Algorithm DFS(G):
for each vertex v
do visited(v) = false
endfor;
clock = 1;
for each vertex v
do if visited(v) = false
 then EXPLORE(v)
 endif
endfor

Algorithm EXPLORE(v):
visited(v) = true;
pre(v) = clock;
clock = clock + 1;
for each edge (v, u)
do if visited(u) = false
 then EXPLORE(u)
 endif
endfor;
post(v) = clock;
clock = clock + 1
Problem 1: Consider the following directed graph:

(1.1) Draw the DFS-forest obtained by running algorithm DFS. Classify each edge as a tree edge, forward edge, back edge, or cross edge. In the DFS-forest, give the pre- and $post$-number of each vertex. Whenever there is a choice of vertices, pick the one that is alphabetically first.

(1.2) Draw the DFS-forest obtained by running algorithm DFS. Classify each edge as a tree edge, forward edge, back edge, or cross edge. In the DFS-forest, give the pre- and $post$-number of each vertex. Whenever there is a choice of vertices, pick the one that is alphabetically last.

Solution:

We start with (1.1). In case there is more than one choice, we pick the alphabetically smallest one. Thus, algorithm $DFS(G)$ starts by calling $EXPLORE(A)$. Here is the resulting DFS-forest:

Next we do (1.2). In case there is more than one choice, we pick the alphabetically largest one. Thus, algorithm $DFS(G)$ starts by calling $EXPLORE(G)$. Here is the resulting DFS-forest:
Problem 2: Let $G = (V, E)$ be a directed acyclic graph, and let s and t be two vertices of V.

Describe an algorithm that computes, in $O(|V| + |E|)$ time, the number of directed paths from s to t in G. As always, justify your answer and the running time of your algorithm.

Solution: We start by computing a topological sorting v_1, v_2, \ldots, v_n of the vertex set. Recall that for each edge (v_i, v_j) in E, $i < j$. In other words, if we draw the vertices, in the given order, on a line, then all edges go from left to right.

If s is to the right of t in the topological sorting, then there is no directed path from s to t. Thus, we assume that s is to the left of t.

We may assume that $s = v_1$ and $t = v_n$. (If, for example, $s = v_7$, then we can remove v_1, \ldots, v_6, and renumber the remaining vertices. Similarly, if, for example, $t = v_{n-12}$, then we can remove v_{n-11}, \ldots, v_n, and renumber the remaining vertices.)

We define $P(1) = 0$ and, for each i with $2 \leq i \leq n$, $P(i)$ to be the number of directed paths from s to v_i in G. Our task is to compute $P(n)$.

For each i, let $\text{In}(i)$ be the set of indices j such that (v_j, v_i) is an edge in E. Note that $j < i$ for each such edge. The main observation is that

$$P(1) = 0$$

and for each i with $2 \leq i \leq n$,

$$P(i) = \sum_{j \in \text{In}(i)} P(j).$$

This suggests that we can compute $P(n)$ (this is the number we have to compute), by computing, in this order, $P(0), P(1), P(2), \ldots, P(n)$.

The algorithm does the following:
• Compute a topological sorting v_1, v_2, \ldots, v_n of the vertex set V. We have seen in class that this can be done in $O(|V| + |E|)$ time.

• Use Problem 3 from the February 9 tutorial to compute the list of incoming edges $\text{IN}(i)$ for each vertex v_i. This takes $O(|V| + |E|)$ time.

• Initialize $P(1) = 0$. This takes $O(1)$ time.

• For $i = 2, 3, \ldots, n$, do the following:
 - Initialize $P(i) = 0$;
 - For each index j in $\text{IN}(i)$, set
 \[
 P(i) = P(i) + P(j).
 \]
 - This takes time
 \[
 O \left(1 + \sum_{i=2}^{n} (1 + |\text{IN}(i)|) \right),
 \]
 which is $O(|V| + |E|)$.

• Return $P(n)$. This takes $O(1)$ time.

The total running time of the algorithm is $O(|V| + |E|)$.

Problem 3: A *Hamilton path* in an undirected graph is a path that contains every vertex exactly once. In the figure below, you see a Hamilton path in red. A *Hamilton cycle* is a cycle that contains every vertex exactly once. In the figure below, if you add the black edge $\{s, t\}$ to the red Hamilton path, then you obtain a Hamilton cycle.

