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Abstract

Transmission of geographic data over the Internet, rendering at different resolu-
tions/levels of detail, or processing at unnecessarily fine detail pose interesting chal-
lenges and opportunities. In this paper we explore the applicability to GIS of the notion
of progressive meshes, introduced by Hoppe [13] to the field of computer graphics. In
particular, we describe progressive TINs as an alternative to hierarchical TINs, design
algorithms for solving GIS tasks such as selective refinement, point location, visibility
or line of sight queries, isoline/contour line extraction and provide empirical results
which show that our algorithms are of considerable practical relevance. Moreover, the
selective refinement data structure and refinement algorithm solves a question posed
by Hoppe.

1 Introduction

Triangle meshes are used in a number of fields for modelling the surfaces of real world
objects. In the field of geographic information systems (GIS), triangle meshes are used as
to model the surface of the earth. In computer graphics, triangle meshes are used to model
the surfaces of objects in virtual worlds. In CAD systems triangle meshes are used to model
the surfaces of machine parts.

Often meshes are generated from data obtained using electronic imaging equipment such
as laser range finders, remote sensing equipment, and satelite imaging units. As this equip-

ment increases in fidelity, the size of the resulting meshes increases as well. One method of
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dealing with this dramatic increase in data size has been mesh simplification. Mesh simpli-
fication involves reducing the number of vertices in a mesh in an intelligent manner, so that
accuracy of the model is maintained as much as possible.

Mesh simplification is a time consuming process, and in many cases, manual intervention
is necessary in order to preserve features of the mesh which may be important but can not be
recognized by a computer. Additionally, mesh simplification involves simplifying a mesh to a
given level of detail (number of vertices or error tolerance). For some applications, this level
of detail may be inappropriate. If the level of detail is insufficient, then the application may
produce poor or even incorrect results. If the level of detail is too high, then the application
may become computationally inefficient or even infeasible.

It is this latter problem of mesh simplification that is addressed by the field of multireso-
lution surface modelling. Essentially, multiresolution surface modelling involves performing
mesh simplification using a series of localized simplification operations to produce a sequence
of progressively less detailed meshes M,,, M,, 1,..., My. While the simplification takes place,
the simplification operations are recorded. In this way, the operations can be inverted, and
the original mesh can be recreated. In fact, given the mesh M;, any of the of the meshes
M, M,_1,..., M, can be recreated. Thus, the level of detail can be varied according to the
requirements of the application. For illustration, Figure 1 shows an example of a multireso-
lution terrain model at 3 different levels of resolution.

Hoppe [13] defines some desirable features of a multiresolution surface model.

e Level-of-Detail (LOD) Approzimation allows for viewing and manipulating the mesh

at varying levels of detail (number of vertices).

o Progressive transmission allows for the transmission of a mesh across a network, so
that the receiver can immediately display an approximation of the mesh, and refine

this display as more data is received.

e Selective refinement is the ability to view and manipulate part of the mesh at a very

high level of detail while the remainder of the mesh remains at a low level of detail.

In this paper we are interested in multiresolution surface models and their applications,
with special emphasis on geographic information systems. The main technical contribution of

this paper is a solution to the problem of efficient selective refinement of progressive meshes
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Figure 1: A triangle terrain at 3 different levels of resolution (left) and it’s corresponding

shaded image (right).



posed by Hoppe in [13].! Using the ideas behind this solution, a number of applications
are presented, including point location, elevation queries, visibility queries, isoline/contour
extraction (conversion to contour lines). Empirical results are presented for some of these
algorithms which show that they are of considerable practical relevance. Furthermore, we
sketch representations a multiresolution surface model in external memory. An extended
abstract containing the main results of this work was presented at the ACM-GIS’97 workshop
[17].

The remainder of the paper is organized as follows: Section 2 discusses other approaches
to multiresolution terrain modelling and reviews the progressive mesh representation upon
which our work is based. Section 3 describes our solution to the problem of efficient selective
refinement in progressive meshes. Section 4 discusses some applications of this solution.

Finally, Section 5 summarizes and outlines directions for future work.

