COMP 3804 - Solutions Tutorial April 5

Question 1: Let $K \geq 3$ be an integer. A K-kite is a graph consisting of a clique of size K and a path with K vertices that is connected to one vertex of the clique; thus, the number of vertices is equal to $2 K$. In the figure below, the graph with the black edges forms a 5 -kite.

The kite problem is defined as follows:

$$
\text { Kite }=\{(G, K): \text { graph } G \text { contains a } K \text {-kite }\} .
$$

Prove that the language Kite is in NP.

Solution: The verification algorithm \mathcal{V} does the following:

- It takes as input
- a graph $G=(V, E)$ and an integer $K \geq 3$,
- a set V^{\prime} of vertices and an ordered sequence S of vertices.
- The verification algorithm does the following:
- Check that $V^{\prime} \subseteq V$ and V^{\prime} has K vertices.
- Check that ${ }^{1} S \subseteq V$ and S has K vertices.
- Check that ${ }^{2} V^{\prime} \cap S=\emptyset$.
- Check that for each pair $u \neq v$ in $V^{\prime},\{u, v\}$ is an edge in E.
- Check that for each pair u, v of neighboring vertices in the sequence $S,\{u, v\}$ is an edge in E.
- Let v be the first vertex in the sequence S. Check that there is a vertex u in V^{\prime} such that $\{u, v\}$ is an edge in E.
- If all of these are correct, then it returns YES. Otherwise, it returns NO.

[^0]The certificate is of course the pair (V, S) :

$$
\begin{aligned}
(G, K) \in \operatorname{Kite} \Leftrightarrow & \text { there exists }\left(V^{\prime}, S\right) \\
& \text { such that } V^{\prime} \text { and } S \text { form a kite in } G \\
\Leftrightarrow & \text { there exists a certificate }\left(V^{\prime}, S\right) \text { such that } \\
& \mathcal{V}\left(G, K, V^{\prime}, S\right) \text { returns YES. }
\end{aligned}
$$

Since $V^{\prime} \cap S=\emptyset$, the length of the certificate $\left(V^{\prime}, S\right)$ is at most $|V|$, which is at most the length of the graph G.

What is the running time of the verification algorithm:

- Checking that $V^{\prime} \subseteq V$ and V^{\prime} has K vertices can be done in $O(K|V|)=O\left(|V|^{2}\right)$ time.
- Checking that $S \subseteq V$ and S has K vertices can be done in $O(K|V|)=O\left(|V|^{2}\right)$ time.
- Checking that $V^{\prime} \cap S=\emptyset$ can be done in $O\left(K^{2}\right)=O\left(|V|^{2}\right)$ time.
- Checking that for each pair $u \neq v$ in $V^{\prime},\{u, v\}$ is an edge in E can be done in $O\left(K^{2}\right)=O\left(|V|^{2}\right)$ time (assuming that G is represented using an adjacency matrix).
- Checking that for each pair u, v of neighboring vertices in the sequence $S,\{u, v\}$ is an edge in E can be done in $O(K)=O(|V|)$ time.
- Let v be the first vertex in the sequence S. Checking that there is a vertex u in V^{\prime} such that $\{u, v\}$ is an edge in E can be done in $O(K)=O(|V|)$ time.
- Thus, the total running time of the verification algorithm is $O\left(|V|^{2}\right)$, which is polynomial in the length of G.

This shows that Kite $\in \mathbf{N P}$.
Question 2: The clique problem is defined as follows:

$$
\text { Clique }=\{(G, K): \text { graph } G \text { contains a clique of size } K\} .
$$

Prove that Clique \leq_{P} Kite, i.e., in polynomial time, Clique can be reduced to Kite.

Solution: We need a function f such that

- f maps an input (G, K) to Clique to an input $\left(G^{\prime}, K^{\prime}\right)$ to Kite,
- $(G, K) \in$ Clique $\Leftrightarrow\left(G^{\prime}, K^{\prime}\right) \in \mathrm{Kite}$,
- the time to compute $\left(G^{\prime}, K^{\prime}\right)$ is polynomial in the length of (G, K).

