

Carleton University
COMP/MATH 3804 A/B, Test 1

January 28, 2026

- All questions must be answered on the scantron sheet.
- Write your name and student number on the scantron sheet.
- You do not have to hand in this examination paper.
- Calculators are allowed.

Marking scheme: Each question is worth 1 mark.

Some useful facts:

1. $1 + 2 + 3 + \cdots + n = n(n + 1)/2$.
2. for any real number $x > 0$, $x = 2^{\log x}$.
3. For any real number $x \neq 1$ and any integer $k \geq 1$,

$$1 + x + x^2 + \cdots + x^{k-1} = \frac{x^k - 1}{x - 1}.$$

4. For any real number $0 < \alpha < 1$,

$$\sum_{i=0}^{\infty} \alpha^i = \frac{1}{1 - \alpha}.$$

5. $1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \cdots + \frac{1}{n} = \Theta(\log n)$.

Master Theorem:

1. Let $a \geq 1$, $b > 1$, $d \geq 0$, and

$$T(n) = \begin{cases} 1 & \text{if } n = 1, \\ a \cdot T(n/b) + \Theta(n^d) & \text{if } n \geq 2. \end{cases}$$

2. If $d > \log_b a$, then $T(n) = \Theta(n^d)$.
3. If $d = \log_b a$, then $T(n) = \Theta(n^d \log n)$.
4. If $d < \log_b a$, then $T(n) = \Theta(n^{\log_b a})$.

1. Recall that $\mathbb{N} = \{1, 2, 3, \dots\}$ denotes the set of all positive integers. Let $f : \mathbb{N} \rightarrow \mathbb{N}$ be a function such that $f(n) = O(\log n)$. Is it true that there exists a positive constant c such that

$$2^{f(n)} = O(n^c)?$$

(a) This is true.
 (b) This is not true.

2. Consider the recurrence

$$T(n) = n^{1/3} + 2 \cdot T(n/4).$$

Which of the following is true?

(a) $T(n) = \Theta(n^{1/4})$.
 (b) $T(n) = \Theta(n^{1/3})$.
 (c) $T(n) = \Theta(\sqrt{n})$.
 (d) $T(n) = \Theta(n)$.

3. You are given two algorithms that solve the same problem:

- Algorithm A solves a problem of size n by dividing it, in $\Theta(n)$ time, into 5 subproblems each of size $n/2$, recursively solving each subproblem, and then combining the solutions in $\Theta(n)$ time.
- Algorithm B solves a problem of size n by dividing it, in $\Theta(n)$ time, into 2 subproblems each of size $n-1$, recursively solving each subproblem, and then combining the solutions in $\Theta(1)$ time.

Which of the following is correct?

(a) The asymptotic running times of algorithms A and B are the same.
 (b) Algorithm A is asymptotically faster than algorithm B .
 (c) Algorithm B is asymptotically faster than algorithm A .
 (d) None of the above.

4. Katy Perry and Justin Trudeau have discovered a recursive algorithm for multiplying two square matrices: Let X and Y be two $n \times n$ matrices, where n is a power of four. If $n \geq 4$, the Perry–Trudeau algorithm computes the product XY in the following way:

- Eight times, recursively multiply two $\frac{n}{4} \times \frac{n}{4}$ matrices.
- In $O(n)$ time, combine the solutions to the eight recursive calls, resulting in the product XY .

Which of the following is true?

(a) The Perry–Trudeau algorithm may be correct.
 (b) The Perry–Trudeau algorithm is definitely wrong.

5. Let S be a sequence of n distinct numbers, where n is a large integer that is a multiple of 14.

- Divide S into $n/7$ subsequences, each of length 7.
- For $i = 1, 2, \dots, n/7$, let m_i be the median of the i -th subsequence.
- Let p be the median of $m_1, m_2, \dots, m_{n/7}$.

What is the best upper bound on the number of elements in S that are strictly smaller than p ?

(a) $(2/7) \cdot n$
 (b) $(3/7) \cdot n$
 (c) $(4/7) \cdot n$
 (d) $(5/7) \cdot n$

6. Let S be a sequence of n distinct numbers, and let k be an integer with $1 \leq k \leq n$. What is the running time of the fastest comparison-based algorithm that returns the k smallest numbers in S , in sorted order?

(a) $\Theta(n)$
 (b) $\Theta(n + k \log k)$
 (c) $\Theta(k \log k)$
 (d) None of the above.

7. Let n be a large integer, and let m be an integer with $1 \leq m \leq n$. You are given m lists A_1, A_2, \dots, A_m , each containing n numbers; these lists are not sorted. Consider the following algorithm that sorts the union of these lists into one single sorted list B of length mn :

- $B = \emptyset$.
- For $i = 1, 2, \dots, m$:
 - $B = B \cup A_i$.
 - $B = \text{MERGESORT}(B)$.
- Return B .

What is the running time of this algorithm?

- (a) $\Theta(mn \log n)$
- (b) $\Theta(m^2n \log n)$
- (c) $\Theta(mn^2 \log n)$
- (d) $\Theta(m^2n^2 \log n)$

8. Let n be a large integer, and let m be an integer with $1 \leq m \leq n$. You are given m lists A_1, A_2, \dots, A_m , each containing n numbers; these lists are not sorted. Assume that m is a power of two. Consider the following algorithm `SORTMANYARRAYS` that sorts the union of these lists into one single sorted list Z of length mn :

Base case: If $m = 1$:

- $Z = \text{MERGESORT}(A_1)$.
- Return Z .

Non-base case: If $m \geq 2$:

- $X = \text{SORTMANYARRAYS}(A_1, A_2, \dots, A_{m/2})$.
- $Y = \text{SORTMANYARRAYS}(A_{1+m/2}, A_{2+m/2}, \dots, A_m)$.
- $Z = \text{MERGE}(X, Y)$. (Note: this is the `MERGE`-algorithm from class.)
- Return Z .

Let $T(m, n)$ denote the running time of this algorithm. Which of the following is correct?

- (a) $T(m, n) = \Theta(m^2 n \log n)$.
- (b) $T(m, n) = \Theta(m^2 n \log m)$.
- (c) $T(m, n) = \Theta(mn \log m)$.
- (d) $T(m, n) = \Theta(mn \log n)$.

9. Let $A[0, 1, 2, \dots]$ be an infinite array. You are given that there exists an integer $n \geq 1$, such that

$$A[i] = 0 \text{ for all } i = 0, 1, 2, \dots, n$$

and

$$A[i] = 1 \text{ for all } i \geq n + 1.$$

What is the running time of the fastest algorithm that determines the value of n ?

- (a) $\Theta(1)$
- (b) $\Theta(n)$
- (c) $\Theta(\log n)$
- (d) $\Theta(n \log n)$

10. After this test, you go to a Karaoke Bar and sing the following randomized and recursive song AWESOMEST(n), which takes as input an integer $n \geq 1$:

Algorithm AWESOMEST(n):
sing the following line n times:
COMP 3804 is the awesomest course I have ever taken;
if $n \geq 2$
 then let k be a uniformly random element in $\{1, 2, \dots, n\}$;
 AWESOMEST(k)
endif

What is the expected number of times you sing *COMP 3804 is the awesomest course I have ever taken*?

- (a) $\Theta(1)$
- (b) $\Theta(\log n)$.
- (c) $\Theta(n)$
- (d) $\Theta(n \log n)$