2 Survey of Existing Work

The problem of level of detail approximation in triangulated meshes has received a significant
amount of attention in recent years. In this section, we give a brief critical survey of this
work. We broadly classify these schemes into three categories: (1) the tree-based schemes
of De Floriani et. al. [3, 5, 4], (2) the DAG-based scheme of Dobrindt and de Berg [2] and
Puppo [22], and (3) the Progressive Mesh scheme of Hoppe [13].

2.1 Tree-Based Schemes

The approach to multiresolution modelling taken by De Floriani et al. [4, 5] is to generate
a mesh consisting of nested triangles, and to arrange these triangles into a tree shaped
hierarchy (see Figure 2). At the top level of the hierarchy, the mesh consists of a fixed
number of very large triangles. To refine (all or part of) the mesh, the hierarchy is searched
in a top-down manner, and large (parent) triangles are replaced by groups of small (child)
triangles. This process is repeated until a sufficient level of detail has been achieved.

Since the triangles of the hierarchy are arranged as a tree with small fixed degree, this

LA selective refinement scheme similar to the one described in Section 3 has been independently and

concurrently proposed by Hoppe [14].
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Figure 2: An example of a tree-based hierarchy.

scheme tends to be very efficient in practice. However, it does have some disadvantages. As
is already evident in the three level hierarchy of Figure 2, triangles at lower levels in the
hierarchy tend to become elongated, due to the fact that the long edges of the low-resolution
mesh are also present in the high-resolution mesh. Such long triangles can lead to numerical
instabilities in computations, and aliasing effects in graphics applications. Methods which
avoid these elongated triangles by splitting long edges are described in [4], but these can

lead to vertical faces (discontinuities) in the TIN.

2.2 DAG-Based Schemes

Dobrindt and De Berg [2], and De Floriani [3] address the problem of the thin triangles which
occur in tree-based schemes by using a very different approach. By repeatedly deleting
an independent set of TIN vertices, and retriangulating the resulting holes, a hierarchy
of triangulations which has a depth of O(logn) and a total size of O(n) is achieved (see
Figure 3). In this case, refinement is achieved by replacing a group of triangles from a higher
level in the hierarchy, with a group of triangles from a lower level in the hierarchy. Using
this method, Dobrindt and de Berg show that the Delaunay triangulation of the data can

be maintained at all levels of the hierarchy.
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Figure 3: An example of a DAG-based hierarchy.



Figure 4: Some possible transformations in a MultiTriangulation.

While this approach solves the problem of thin triangles, it tends not to be as efficient
as tree based schemes. The storage requirements of this scheme are much larger since, on
average, every vertex which is deleted generates an additional 10 pointers in the hierarchy
(see Figure 3). Furthermore, although the hierarchy has depth O(logn), there are constant
factors hidden in the big-O notation (Dobrindt and De Berg report hierarchies of with depths
varying between 1.7log, n and 2.41og, n depending on the method used to select vertices for
deletion).

Puppo [22] takes the DAG-based approach one step further by describing a general DAG-
based framework called the MultiTriangulation. In this scheme, a group of triangles can be
replaced by another group of triangles as long as the boundaries of the two groups match
(see Figure 4). In a companion paper [6], it is shown that most existing schemes, including
those considered herein, can be viewed as special cases of the MultiTriangulation (although
sometimes the MultiTriangulation is less efficient than the original scheme). Although the
MultiTriangulation is quite powerful and expressive, current implementations still seem to
exhibit the same high overheads associated with the DAG-base scheme of Dobrindt and
de Berg [7].



Figure 5: The edge collapse transformation and its inverse, the vertex split

2.3 The Progressive Mesh Representation

Hoppe’s progressive mesh (PM) representation [13] is based on the edge collapse transfor-
mation and its inverse the werter split. An edge collapse involves collapsing an edge by
identifying its two incident vertices, v; and wv,, into a single aggregate vertex v. The two
adjacent triangles (v, v9,v;), and (v, vs,v,) vanish in the process. An edge collapse and its
inverse vertex split are illustrated in Figure 5.

