 0$ is an integer
 initialize an array $f(0 \dots n)$;
for $i = 0, 1, \dots, n$ **do** $f(i) = -1$
endfor;
 $\text{BIEBER}(n)$;
 return $f(n)$

Algorithm $\text{BIEBER}(m)$:

comment: $0 \leq m \leq n$, this algorithm has access to the array $f(0 \dots n)$
if $m = 0$
then $f(0) = 0$
endif;
if $m = 1$
then $f(0) = 0$; $f(1) = 1$
endif;
if $m \geq 2$
then **if** $f(m - 2) = -1$
then $\text{BIEBER}(m - 2)$
endif;
 $x = f(m - 2)$;
if $f(m - 1) = -1$
then $\text{BIEBER}(m - 1)$
endif;
 $y = f(m - 1)$;
 $f(m) = x + y$
endif

- Is algorithm FIBBIEBER correct? That is, is it true that for every integer $n \geq 0$, the output of algorithm $\text{FIBBIEBER}(n)$ is the n -th Fibonacci number? As always, justify your answer.
- What is the running time of algorithm $\text{FIBBIEBER}(n)$? You may assume that two integers can be added in constant time. As always, justify your answer.

Solution: As in class, we denote the Fibonacci numbers by F_0, F_1, F_2, \dots

This question is more difficult than I thought.

We will show that algorithm FIBBIEBER is correct. Recall that $\text{FIBBIEBER}(n)$ does the following:

- Set $f(0) = f(1) = f(2) = \dots = f(n) = -1$.
- Run $\text{BIEBER}(n)$. This makes recursive calls to BIEBER with smaller and smaller arguments.
- Return $f(n)$.
- We have to show that $f(n) = F_n$.

Claim: For every integer $n \geq 0$, the following hold during the execution of $\text{BIEBER}(n)$:

- C1: At any moment, for every $k = 0, 1, \dots, n$:

$$f(k) = -1 \text{ or } f(k) = F_k.$$

- C2: For every $k = 0, 1, \dots, n$: At the moment $\text{BIEBER}(k)$ has terminated:

$$f(0) = F_0, f(1) = F_1, \dots, f(k) = F_k.$$

Before we prove this claim: If it is correct, then it follows that algorithm $\text{FIBBIEBER}(n)$ returns F_n .

Proof: If $n = 0$ or $n = 1$, C1 and C2 follow from the pseudocode.

Let $n \geq 2$ and assume that C1 and C2 are true for every n' with $0 \leq n' < n$.

Note that C1 is true just before $\text{BIEBER}(n)$ is called. Also note that C1 and C2 are true at the moment when $\text{BIEBER}(0)$ and $\text{BIEBER}(1)$ have terminated.

Let m be such that $2 \leq m < n$. What happens when we run $\text{BIEBER}(m)$? We go through the pseudocode:

- Since $m \geq 2$, the algorithm checks if $f(m-2) = -1$.
 - If this is the case, then we run $\text{BIEBER}(m-2)$. By induction, at termination, we have
$$f(0) = F_0, f(1) = F_1, \dots, f(m-2) = F_{m-2}.$$
 - If this is not the case then, by C1, $f(m-2) = F_{m-2}$.
 - Because of the previous two items, we always have $x = f(m-2) = F_{m-2}$.
- Next, the algorithm checks if $f(m-1) = -1$.
 - If this is the case, then we run $\text{BIEBER}(m-1)$. By induction, at termination, we have
$$f(0) = F_0, f(1) = F_1, \dots, f(m-1) = F_{m-1}.$$
 - If this is not the case then, by C1, $f(m-1) = F_{m-1}$.
 - Because of the previous two items, we always have $y = f(m-1) = F_{m-1}$.

- At the end of $\text{BIEBER}(m)$, we set

$$f(m) = x + y = F_{m-2} + F_{m-1} = F_m.$$

- This proves the claim.

Next we estimate the running time of algorithm $\text{FIBBIEBER}(n)$. This running time is $O(n)$ (to initialize the array f), plus the running time of $\text{BIEBER}(n)$, plus $O(1)$ (to return $f(n)$). If we can show that $\text{BIEBER}(n)$ takes $O(n)$ time, then the total running time of $\text{FIBBIEBER}(n)$ is $O(n)$.