Here is the function f : Consider an input (G, K) to Clique. We set $K^{\prime}=K$. The graph G^{\prime} is obtained as follows:

- Make a copy of G.
- For every vertex v of G : create K new vertices, connect them into a path and connect the start vertex of this path to v.

Let $G=(V, E)$. We can compute $\left(G^{\prime}, K^{\prime}\right)$ in time $O(|V|+|E|+K|V|)=O\left(|V|^{2}\right)$, which is polynomial in the length of G.

Assume that $(G, K) \in$ Clique. Let $V^{\prime} \subseteq V$ be a clique in G of size K. Take an arbitrary vertex v in this clique. In G^{\prime}, this vertex v has a path with K vertices attached to it. This path does not share vertices with the clique. Thus, G^{\prime} contains a K-kite, i.e., $\left(G^{\prime}, K^{\prime}\right) \in$ Kite.

Assume that $\left(G^{\prime}, K^{\prime}\right) \in \operatorname{Kite}$. Let $\left(V^{\prime}, S\right)$ be a K-kite in G^{\prime}, where V^{\prime} represents the clique of size K and S represents the path with K vertices that is attached to the clique. Observe that V^{\prime} must be a subset of the vertex set of the graph G : If V^{\prime} contains a new vertex in G^{\prime}, then this vertex has degree two and, thus, cannot be part of the clique (we assume here that $K \geq 4$, the other cases can be handled as well). Therefore, V^{\prime} is a clique in G, i.e., $(G, K) \in$ Clique.
Question 3: The subset sum problem is defined as follows:
SubsetSum $=\{(S, t): \quad S$ is a set of integers, t is an integer, $\exists S^{\prime} \subseteq S$ such that $\left.\sum_{x \in S^{\prime}} x=t\right\}$.
The partition problem is defined as follows:

$$
\begin{aligned}
\text { Partition }=\{S: & S \text { is a set of integers, } \\
& \left.\exists S^{\prime} \subseteq S \text { such that } \sum_{x \in S^{\prime}} x=\sum_{y \in S \backslash S^{\prime}} y\right\}
\end{aligned}
$$

- Prove that SubsetSum \leq_{P} Partition, i.e., in polynomial time, SubsetSum can be reduced to Partition.
- Prove that Partition \leq_{P} SubsetSum, i.e., in polynomial time, Partition can be reduced to SUBSETSUM.

Solution: We start with

$$
\text { SubsetSum } \leq_{P} \text { Partition. }
$$

We need a function f such that

- f maps an input (S, t) to SubsetSum to an input T to Partition,
- $(S, t) \in \operatorname{SubsetSum} \Leftrightarrow T \in$ Partition,
- the time to compute T is polynomial in the length of (S, t).

Here is the function f : Consider an input (S, t) to SubsetSum, where $S=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$. The input to Partition is the set

$$
T=\left\{a_{1}, a_{2}, \ldots, a_{n}, s-2 t\right\}
$$

where

$$
s=a_{1}+a_{2}+\cdots+a_{n} .
$$

The time to compute T is $O(n)$, which is polynomial in the length of S.
Assume that $(S, t) \in \operatorname{SubsetSum}$. Let $S^{\prime} \subseteq S$ be such that

$$
\sum_{a_{i} \in S^{\prime}} a_{i}=t
$$

Note that

$$
\sum_{a_{i} \in S \backslash S^{\prime}} a_{i}=s-t
$$

and

$$
\sum_{x \in T} x=s+(s-2 t)=2 s-2 t
$$

Let $T^{\prime}=S^{\prime} \cup\{s-2 t\}$. Then

$$
\sum_{x \in T^{\prime}} x=\left(\sum_{a_{i} \in S^{\prime}} a_{i}\right)+(s-2 t)=t+(s-2 t)=s-t
$$

and

$$
\sum_{x \in T \backslash T^{\prime}} x=\left(\sum_{a_{i} \in S \backslash S^{\prime}} a_{i}\right)=s-t .
$$

