Question 1: The Hadamard matrices H_0, H_1, H_2, \ldots are recursively defined as follows:

$$H_0 = (1)$$

and for $k \geq 1$,

$$H_k = \begin{pmatrix} \frac{H_{k-1}}{H_{k-1}} & H_{k-1} \\ \frac{H_{k-1}}{H_{k-1}} & -H_{k-1} \end{pmatrix}.$$

Thus, H_0 is a 1×1 matrix whose only entry is 1,

$$H_1 = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix},$$

and

$$H_2 = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & -1 & 1 & -1 \\ 1 & 1 & -1 & -1 \\ 1 & -1 & -1 & 1 \end{pmatrix}.$$

(1.1) Let $k \geq 0$ be an integer and let $n = 2^k$. How many entries does the matrix H_k have? Express your answer in terms of n.

Solution: We first determine the number of rows in the matrix H_k. Observe that H_0 has $1 = 2^0$ row. For $k \geq 1$, the number of rows in H_k is twice the number of rows in H_{k-1}. By a straightforward induction, it follows that the number of rows in H_k is equal to 2^k.

By the same argument, the number of columns in the matrix H_k is equal to 2^k. Thus, the number of entries in H_k is equal to

$$2^k \cdot 2^k = n \cdot n = n^2.$$

(1.2) Describe a recursive algorithm BUILD that has the following specification:

```
Algorithm BUILD(k):
Input: An integer $k \geq 0$.
Output: The matrix $H_k$.
```

For any positive integer n that is a power of 2, say $n = 2^k$, let $T(n)$ be the running time of your algorithm BUILD(k). Derive a recurrence for $T(n)$. Use the Master Theorem to give the solution to your recurrence.

Solution: We obtain the algorithm directly from the recurrence that is used to define the matrix H_k.
Algorithm BUILD(k):
if $k = 0$
then return the matrix (1)
else $X = \text{BUILD}(k - 1)$;
$Y = -X$;
return the matrix \[
\begin{pmatrix}
X & X & Y \\
X & Y & X
\end{pmatrix}
\]
endif

Let $n \geq 2$; thus, $k \geq 1$. Algorithm BUILD(k) generates one recursive call BUILD($k - 1$), which takes $T(n/2)$ time. The number of entries in X is equal to $(n/2)^2 = O(n^2)$. Thus, the matrix Y can be constructed in $O(n^2)$ time. Finally, in $O(n^2)$ time, three copies of X and one copy of Y can be combined to obtain the output of BUILD(k). This shows that

$$T(n) = T(n/2) + O(n^2).$$

We are going to apply the Master Theorem: We have $a = 1$, $b = 2$, and $d = 2$. Since $d > \log_b a$, the Master Theorem tells us that $T(n) = O(n^2)$.

(1.3) If x is a column vector of length 2^k, then $H_k x$ is the column vector of length 2^k obtained by multiplying the matrix H_k with the vector x.

Describe a recursive algorithm MULT that has the following specification:

Algorithm MULT(k, x):
Input: An integer $k \geq 0$ and a column vector x of length $n = 2^k$.
Output: The column vector $H_k x$ (having length n).
Running time: must be $O(n \log n)$.

Explain why the running time of your algorithm is $O(n \log n)$. You are allowed to use the Master Theorem.

Hint: The input only consists of k and x. The matrix H_k is not given as part of the input.

Solution: An obvious algorithm first constructs the matrix H_k, by running algorithm BUILD(k). Then it computes the product $H_k x$ using the definition of multiplication. Each of these steps takes $O(n^2)$ time. Since we are only allowed to spend $O(n \log n)$ time, we must compute $H_k x$ without constructing the entire matrix H_k. Of course, we can do this, because of the recursive definition of H_k.

We will write the column vector x as

$$x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}.$$
• If \(k = 0 \), return the vector \((x_1)\).

• Assume that \(k \geq 1 \).

 – Split the vector \(x \) into two vectors \(x' \) and \(x'' \), both of length \(n/2 = 2^{k-1} \):
 \[
 x' = \begin{pmatrix}
 x_1 \\
 \vdots \\
 x_{n/2}
 \end{pmatrix}
 \]
 and
 \[
 x'' = \begin{pmatrix}
 x_{1+n/2} \\
 \vdots \\
 x_n
 \end{pmatrix}
 .
 \]

 – Run \(\text{MULT}(k - 1, x') \) and let the output be \(y' \).

 – Run \(\text{MULT}(k - 1, x'') \) and let the output be \(y'' \).

 – Compute the vector
 \[
 y = \begin{pmatrix}
 y' + y'' \\
 y' - y''
 \end{pmatrix}
 .
 \]

 – Return the vector \(y \).

Let \(T(n) \) denote the running time of algorithm \(\text{MULT}(k, x) \), where \(n = 2^k \). If \(k \geq 1 \), there are two recursive calls, both of which take time \(T(n/2) \), whereas the rest of the algorithm takes \(O(n) \) time. Thus, we obtain the “merge-sort recurrence”

\[
T(n) = \begin{cases}
\text{some constant} & \text{if } n = 1, \\
2 \cdot T(n/2) + O(n) & \text{if } n \geq 2.
\end{cases}
\]

We have seen in class that this recurrence solves to \(T(n) = O(n \log n) \).

Alternatively, we can use the Master Theorem to solve this recurrence: We have \(a = 2 \), \(b = 2 \), and \(d = 1 \). Since \(d = \log_b a \), the Master Theorem tells us that \(T(n) = O(n \log n) \).