![Diagram of a Hamilton path and cycle](image)

If $G = (V, E)$ is an undirected graph, then the graph G^3 is defined as follows:

1. The vertex set of G^3 is equal to V.

2. For any two distinct vertices u and v in V, $\{u, v\}$ is an edge in G^3 if and only if there is a path in G between u and v consisting of at most three edges.
Question 3.1: Describe a recursive algorithm \textsc{HamiltonPath} that has the following specification:

\begin{algorithm}
\caption{\textsc{HamiltonPath}(\textit{T, u, v})}
\textbf{Input:} A tree \(T\) with at least two vertices; two distinct vertices \(u\) and \(v\) in \(T\) such that \(\{u, v\}\) is an edge in \(T\).
\textbf{Output:} A Hamilton path in \(T^3\) that starts at vertex \(u\) and ends at vertex \(v\).
\end{algorithm}

\textit{Hint:} You do not have to analyze the running time. The base case is easy. Now assume that \(T\) has at least three vertices. If you remove the edge \(\{u, v\}\) from \(T\), then you obtain two trees \(T_u\) (containing \(u\)) and \(T_v\) (containing \(v\)).

1. One of these two trees, say, \(T_u\), may consist of the single vertex \(u\). How does your recursive algorithm proceed?

2. If each of \(T_u\) and \(T_v\) has at least two vertices, how does your recursive algorithm proceed?

\textbf{Solution:} Algorithm \textsc{HamiltonPath}(\textit{T, u, v}) does the following:

1. If \(T\) consists of two vertices: Return the path consisting of the single edge \(\{u, v\}\).

2. If \(T\) has at least three vertices: Let \(T_u\) and \(T_v\) be the two trees obtained by removing the edge \(\{u, v\}\) from \(T\).

 (a) If each of \(T_u\) and \(T_v\) has at least two vertices (see the left figure below): Let \(u'\) be a neighbor of \(u\) in \(T_u\), and let \(v'\) be a neighbor of \(v\) in \(T_v\). Run algorithm \textsc{HamiltonPath}(\textit{T_u, u, u'}) and let \(P\) be the path returned; note that \(P\) is a Hamilton path in \(T_u^3\) that starts at \(u\) and ends at \(u'\). Run algorithm \textsc{HamiltonPath}(\textit{T_v, v', v}) and let \(Q\) be the path returned; note that \(Q\) is a Hamilton path in \(T_v^3\) that starts at \(v'\) and ends at \(v\). Note that, since \(u'\) and \(v'\) have distance three in \(T\), the edge \(\{u', v'\}\) is in \(T^3\). Thus, we return the path that starts by following \(P\), then takes the edge \(\{u', v'\}\), and then follows \(Q\). This is a Hamilton path in \(T^3\) that starts at \(u\) and ends at \(v\).

 (b) If \(T_u\) consists of the single vertex \(u\) and \(T_v\) has at least two vertices (see the right figure below): Let \(v'\) be a neighbor of \(v\) in \(T_v\). Run algorithm \textsc{HamiltonPath}(\textit{T_v, v', v}) and let \(Q\) be the path returned; note that \(Q\) is a Hamilton path in \(T_v^3\) that starts at \(v'\) and ends at \(v\). Note that, since \(u\) and \(v'\) have distance two in \(T\), the edge \(\{u, v'\}\) is in \(T^3\). Thus, we return the path that starts with the edge \(\{u, v'\}\) and then follows \(Q\). This is a Hamilton path in \(T^3\) that starts at \(u\) and ends at \(v\).

 (c) If \(T_u\) has at least two vertices and \(T_v\) consists of the single vertex \(v\): Swap \(u\) and \(v\) and proceed as in the previous case.
Question 3.2: Prove the following lemma:

Lemma: For every tree T that has at least three vertices, the graph T^3 contains a Hamilton cycle.

Solution: Take an arbitrary edge $\{u, v\}$ in T. Algorithm HAMILTONPATH(T, u, v) gives us a Hamilton path in T^3 that starts at u and ends at v. This path does not contain the edge $\{u, v\}$: This is because T has at least three vertices. If we connect the end-vertices u and v of this path using the edge $\{u, v\}$, then we obtain a Hamilton cycle in T^3.

Question 3.3: Prove the following theorem:

Theorem: For every connected undirected graph G that has at least three vertices, the graph G^3 contains a Hamilton cycle.

Solution: We run algorithm $DFS(G)$. Since G is connected, this gives us a spanning tree, say T, of G. We have seen above that T^3 contains a Hamilton cycle. Since T^3 is a subgraph of G^3, this is also a Hamilton cycle in G^3.