Thus, $T \in$ Partition.
For the other direction, we assume that $T \in$ Partition. Let $T^{\prime} \subseteq T$ be such that

$$
\sum_{x \in T^{\prime}} x=\sum_{x \in T \backslash T^{\prime}} x
$$

Since $\sum_{x \in T} x=2 s-2 t$, we have

$$
\sum_{x \in T^{\prime}} x=\sum_{x \in T \backslash T^{\prime}} x=s-t
$$

Assume first that $s-2 t \in T^{\prime}$. Let $S^{\prime}=T^{\prime} \backslash\{s-2 t\}$. Then

$$
\sum_{x \in S^{\prime}} x=\left(\sum_{x \in T^{\prime}} x\right)-(s-2 t)=(s-t)-(s-2 t)=t
$$

and, therefore, $(S, t) \in$ SubsetSum.

Now assume that $s-2 t \in T \backslash T^{\prime}$. Let $S^{\prime}=\left(T \backslash T^{\prime}\right) \backslash\{s-2 t\}$. Then

$$
\sum_{x \in S^{\prime}} x=\left(\sum_{x \in T \backslash T^{\prime}} x\right)-(s-2 t)=(s-t)-(s-2 t)=t
$$

and, therefore, $(S, t) \in$ SubsetSum.
Next we show that

Partition \leq_{P} SubsetSum.

We need a function f such that

- f maps an input S to Partition to an input (T, t) to SubsetSum,
- $S \in$ Partition $\Leftrightarrow(T, t) \in \operatorname{SubsetSum}$,
- the time to compute (T, t) is polynomial in the length of S.

Here is the function f : Consider an input S to Partition, where $S=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$. The input to SubsetSum is the set

$$
T=\left\{2 a_{1}, 2 a_{2}, \ldots, 2 a_{n}\right\},
$$

and the integer

$$
t=a_{1}+a_{2}+\cdots+a_{n} .
$$

The time to compute (T, t) is $O(n)$, which is polynomial in the length of S.
Assume that $S \in$ Partition. Let $S^{\prime} \subseteq S$ be such that

$$
\sum_{a_{i} \in S^{\prime}} a_{i}=\sum_{a_{i} \in S \backslash S^{\prime}} a_{i}
$$

Note that each of these two sums is equal to $t / 2$ (which must be an integer, because $S \in$ Partition). Let

$$
T^{\prime}=\left\{2 a_{i}: a_{i} \in S^{\prime}\right\}
$$

Then

$$
\sum_{x \in T^{\prime}} x=2 \cdot \sum_{a_{i} \in S^{\prime}} a_{i}=2 \cdot t / 2=t
$$

Thus, $(T, t) \in$ SubsetSum.
For the other direction, we assume that $(T, t) \in \operatorname{SubSETSUm}$. Let $T^{\prime} \subseteq T$ be such that

$$
\sum_{x \in T^{\prime}} x=t .
$$

Let

$$
S^{\prime}=\left\{a_{i} \in S: 2 a_{i} \in T^{\prime}\right\} .
$$

Then

$$
\sum_{x \in S^{\prime}} x=\frac{1}{2} \cdot \sum_{x \in T^{\prime}} x=t / 2
$$

and

$$
\sum_{x \in S \backslash S^{\prime}} x=\sum_{x \in S} x-\sum_{x \in S^{\prime}} x=t-t / 2=t / 2 .
$$

Thus, $S \in$ Partition.
Question 4: The clique and independent set problem is defined as follows:
CliqueIndepSet $=\{(G, K):$ graph G contains a clique of size K and G contains an independent set of size $K\}$.
Prove that Clique \leq_{P} CliqueIndepSet, i.e., in polynomial time, Clique can be reduced to CliqueIndepSet.

