Problem 1: Some algorithms textbooks have statements of the type

Every comparison-based sorting algorithm takes at least $O(n \log n)$ time.

Does such a statement make sense?

Solution: Even Professor Bieber knows that this does not make any sense: The statement says: For some constant c, every comparison-based sorting algorithm takes at least at most $cn \log n$ time. It is like saying that every beer bottle costs at last at most 100.

Problem 2: Let $A[1\ldots n]$ be an array storing n numbers. In the January 25 lecture, we have seen algorithm $\text{BuildHeap}(A)$ that rearranges the numbers in the input array A such that the resulting array is a max-heap; see page 56 of my handwritten notes. This algorithm uses the Heapify-procedure as a subroutining; see page 53 of my handwritten notes. Consider the following variant of this algorithm:

\begin{algorithm}
\textbf{Algorithm} \text{BuildHeap}'(A):
\begin{algorithmic}
\State \textbf{for} $i = 1$ \textbf{to} $\lfloor n/2 \rfloor$
\State \textbf{do} $\text{Heapify}(A, i)$
\State \textbf{end for}
\end{algorithmic}
\end{algorithm}

Give an example of an array $A[1\ldots n]$, where n is a small integer (such as $n = 7$), which shows that algorithm $\text{BuildHeap}'$ may not result in a max-heap.

Solution: We take the input array $A[1\ldots 7] = [4, 6, 5, 3, 2, 7, 1]$. For this case, algorithm $\text{BuildHeap}'(A)$ runs, in this order, $\text{Heapify}(A, 1)$, $\text{Heapify}(A, 2)$, and $\text{Heapify}(A, 3)$.

The tree representation of the input array is the following:

```
   4
  / \
 6   5
/ \ / \     \
3  2  7  1
```

The call $\text{Heapify}(A, 1)$ results in the following tree:

```
   6
  /  \
 4   5
/  /  \
3  2  7  1
```
The call `Heapify(A, 2)` does not change the tree. The call `Heapify(A, 3)` results in the following tree:

```
  6
 / \
4   7
 / \ / \
3   2 5 1
```

This is not a max-heap, because element 7 is not at the root.

Problem 3: Let $A[1 \ldots n]$ be an array storing n pairwise distinct numbers, and let k be an integer with $0 \leq k < n$. We say that this array is k-sorted, if for each i with $1 \leq i \leq n$, the entry $A[i]$ is at most k positions away from its position in the sorted order.

For example, a sorted array is 0-sorted. As another example, the array

$$A[1 \ldots 10] = [1, 4, 5, 2, 3, 7, 8, 6, 10, 9]$$

is 2-sorted, because each entry $A[i]$ is at most 2 positions away from its position in the sorted order. For $i = 3$, $A[3]$ is 2 positions away from its position, 5, in the sorted array. For $i = 9$, $A[9]$ is 1 position away from its position, 10, in the sorted array.

Describe an algorithm `SORT` that has the following specification:

```
Algorithm SORT(A, k):
Input: An array $A[1 \ldots n]$ of $n$ pairwise distinct numbers and an integer $k$ with $2 \leq k < n$. This array is $k$-sorted.
Output: An array $B[1 \ldots n]$ containing the same numbers as the input array. The array $B$ is sorted.
Running time: Must be $O(n \log k)$.
```

Explain why your algorithm is correct and why the running time is $O(n \log k)$.

Hint: Use a min-heap of a certain size.

Solution: The approach is as follows:

- Let H be the set consisting of the first $k + 1$ elements in the input array $A[1 \ldots n]$.

- Since the input array is k-sorted, the smallest element in the entire array $A[1 \ldots n]$ is the smallest element in the set H. We find the smallest element in H, delete it from H, and store it at $B[1]$.

- We add $A[k + 2]$ to the set H. Since the input array is k-sorted, the second smallest element in the entire array $A[1 \ldots n]$ is the second smallest element in the subarray $A[1 \ldots k + 2]$, which is the smallest element in the set H. We find the smallest element in H, delete it from H, and store it at $B[2]$.

2
• We add $A[k + 3]$ to the set H. Since the input array is k-sorted, the third smallest element in the entire array $A[1\ldots n]$ is the third smallest element in the subarray $A[1\ldots k + 3]$, which is the smallest element in the set H. We find the smallest element in H, delete it from H, and store it at $B[3]$.

• We continue this process until $B[1\ldots n - k - 1]$ stores, in sorted order, the $n - k - 1$ smallest element in the input array $A[1\ldots n]$. At this moment, the set H consists of the $k + 1$ largest elements in the input array $A[1\ldots n]$. We add the elements of H to the subarray $B[n - k \ldots n]$, one by one, from smallest to largest.

• How do we store the set H? We need the operations INSERT and EXTRACTMIN. This suggests that we store H in a min-heap.

\begin{algorithm}
\textbf{Algorithm} \textsc{Sort}(A, k):
\begin{algorithmic}
\Comment Array $A[1\ldots n]$ is k-sorted.
\Comment The sorted numbers will be stored in array $B[1\ldots n]$.
\State initialize an array $H[1\ldots k + 1]$;
\For{$i = 1$ to $k + 1$}
\State $H[i] = A[i]$
\EndFor;
\State \textsc{BuildHeap}(H);
\For{$i = 1$ to $n - k - 1$}
\State $x = \textsc{ExtractMin}(H)$;
\State $B[i] = x$;
\State $\text{INSERT}(H, A[k + 1 + i])$
\EndFor;
\For{$i = 1$ to $k + 1$}
\State $x = \textsc{ExtractMin}(H)$;
\State $B[n - k - 1 + i] = x$
\EndFor
\end{algorithmic}
\end{algorithm}

Regarding the running time:

• Initializing the array H takes $O(k)$ time, which is $O(n)$.

• The first for-loop takes $O(k)$ time, which is $O(n)$.

• The call to \textsc{BuildHeap}(H) takes $O(k)$ time, which is $O(n)$.

• During the second for-loop, at any moment, the min-heap has size k or $k + 1$, because we always delete the smallest element and then insert a new element. Each call to \textsc{ExtractMin} and INSERT takes $O(\log k)$ time. The number of iterations of the second for-loop is $n - k - 1$, which is at most n. Thus, the total time for the second for-loop is $O(n \log k)$.

3
• During the third for-loop, at any moment, the min-heap has size at most $k + 1$, because we only delete elements. Each call to EXTRACTMIN takes $O(\log k)$ time. The number of iterations of the third for-loop is $k + 1$, which is at most n. Thus, the total time for the third for-loop is $O(n \log k)$.

• We conclude that the total running time is

\[
O(n) + O(n) + O(n) + O(n \log k) + O(n \log k) = O(n \log k).
\]