Let $T(n)$ be the running time of $\text{BIEBER}(n)$. For $n \in \{0, 1\}$, $T(n)$ is bounded from above by some constant.

Let $n \geq 2$. Let us see what $\text{BIEBER}(n)$ does:

- The algorithm takes time $O(1)$ plus the time of the recursive call $\text{BIEBER}(n-2)$, which is $O(1) + T(n-2)$.
- There may be a call to $\text{BIEBER}(n-1)$. If this is the case, then:
 - There is no recursive call to $\text{BIEBER}(n-3)$; this follows from C1 and C2, because $\text{BIEBER}(n-2)$ has terminated.
 - There is no recursive call to $\text{BIEBER}(n-2)$; this follows from C1 and C2, because $\text{BIEBER}(n-2)$ has terminated.
 - Thus, the call to $\text{BIEBER}(n-1)$ takes $O(1)$ time.
- It follows that

$$T(n) = O(1) + T(n-2).$$

Straightforward unfolding implies that $T(n) = O(n)$.

Question 2: Taylor Swift is not impressed by Justin's algorithm in the previous question. Taylor is convinced that there is a much simpler algorithm. Here is Taylor's algorithm:

Algorithm FIBSWIFT(n):
comment: $n \geq 0$ is an integer
 initialize an array $f(0 \dots n)$;
for $i = 0, 1, \dots, n$ **do** $f(i) = -1$
endfor;
 SWIFT(n);
 return $f(n)$

Algorithm SWIFT(m):

comment: $0 \leq m \leq n$, this algorithm has access to the array $f(0 \dots n)$
if $m = 0$
then $f(0) = 0$
endif;
if $m = 1$
then $f(0) = 0; f(1) = 1$
endif;
if $m \geq 2$
then SWIFT($m - 1$);
 $f(m) = f(m - 1) + f(m - 2)$;
endif

- Is algorithm FIBSWIFT correct? That is, is it true that for every integer $n \geq 0$, the output of algorithm FIBSWIFT(n) is the n -th Fibonacci number? As always, justify your answer.
- What is the running time of algorithm FIBSWIFT(n)? You may assume that two integers can be added in constant time. As always, justify your answer.

Solution: Swifties will not be surprised that algorithm FIBSWIFT is correct. Recall that FIBSWIFT(n) does the following:

- Set $f(0) = f(1) = f(2) = \dots = f(n) = -1$.
- Run SWIFT(n). This makes recursive calls to SWIFT with smaller and smaller arguments.
- Return $f(n)$.
- We have to show that $f(n) = F_n$.

Claim: For every integer $m = 0, 1, \dots, n$, at the moment when $\text{SWIFT}(m)$ terminates:

$$f(0) = F_0, f(1) = F_1, \dots, f(m) = F_m.$$

Before we prove this claim: If it is correct, then it follows that algorithm $\text{FIBSWIFT}(n)$ returns F_n .

Proof: For $m \in \{0, 1\}$, the claim follows from the pseudocode.

Let $m \geq 2$, and assume that the claim is true for all m' with $0 \leq m' < m$. What does algorithm $\text{SWIFT}(m)$ do:

- It runs $\text{SWIFT}(m - 1)$. By induction, at termination of this recursive call, we have

$$f(0) = F_0, f(1) = F_1, \dots, f(m - 2) = F_{m-2}, f(m - 1) = F_{m-1}.$$

- It sets $f(m) = f(m - 1) + f(m - 2)$, which is $F_{m-1} + F_{m-2}$, which is F_m .
- Thus, at termination of $\text{SWIFT}(m)$, we have

$$f(0) = F_0, f(1) = F_1, \dots, f(m) = F_m.$$

Next we estimate the running time of algorithm $\text{FIBSWIFT}(n)$. This running time is $O(n)$ (to initialize the array f), plus the running time of $\text{SWIFT}(n)$, plus $O(1)$ (to return $f(n)$). If we can show that $\text{SWIFT}(n)$ takes $O(n)$ time, then the total running time of $\text{FIBSWIFT}(n)$ is $O(n)$.