Solution: We need a function f such that

- f maps an input (G, K) to Clique to an input $\left(G^{\prime}, K^{\prime}\right)$ to CliqueIndepSet,
- $(G, K) \in$ Clique $\Leftrightarrow\left(G^{\prime}, K^{\prime}\right) \in$ CliqueIndepSet,
- the time to compute $\left(G^{\prime}, K^{\prime}\right)$ is polynomial in the length of (G, K).

Here is the function f : Consider an input (G, K) to Clique. We set $K^{\prime}=K$. The graph G^{\prime} is obtained as follows:

- Make a copy of G.
- Add K new vertices, each of them having degree zero.

Let $G=(V, E)$. We can compute $\left(G^{\prime}, K^{\prime}\right)$ in time $O(|V|+|E|+K)=O(|V|+|E|)$, which is polynomial in the length of G.

Assume that $(G, K) \in$ Clique. Let $V^{\prime} \subseteq V$ be a clique in G of size K. Let $V^{\prime \prime}$ be the set of K new vertices. Then V^{\prime} is a clique of size K in G^{\prime} and $V^{\prime \prime}$ is an independent set of size K in G^{\prime}. Thus, $\left(G^{\prime}, K\right) \in$ CliqueIndepSet.

Assume that $\left(G^{\prime}, K\right) \in$ CliqueIndepSet. Let V^{\prime} be a clique of size K in G^{\prime} and let $V^{\prime \prime}$ be an independent set of size K in G^{\prime}. Then V^{\prime} cannot contain any of the new vertices. Thus, V^{\prime} is a clique of size K in G, i.e., $(G, K) \in$ Clique.
Question 5: Let φ be a Boolean formula in the variables $x_{1}, x_{2}, \ldots, x_{n}$. We say that φ is in conjunctive normal form (CNF) if it is of the form

$$
\varphi=C_{1} \wedge C_{2} \wedge \ldots \wedge C_{m}
$$

where each $C_{i}, 1 \leq i \leq m$, is of the following form:

$$
C_{i}=l_{1}^{i} \vee l_{2}^{i} \vee \ldots \vee l_{k_{i}}^{i} .
$$

Each l_{j}^{i} is a literal, which is either a variable or the negation of a variable.
The satisfiability problem is defined as follows:

$$
\mathrm{SAT}=\{\varphi: \varphi \text { is in CNF-form and is satisfiable }\} .
$$

Prove that Clique \leq_{P} Sat, i.e., in polynomial time, Clique can be reduced to SAt.

Solution: We need a function f such that

- f maps an input (G, K) to Clique to a Boolean formula φ in CNF-form,
- G has a clique of size $K \Leftrightarrow \varphi$ is satisfiable,
- the time to compute φ is polynomial in the length of G.

Consider an input (G, K) to Clique, where $G=(V, E)$ and $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$. A clique of size K, if it exists, will be represented by an ordered sequence of K vertices.

We will use $K n$ Boolean variables $x_{i j}$, where $1 \leq i \leq K$ and $1 \leq j \leq n$. The meaning of these variables is as follows:

$$
\begin{aligned}
& x_{i j}=\operatorname{true} \Leftrightarrow \text { the vertex at position } i \text { in the clique is } v_{j} . \\
& \qquad \begin{array}{|l|l|l|l|l|}
\hline & \cdots & v_{j} & \cdots & \\
\hline
\end{array}
\end{aligned}
$$

A clique of size K exists if and only if all of the following are true:

1. For each $i=1,2, \ldots, K$: There is at least one vertex at position i.
2. For each $i=1,2, \ldots, K$: There is at most one vertex at position i.
3. For each $1 \leq i<i^{\prime} \leq K$: The vertices at positions i and i^{\prime} are distinct.
4. For each $1 \leq i<i^{\prime} \leq K$: The vertices at positions i and i^{\prime} form an edge in G.

We are going to describe each of these four conditions by clauses.
Item 1: For position i, we get the clause

$$
x_{i 1} \vee x_{i 2} \vee \cdots \vee x_{i n}=\bigvee_{j=1}^{n} x_{i j}
$$

For all positions i, we get K clauses

$$
\bigwedge_{i=1}^{K} \bigvee_{j=1}^{n} x_{i j}
$$

The total size of all these clauses is $K n$, which is at most n^{2}.