In the progressive mesh representation, a mesh M, is represented as a pair, (M, vsplits),
where M is a coarse mesh and wvsplits is a list of vertex splits which will reproduce the original
mesh when applied in order. A vertex split transformation vsplit(v, v1, va, vy, vy, A) splits the
aggregate vertex v into two vertices v; and v, and adds the edges (vy,v;), (v1,v,), (va, V1),
and (vg,v,). A stores attribute information for the neighbourhood of the transformation,
including, but not limited to, the positions of the two new vertices.

We call v the parent of v1 and vy, and we call v; and vy the children of v. We say that
a vertex w is an ancestor of a vertex v if w = v or if w is an ancestor of the parent of v. In
this case we call v a descendent of u. We denote by M; the mesh obtained by performing
the first ¢ elements of vsplits on the coarse grained mesh Mj,. The original mesh, M, can be
obtained by applying all the elements of vsplits in order, i.e., M|yspiis| = M.

The progressive mesh construction algorithm takes a mesh, M, performs a series of
edge collapse operations to get the mesh M, and sets wvsplits to the list of vertex split
operations that invert the edge collapses performed. The order in which the edge collapses
are performed is determined by an application specific fitness function (e.g., minimizing the
geometric error). The edges of the mesh are placed in a priority queue based on their fitness,
and are removed one at a time as they are collapsed. Edges in the neighbourhood of a

collapse may have their priorities updated. A fitness function which considers the geometry,



discrete attributes, and scalar attributes of the mesh is described by Hoppe [13]. Sufficient

requirements for an edge collapse to be valid are described in by Hoppe et al. [15].

3 Selective Refinement of Progressive Meshes

In Section 1, we saw that it may be desirable to work with a mesh at a lower level of resolution
than the original data. More generally, we may wish to work with parts of the mesh at a
high level of resolution, and the rest of the mesh at a lower level of resolution. For example,
if the mesh is a terrain representing a city, the user may only be interested in a particular
part of the city. Therefore, it is not necessary (and inefficient) to display the uninteresting
parts of the city at a high level of resolution. The selective refinement problem is that of
extracting a mesh which is at a high level of resolution in a query region ¢ while leaving the
mesh outside of ¢ at a low level of resolution.

In this section we are concerned with the selective refinement problem on progressive
meshes. In particular, we devise an algorithm to extract all the triangles of of M which in-
tersect a query region ¢ while leaving the mesh outside the query region relatively untouched.

Hoppe [13] suggests a brute force method of selective refinement is described which
examines every vertex split record to determine whether or not it should be split. There
are two disadvantages of this algorithm. The first is that the running time is O(|vsplits|)
regardless of the number of splits actually performed. The second is that it is difficult to
perform an exact selective refinement, that is, to extract all the triangles of M which intersect
a specified query region, q. The reason for this is that there may be vertex splits which lie
outside of ¢, but which affect the triangles within q.

The following sections describe a new efficient method of performing selective refinement
in progressive meshes. The technique uses information about dependencies in the vsplits list
to achieve better efficiency. The method is simple, robust, and easy to implement.

The selective refinement scheme can be summarized as follows: In a preprocessing phase,
we associate with each vertex split record a region of influence outside of which splitting the
vertex has no effect. By using the parent/child relationships between vertex split records,
these regions of influence can be organized as a forest of rooted binary trees. When the
records are organized in this manner it is possible to efficiently identify all the vertex split

records whose regions of influence intersect a given query region ¢. Once the relevant vertex



split records have been identified, they can be sorted and applied in order.

3.1 Computing the Region of Influence

We treat the wsplits list as a dependency graph in which a vertex v; depends on a vertex v
if v is split and one of the resulting vertices is v;. Observe that the dependency graph is a
forest of rooted binary trees whose roots are the vertices of the coarse mesh, M, and whose
leaves are the vertices of the original mesh, M (see Figure 6 for an illustration).

With each node v in the dependency graph we associate an axis aligned 3-Dimensional
bounding box, denoted roi(v) which represents the region outside of which this vertex split
has no influence. We define roi(v) recursively as follows: if v is a leaf then roi(v) is the
smallest box which encloses all the neighbours of v in M, otherwise roi(v) is the smallest
box which encloses r0i(v;) and roi(vy) where vy and vy are the two children of v. These
boxes, i.e., the roi’s can be computed in a bottom-up fashion during the progressive TIN
construction procedure. Alternatively, these boxes can be constructed using a post order
traversal of the forests.