Let $T(n)$ be the running time of $\text{SWIFT}(n)$. For $n \in \{0, 1\}$, $T(n)$ is bounded from above by some constant.

Let $n \geq 2$. The time for $\text{SWIFT}(n)$ is equal to $O(1)$ plus the time for $\text{SWIFT}(n - 1)$. Thus,

$$T(n) = O(1) + T(n - 1).$$

Straightforward unfolding implies that $T(n) = O(n)$.

Question 3: Consider the following recurrence, where n is a power of 7:

$$T(n) = \begin{cases} 1 & \text{if } n = 1, \\ n^3 + 12 \cdot T(n/7) & \text{if } n \geq 7. \end{cases}$$

- Solve this recurrence using the *unfolding method*. Give the final answer using Big-O notation.
- Solve this recurrence using the *Master Theorem*.

Solution: We write $n = 7^k$. Unfolding gives

$$\begin{aligned}
T(n) &= n^3 + 12 \cdot T(n/7) \\
&= n^3 + 12 \left((n/7)^3 + 12 \cdot T(n/7^2) \right) \\
&= (1 + 12/7^3) n^3 + 12^2 \cdot T(n/7^2) \\
&= (1 + 12/7^3) n^3 + 12^2 \left((n/7^2)^3 + 12 \cdot T(n/7^3) \right) \\
&= (1 + 12/7^3 + (12/7^3)^2) n^3 + 12^3 \cdot T(n/7^3) \\
&= (1 + 12/7^3 + (12/7^3)^2) n^3 + 12^3 \left((n/7^3)^3 + 12 \cdot T(n/7^4) \right) \\
&= (1 + 12/7^3 + (12/7^3)^2 + (12/7^3)^3) n^3 + 12^4 \cdot T(n/7^4) \\
&\vdots \\
&= (1 + 12/7^3 + (12/7^3)^2 + \cdots + (12/7^3)^{k-1}) n^3 + 12^k \cdot T(n/7^k) \\
&= (1 + 12/7^3 + (12/7^3)^2 + \cdots + (12/7^3)^{k-1}) n^3 + 12^k \cdot 1.
\end{aligned}$$

Let $x = 12/7^3$. Then

$$T(n) = \frac{x^k - 1}{x - 1} \cdot n^3 + 12^k.$$

Since $0 < x < 1$, we write this as

$$T(n) = \frac{1 - x^k}{1 - x} \cdot n^3 + 12^k.$$

Since $1 - x^k \leq 1$ and $1/(1 - x)$ is a constant, we have

$$\frac{1 - x^k}{1 - x} \cdot n^3 = O(n^3).$$

Since $n = 7^k$, we have $\log n = k \log 7$, and

$$\begin{aligned}
12^k &= (12^{\log n})^{1/\log 7} \\
&= (n^{\log 12})^{1/\log 7} \\
&= n^{\log 12 / \log 7} \\
&= n^{\log_7 12} \\
&= n^{1.2769}.
\end{aligned}$$

We conclude that

$$T(n) = O(n^3) + n^{1.2769} = O(n^3).$$

This was fun, eh!

Using the Master Theorem: We have $a = 12$, $b = 7$, and $d = 3$. Since

$$\log_b a = \log_7 12 = 1.2769 < d,$$

the Master Theorem tells us that $T(n) = O(n^d) = O(n^3)$.

Question 4: You are given an array $A(1 \dots n)$ of n distinct numbers. This array has the following property: There is an index i with $1 \leq i \leq n$, such that

1. the subarray $A(1 \dots i)$ is sorted in increasing order, and
2. the subarray $A(i \dots n)$ is sorted in decreasing order.

Describe a recursive algorithm that returns, in $O(\log n)$ time, the largest number in the array A . (At the start of the algorithm, you do not know the above index i .)

You may describe your algorithm in plain English or in pseudocode. Justify the correctness of your algorithm and explain why the running time is $O(\log n)$. You may use any result that was proven in class.