Item 2: Consider one position i and two distinct vertices v_{j} and $v_{j^{\prime}}$. If $x_{i j} \wedge x_{i j^{\prime}}$ is true, then both v_{i} and $v_{j^{\prime}}$ are at position i. Thus, $x_{i j} \wedge x_{i j^{\prime}}$ must be false, i.e., $\neg\left(x_{i j} \wedge x_{i j^{\prime}}\right)$ must be true, which is the same as the clause

$$
\neg x_{i j} \vee \neg x_{i j^{\prime}}
$$

For all positions i and all distinct vertices v_{j} and $v_{j^{\prime}}$, we get $K \cdot\binom{n}{2}$ clauses

$$
\bigwedge_{i=1}^{K} \bigwedge_{1 \leq j<j^{\prime} \leq n}\left(\neg x_{i j} \vee \neg x_{i j^{\prime}}\right)
$$

The total size of all these clauses is

$$
K \cdot\binom{n}{2} \cdot 2=O\left(n^{3}\right)
$$

Item 3: Consider two distinct positions i and i^{\prime}, and one vertex v_{j}. If $x_{i j} \wedge x_{i^{\prime} j}$ is true, then vertex v_{j} is at both positions i and i^{\prime}. Thus, $x_{i j} \wedge x_{i^{\prime} j}$ must be false, i.e., $\neg\left(x_{i j} \wedge x_{i^{\prime} j}\right)$ must be true, which is the same as the clause

$$
\neg x_{i j} \vee \neg x_{i^{\prime} j}
$$

For all distinct positions i and i^{\prime}, and all vertices v_{j}, we get $\binom{K}{2} \cdot n$ clauses

$$
\bigwedge_{1 \leq i<i^{\prime} \leq K} \bigwedge_{j=1}^{n}\left(\neg x_{i j} \vee \neg x_{i^{\prime} j}\right)
$$

The total size of all these clauses is

$$
\binom{K}{2} \cdot n \cdot 2=O\left(n^{3}\right)
$$

Item 4: Consider two distinct positions i and i^{\prime}, and an non-edge $\left\{v_{j}, v_{j^{\prime}}\right\}$. If $x_{i j} \wedge x_{i^{\prime} j^{\prime}}$ is true, then the vertices v_{j} and $v_{j^{\prime}}$ at positions i and i^{\prime} do not form an edge. Thus, $x_{i j} \wedge x_{i^{\prime} j^{\prime}}$ must be false, i.e., $\neg\left(x_{i j} \wedge x_{i^{\prime} j^{\prime}}\right)$ must be true, which is the same as the clause

$$
\neg x_{i j} \vee \neg x_{i^{\prime} j^{\prime}}
$$

For all distinct positions i and i^{\prime}, and all non-edges $\left\{v_{j}, v_{j^{\prime}}\right\}$, we get $\binom{K}{2} \cdot\left(\binom{n}{2}-|E|\right)$ clauses

$$
\bigwedge_{1 \leq i<i^{\prime} \leq K} \bigwedge_{\left\{v_{j}, v_{\left.j^{\prime}\right\} \notin E}\right.}\left(\neg x_{i j} \vee \neg x_{i^{\prime} j^{\prime}}\right) .
$$

The total size of all these clauses is

$$
\binom{K}{2} \cdot\left(\binom{n}{2}-|E|\right) \cdot 2 \leq\binom{ K}{2} \cdot\binom{n}{2} \cdot 2=O\left(n^{4}\right)
$$

The final Boolean formula φ that we are looking for is the conjunction (logical AND) of all clauses in Items 1-4. The total size of φ is $O\left(n^{4}\right)$, which is polynomial in the length of the graph G.

[^0]: ${ }^{1}$ this is bad notation, because S is not a set
 ${ }^{2}$ again bad notation, because S is not a set