The following lemma shows us that if we apply to M every vertex split v such that roi(v)

intersects ¢, then all triangles of M which intersect ¢ will be reconstructed.

Lemma 1. Let u be a verter incident to a triangle in M which intersects the query region

q. Then, for all ancestors v of u, roi(v) intersects q.

Proof. The proof is by induction on the level of v in the dependency graph. The base case
is when v = u, and is true since roi(u) contains all triangles incident to u. Next, w.l.o.g.,
suppose v is an internal vertex which was formed by collapsing the edge (v;,v2). Note that
one of vy or v, is an ancestor of u, and by the inductive hypothesis one of roi(v;) or roi(vs)
intersects ¢. This implies that roi(v) intersects ¢ as well, since roi(v) contains roi(v;) and

roi(vy). O

For completeness, the following pseudocode shows how to construct the ro: information.
The notation neighb(v) is used to denote the neighbourhood of the vertex v in M, i.e.,
neighb(v) = {v} U{u : (u,v) € E(M)}. The notation bb(X) is used to denote the bounding

box of the set X, i.e., the smallest axis-aligned box which contains X.
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Figure 6: A sequence of vertex splits and its associated dependency graph.
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BuiLp-ROI()

1 forall v e V(M) do

2 roi(v) < bb(neighb(v))
3 forall v € V(M,) do

4 BuiLD-ROI-2(v)
)

return

BuiLp-ROI-2(v)

1 if v is not a leaf then

2 BuiLD-ROI-2(wvsplits[v].v1)
3 BuiLp-ROI-2(wvsplits[v].vq)
4 roi(v) < bb(roi(vsplits[v].vy), roi(vsplits[v].ve))

5 return

Lemma 2. The running time of procedure BuiLD-RoI1() is O(n).

Proof. Lines 1 and 2 of BUILD-ROI() take O(n) time, since each vertex of M is examined
once, and each edge is examined twice (once for each end point). Lines 3 and 4, including
the call to BUILD-ROI-2, take O(n) time, since they perform a post-order traversal of the

dependency graph, which is a forest of size O(n). O

3.2 Retrieving the Vertex Splits

Once the vsplits list is augmented with the ro: information, selective refinement can be done
in the following manner: For each vertex of M, we search the tree rooted at M, and retrieve
all vertex splits, v, for which roi(v) overlaps the query region, ¢. It is not necessary to search
the children of v if r0i(v) does not intersect ¢, since the roi of the children of v are contained

in roi(v).

GET-SPLITS(q)

1 splits < A

2 forall v € V(M,) do

3 splits «— splits U GET-SPLITS-2(v, q)
4 return splits

12



GET-SPLITS-2(v, q)

1 if v = nil then

2 return )\

3 if ¢ intersects r0i(v) then

4 return {v} U GET-SPLITS-2(vsplits[v].v1, q)
U GET-SPLITS-2(vsplits|v].vs, q)

5 return )\

Lemma 3. The procedure GET-SPLITS(q) returns exactly the vertex splits v such that roi(v)

intersects q.

Proof. Clearly, a vertex split, v, such that roi(v) does not intersect ¢ is never reported.
Furthermore, any vertex split which is examined in Line 3 and has a region of influence
which intersects v is reported in Line 4 of GET-SPLITS-2. Thus we need only show that
all such vertices are examined in Line 3. Note that the only reason a vertex split, v, is
not examined in Line 3 is if one of its ancestors, v" had a region of influence that did not
intersect ¢. But in this case, roi(v) can not intersect ¢, since roi(v) is contained in roi(v'),
which does not intersect ¢g. Therefore, every vertex split which is not examined in Line 3 of

GET-SPLITS-2 does not have a region of influence which intersects gq. O

Lemma 4. The procedure GET-SPLITS(q) has running time O(|My| + k) where k is the

number of vertices, v, such that roi(v) intersects q.