Solution: Because of the word “recursive” and a running time of $O(\log n)$, it makes sense to use binary search.

Invariant: ℓ and r are indices with $1 \leq \ell < r \leq n$. The largest number in the entire array is in the subarray $A(\ell \dots r)$.

Initially, we set $\ell = 1$ and $r = n$. Note that the invariant holds.

While $r - \ell + 1$ (which is the length of the subarray $A(\ell \dots r)$) is large, say more than 5, do the following:

- Let $k = \lfloor (r - \ell + 1)/2 \rfloor$.
- If $A(k) < A(k + 1)$, then we set $\ell = k + 1$. Why: because the largest number is in the subarray $A(k + 1 \dots r)$. In this way, the invariant still holds.
- If $A(k) > A(k + 1)$, then we set $r = k$. Why: because the largest number is in the subarray $A(\ell \dots k)$. In this way, the invariant still holds.

Repeat the above as long as $r - \ell + 1 > 5$. Since in each iteration, the value of $r - \ell + 1$ gets smaller, at some point it is at most 5. At this moment, we scan the subarray $A(\ell \dots r)$ and find the largest number.

What is the running time: Initially, we have $r - \ell + 1 = n$. In each iteration, the value of $r - \ell + 1$ is divided by (roughly) 2. It follows that the number of iterations is $O(\log n)$. Since each iteration takes $O(1)$ time, the total running time is $O(\log n)$.

Question 5: You are given a sequence $S = (a_1, a_2, \dots, a_n)$ of n distinct numbers. A pair (a_i, a_j) is called *Out-of-Order*, if $i < j$ and $a_i > a_j$; in words, a_i is to the left of a_j and a_i is larger than a_j .

If the sequence S is sorted then the number of Out-of-Order pairs is zero. On the other hand, if S is sorted in decreasing order, then there are $\binom{n}{2}$ Out-of-Order pairs.

Describe a comparison-based divide-and-conquer algorithm that returns, in $O(n \log n)$ time, the number of Out-of-Order pairs in the sequence S .

You may describe your algorithm in plain English or in pseudocode. Justify the correctness of your algorithm and explain why the running time is $O(n \log n)$. You may use any result that was proven in class.

Hint: Think of Merge-Sort.

Solution: We are going to add some steps to Merge-Sort. After the algorithm has terminated, the sequence will be sorted and we have counted the OoO-pairs.

We assume for simplicity that n is a power of two. Here is the algorithm:

Initialization: Set $OoO = 0$.

If $n = 1$: Return OoO .

If $n \geq 2$:

- Let $m = n/2$. Split S into $A = (a_1, \dots, a_m)$ and $B = (a_{m+1}, \dots, a_n)$.
- Observation: Every OoO-pair (a_i, a_j) in S for which $i \leq m$ and $j > m$, is still an OoO-pair if we permute the sequences A and B .
- We recursively run the algorithm on A . After termination, A is sorted and we know the number OoO_A of OoO-pairs in A .
- We recursively run the algorithm on B . After termination, B is sorted and we know the number OoO_B of OoO-pairs in B .
- Set $OoO = OoO + OoO_A + OoO_B$.
- It remains to merge A and B into one sorted sequence, and count the OoO-pairs with one number in A and the other number in B .
- Initialize an empty sequence C . (This sequence will contain the numbers in $S = A \cup B$ in sorted order.)
- While both A and B are non-empty:
 - Let x be the first element in A .
 - Let y be the first element in B .
 - If $x < y$: Delete x from A and add it at the end of C . (Explanation: x does not form an OoO-pair with any number in B .)
 - If $x > y$: Delete y from B , add it at the end of C , and set $OoO = OoO + |A|$. (Explanation: Every number in A forms an OoO-pair with y .)
- If A is empty: Add A at the end of C .
- If B is empty: Add B at the end of C .

- Return OoO .

Let $T(n)$ denote the running time on a sequence of length n . It follows from the algorithm that, for $n \geq 2$,

$$T(n) = O(n) + 2 \cdot T(n/2).$$

This is the Merge-Sort recurrence and solves to $T(n) = O(n \log n)$.