Algorithm DFS(G):
for each vertex v
do visited(v) = false
endfor;
clock = 1;
for each vertex v
do if visited(v) = false
 then EXPLORE(v)
endif
endfor

Algorithm EXPLORE(v):
visited(v) = true;
pre(v) = clock;
clock = clock + 1;
for each edge (v, u)
do if visited(u) = false
 then EXPLORE(u)
endif
endfor;
post(v) = clock;
clock = clock + 1
Problem 1: Consider the following directed graph:

(1.1) Draw the DFS-forest obtained by running algorithm DFS. Classify each edge as a tree edge, forward edge, back edge, or cross edge. In the DFS-forest, give the pre- and post-number of each vertex. Whenever there is a choice of vertices, pick the one that is alphabetically first.

(1.2) Draw the DFS-forest obtained by running algorithm DFS. Classify each edge as a tree edge, forward edge, back edge, or cross edge. In the DFS-forest, give the pre- and post-number of each vertex. Whenever there is a choice of vertices, pick the one that is alphabetically last.

Problem 2: Let $G = (V, E)$ be a directed acyclic graph, and let s and t be two vertices of V.

Describe an algorithm that computes, in $O(|V| + |E|)$ time, the number of directed paths from s to t in G. As always, justify your answer and the running time of your algorithm.

Problem 3: A Hamilton path in an undirected graph is a path that contains every vertex exactly once. In the figure below, you see a Hamilton path in red. A Hamilton cycle is a cycle that contains every vertex exactly once. In the figure below, if you add the black edge \{s, t\} to the red Hamilton path, then you obtain a Hamilton cycle.

If $G = (V, E)$ is an undirected graph, then the graph G^3 is defined as follows:

1. The vertex set of G^3 is equal to V.

2. For any two distinct vertices u and v in V, \{u, v\} is an edge in G^3 if and only if there is a path in G between u and v consisting of at most three edges.

Question 3.1: Describe a recursive algorithm HAMILTONPATH that has the following specification:
Algorithm \textsc{HamiltonPath}(T, u, v):

Input: A tree T with at least two vertices; two distinct vertices u and v in T such that \{u, v\} is an edge in T.

Output: A Hamilton path in T^3 that starts at vertex u and ends at vertex v.

Hint: You do not have to analyze the running time. The base case is easy. Now assume that T has at least three vertices. If you remove the edge \{u, v\} from T, then you obtain two trees T_u (containing u) and T_v (containing v).

1. One of these two trees, say, T_u, may consist of the single vertex u. How does your recursive algorithm proceed?

2. If each of T_u and T_v has at least two vertices, how does your recursive algorithm proceed?

Question 3.2: Prove the following lemma:

Lemma: For every tree T that has at least three vertices, the graph T^3 contains a Hamilton cycle.

Question 3.3: Prove the following theorem:

Theorem: For every connected undirected graph G that has at least three vertices, the graph G^3 contains a Hamilton cycle.