Proof. We count the number of calls to the GET-SPLITS-2 procedure, since this clearly
bounds the total running time. The procedure is called at most |M| times in the GET-
SpLIiTS procedure. The number of recursive calls is at most 3k, since each vertex which is

reported results in calling the procedure for at most two unreported vertices. O

3.3 Sorting and Applying the Vertex Splits

Once the wsplits records are retrieved they need to be sorted and applied in order. The
sorting could be done by a standard sorting algorithm, but this would take O(klog k) time.
A more efficient method can be obtained by observing that the order in which the vertex

splits can be applied is not necessarily unique. In fact, the only dependencies between vertex

13



Figure 7: An example of the rank and range numbering.

splits come from the parent-child relationship on which our data structure is based, and the
left-neighbour, and right-neighbour relationships. L.e., using the notation in Section 2.3 the
vertices v; and vy are dependent on the vertex v, and v is dependent on the vertices v; and
v.. Both these relationships can be represented as a directed acyclic graph of size O(k) and
thus a feasible order for the edge collapses can be obtained in O(k) time by performing a
topological sort (c.f. [1]).

When splitting a vertex v, it is possible that v; (or v,,) may not exist, since it was not split.
Then the dependency is with the nearest ancestor of v; which appears in the retrieved wvsplits
records. This requires that we locate the nearest living ancestor of a vertex. In order to do
this we use an in-order numbering of the vertices in the dependency graph, and associate
with each node v, a number, rank(v) which is the in-order traversal number of v, and an
interval, range(v) which contains the ranks of the descendents of v as well as v itself. This
information is computed in a precomputation phase. With this information, it is possible to
find the nearest living ancestor of v; by searching the neighbourhood of v for a vertex, vj,
such that rank(v;) € range(v)). See Figure 7 for an example of such a numbering.

The following functions produce the rank and range information used for finding ances-
tors. After these functions are run, one can determine if a vertex u is an ancestor of v by

checking if rank(v) € range(u).

14



BuiLD-RANGES()

1 next <0
2 forall v € V(M,) do
3 next < BUILD-RANGES-2(v, next)

4 return

BuiLD-RANGES-2(v, next)
marker <— next
if wsplits[v].v; # nil then
next < BUILD-RANGES-2(vsplits[v].vy, next)
rank(v) < next
next < BUILD-RANGES-2(vsplits[v].v1, next + 1)
else
rank(v) < next

next < next + 1

© 00 I O Ut s~ W N

range(v) < [marker, next — 1]

10 return next

Lemma 5. The running time of procedure BUILD-RANGES() is O(n).

Proof. The functions implement a post-order traversal of the dependency graph, which has

size O(n). O

The SELECTIVE-REFINE function is the main entry point for the selective refinement
algorithm. It first finds all the vertex splits whose regions of influence intersect the query

region, and then applies these splits in an order which respects all dependencies.

SELECTIVE-REFINE(q)

1 splits < GET-SPLITS(q)

2 forall v € splits do

3 if v € M, then

4 APPLY-SPLITS(v, splits)
5 return

15



ApPpPLY-SPLITS(v, splits)

1 if v # nil and v € splits then

2 SPLIT(v, vsplits)
3 ApprLy-SpLITS(vsplits[v].vy, vsplits)
4 APpPLY-SPLITS(vsplits[v].vy, vsplits)

5 return

The SpLIT function is what performs a vertex split operation. Lines 1-2 ensure that we
don’t split a vertex that was already split. Lines 3—-6 ensure that the left and right neighbours
or their nearest ancestor are present before we perform the split. Line 7 actually performs
the split as discussed above. The predicate active(v) is true when vertex v appears in the
mesh at its current state of refinement and false otherwise. The activeancestor(u,v) function
returns the active ancestor of vertex v which is adjacent to vertex w in the current mesh.
This is determined by searching the neighbourhood of u for the vertex v" which satisfies

rank(v) € range(v').

SPLIT(v, splits)
if not active(v) then
return
while [not active(vsplits[v].v;)] and [activeancestor(v, vsplits[v].v;) € splits]

SPLIT(activeancestor (v, vsplits[v].vy), splits)

1
2
3
4
5 while [not active(vsplits[v].v,)|] and [activeancestor (v, vsplits|v].v,) € splits]
6 SPLIT(activeancestor(v.vsplits[v].v,), splits)

7 PERFORM-SPLIT(vsplits|v])

8

return

Lemma 6. The running time of the SELECTIVE-REFINE procedure is O(|My| + kd), where
k is the number of vertices whose regions of influence intersect q, and d is the average degree

of these wvertices.

Proof. The running time of the GET-SPLITS procedure has been shown to be O(|My| + k) in
Lemma 3. Therefore, we need only prove the running time of the APPLY-SPLITS procedure.
Note that the number of calls to the APPLY-SPLITS procedure is at most most 3 times the

number of calls to the SPLIT procedure. In turn, the number of calls to the SPLIT procedure

16



is at 2k, since for each v € splits, SPLIT is called at most once from APPLY-SPLITS and once
recursively. Disregarding recursive calls, the running time of APPLY-SPLITS is constant, and
the running time of Split is O(d') where d' is the degree of the vertex being split. Amortizing

this value over all calls to SPLIT we get a running time of O(kd). O

3.4 Analysis and Comments

Finally, we summarize with a theorem describing our selective refinement scheme and com-

ment on other practical aspects of the scheme.

Theorem 1. Given a mesh in the progressive mesh representation, the selective refinement
scheme uses O(n) preprocessing time and O(|My| + kd) query time, where |My| is the size
of My, k 1s the number of vertex splits whose regions of influence intersect the query region,

and d is the average degree of the vertices retrieved.

Proof. The preprocessing resources follow from Lemma 2 and Lemma 5. The query time

follows from Lemma 6. O

At this point we note that it is also possible to generalize this scheme to perform selective
refinement on any mesh M; € {My, ..., Myspiss }- In this case, the query region is returned
at exactly the level of detail at which it appears in M;. To achieve this generalization, we
simply “prune” the search when a vertex split record is reached who’s index is greater than
t. In analyzing the running time of the generalized algorithm, the value of k is defined in
the same manner as above, but with respect to the vertex split sequence vy, ..., ;.

From the pseudocode, it is easy to see that the preprocessing and selective refinement
procedures are quite simple, and hide only small constants in the big-Oh notation (see
Section 3.6 for empirical results). Another merit of this scheme is that since it uses only axis
aligned bounding boxes, the search procedure can be implemented using only comparison
operations and is therefore not subject to the rounding errors inherent in floating point

arithmetic computations.
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V|,=V,

Figure 8: An example of the case where v; = v].

3.5 Extensions and Implementation Notes
3.5.1 Dealing with Missing Neighbours

In Section 3.3, it was noted that when splitting a vertex v, it may be the case that one
(or both) of the vertices v; or v, may not be present in the mesh. In this case we suggest
using the nearest living ancestor of v; or v,, call these v; and v/, respectively. An important
point to note when implementing this is that it may be the case that v; = v/. In this case,
the two resulting triangles (v, v9,v;) and (vq, v9,v,) are identical, and are only connected to
the mesh by a single edge (see Figure 8 for an illustration). Depending on the application,
these types of triangles may or may not cause problems. For display purposes, a reasonable
solution is to simply flag these special triangles and not render them.

Another approach to solving this problem, which is proposed by Hoppe [14] is to force
splits of v; and v/, and their descendents until v; and v, are recreated, at which point the vertex
v can be split. This approach seems to work well, and prevents extremely abrupt changes
in resolution which may be visually unpleasant. Unfortunately, it may also significantly
increase the number of vertices which are split thereby increasing the running time of the

selective refinement algorithm.

3.5.2 Invalid Triangles in Query Regions

Although the selective refinement scheme described in this section guarantees that all the
triangles of M which intersect the query region ¢ are extracted, it does not guarantee that
there are not other triangles not in M which intersect the query region. Figure 9 shows an

example in which this occurs. The figure shows two edge collapses, and the resulting mesh

18



Figure 9: An example in which a triangle not in M intersects g.

with the roi boxes shown as dashed lines. The query region ¢ intersects a triangle which is
not in M, but does not intersect any of the ro: boxes.

For the applications described in Section 4 this is not a problem. However, for some
applications it may be necessary to avoid this situation. In order to do so, we must ensure
that every triangle Aabc that is in an intermediate mesh is completely covered by the roi(a)U
roi(b) U roi(c). In this way, if the triangle intersects ¢, then so does one of roi(a), roi(b),
roi(c), and the triangle will not remain in the selectively refined mesh since one of the vertices
of the triangle will have been split.

A simple way to achieve this is to augment the definition of roi so that for a vertex
v, roi(v) contains all triangles incident to v. If this approach is combined with Hoppe’s
method of forcing vertex splits (see Section 3.5.1), then the query region ¢ will not intersect
any triangle not in M, since every triangle not in M will be covered by the ro: of each
of its vertices. Unfortunately, this increases the running time of the selective refinement
procedure on two counts. Firstly, since the size of the roi increases, the likelihood that
a query region will intersect them also increases, which increases the number of vertex
splits which are reported. Secondly, using Hoppe’s method of forcing vertex splits results in

increased running times as well.

3.6 Empirical Results

In order to verify the viability of the bounding box approximation to the regions of influence
used in the selective refinement algorithm, some empirical tests were performed on trian-
gulated terrains (TINs). Tests were performed on random TINs as well as two real TINs,

containing 10000 and 20000 points, each. Random TINs were generated by choosing uni-
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formly distributed points in the unit square and then computing a Delaunay triangulation of
these points. We measured and compared our results on random TINs with those on the two
TINs, with the same number of vertices, and found that the results obtained were almost

identical.
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Figure 10: Performance of selective refinement algorithm for medium and large query regions.

Figure 10 shows the ratio between the number of vertices of the TIN, 7', in a query region
and the number of vertex splits which are retrieved when selectively refining the region. The
tests take a query window of a fixed size and places it at 2500 regularly spaced locations on
the TIN and perform selective refinement at each location. Both small (1/25 of the TIN’s
surface area) and large (1/4 of the TINs surface area) query windows were tested. The main
results of these tests is that the ratio between the number of splits performed and the number
of vertices in the query window converges to a small constant (< 3) as n increases.

Figure 11 shows results for a query region consisting of a single point on the surface of
the TIN. Again, the query point is placed at 2500 regularly spaced locations on the TIN and
selective refinement is performed. Figure 11 shows the results for TINs with up to 50000
vertices, and shows that even the worst-case running times tend to be logarithmic in the
size of T. Also of interest are the absolute values in Figure 11 since these show that the
constants are quite small. In no case does the number of vertex splits performed exceed 70.

When taken together, these two sets of experiments would suggest that the running time

of the selective refinement algorithm is of the form O(logn + k), where k is the complexity
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Figure 11: Performance selective refinement algorithm for small query regions.

of the TIN in the query region, and n is the number of vertices in the TIN. Thus, at
least empirically, the selective refinement procedure exhibits optimal behaviour up to small

constant factors.

4 Applications

The triangulated irregular network (TIN) is one of the basic models for representing geo-
graphical data where a triangulated set of points is stored together with its elevation. The
TIN is essentially a mesh with the added constraint that no two points on it’s surface have
the same projection on the (z,y) plane. TINs were introduced in 1978 (see [8, 20, 21]) and
they are a fundamental data structure in GIS and related areas.

In this section, we describe some applications of our selective refinement scheme, with
particular attention paid to applications to TINs. We show that meshes stored in the pro-
gressive mesh representation naturally supports a number of operations common in both
computational geometry and geographic information systems. Because of the small con-
stants involved in the PM representation, the algorithms presented in this section are com-
petitive with existing algorithms which operate on meshes in a standard representation. The

advantage of these algorithms over these existing algorithms are:
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1. these algorithms work on meshes in the PM representation, maintaining all the advan-

tages of the PM representation,

2. these algorithms require little or no additional preprocessing or storage beyond the
progressive mesh construction process, making them, in some cases, more efficient

than existing solutions, and

3. by using the “pruning” technique described in Section 3.4, all the algorithms presented
here can be used to efficiently solve approximate versions of the problem in question,

i.e., the problem can be solved on any of the meshes My, ..., Mjyspiiss|-

Throughout the remainder of this section we use 7" when discussing a TIN or a planar

triangulation in the same manner as we have previously used M to denote an arbitrary mesh.

4.1 Point Location

Point location in a triangulation is a well studied problem in computational geometry, and a
number of point location algorithms exist. The point location problem consists of determin-
ing, given a planar triangulation, 7', the triangle, ¢, in which a query point lies. Although
theoretically optimal algorithms (O(n) preprocessing time and O(logn) query time) exist
for the point location problem, these algorithms have large constants hidden in the big-Oh
notation which makes them less useful in practice. This is witnessed by the fact that most
real world implementations use schemes that are less than optimal but which work well in
practice [9, 18].

The selective refinement procedure described in Section 3 can be used as an efficient
method for locating a point in a triangulation. The motivation for this application is twofold:
(1) the selective refinement algorithm is fast in practice, and thus should yield a fast point
location algorithm, and (2) if a triangulation is already in the progressive mesh representation
then point location can be performed without any additional preprocessing.

To perform point location on a progressive mesh, we perform selective refinement in
which the query region is a vertical line, namely the vertical line which passes through the
query point ¢ (see Figure 12). The selective refinement algorithm is run and the triangle in
which ¢ lies is found. The running time of this algorithm is clearly O(|My| + kd) where k

and d are defined as in Section 3.
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Figure 12: Expressing a point location query as a selective refinement query.

If our objective is to do largely point location queries in a triangulation, then the fitness
function that can be used in the construction algorithm to obtain a progressive mesh is to
collapse the edge (v, vy) such that the resulting region of influence is the smallest among all

possible edge collapses. A similar heuristic is used in the construction of R-Trees [12].

4.2 TIsoline Extraction

The problem of isoline or contour line extraction is stated as follows: given a query elevation
h, return all triangles of 7" which occur at elevation h. Given the triangles which occur at
elevation h, the polygons and polygonal chains which form the isolines can be found in O(k)
time (where k is the number of triangles) by starting at an arbitrary triangle and walking
along triangles until a triangle already visited is reached, or the border of 7' is reached.
When this occurs, another unvisited triangle is chosen, and the same procedure is applied.

For answering isoline queries on a progressive TIN, we simply perform selective refinement
in which the query region is the plane z = h, and report all triangles of 7" which intersect
this plane. An example of this approach is shown in Figure 13. The running time of this
algorithm is O(|My| + kd) where k and d are defined as in Section 3.

From this, it follows that the edge collapse sequence can be optimized for isoline extraction
by always collapsing the edge which produces the smallest z-interval in the resulting roz. This
heuristic is similar to that suggested in Section 4.1 for optimizing the edge collapse sequence

for point location.
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Figure 13: Expressing an isoline query as a selective refinement query.

Progressive TINs also support progressive transmission of isolines. To perform progressive
transmission of isolines, we note that a vertex split operation can only affect isolines in the
neighbourhood of the split vertex, and so maintaining isolines under the vertex split operation
is a straightforward localized matter. Therefore, progressive transmission of isolines involves
first transmitting the coarse grained TIN 7 and then transmitting the vertex split records
which affect the elevation(s) in question. At the receiving end, extracting the isolines from
Ty can be done using a linear time brute force method, and these isolines can be maintained

using only local operations as new vertex splits records are received.

4.3 Visibility Queries

Two points on a surface are said to be visible if the line segment joining them does not
properly intersect with the surface. The visibility query problem is the following: given two
query points p and ¢, is p visible from ¢?

A straightforward solution to the visibility query problem is as follows. Locate the
triangle in which p lies and then walk along triangles in the direction of ¢ until either (1)
an edge is crossed which occludes ¢ in which case the answer is negative, or (2) the triangle

containing ¢ is reached in which case the answer is positive. The preprocessing required by
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Figure 14: An example of two visbility queries on a TIN. In case (a), the selective refinement
procedure will not do any refinement in the valley between p and ¢. In case (b), the selective
refinement procedure will determine very quickly that visbility is blocked by the peak between

p and q.

this algorithm is the same as that for point location. The query time is the time to locate ¢
plus the number of edges, k, which intersect the segment pg.

On a progressive TIN, visibility between a pair of points can be answered by selectively
refining the TIN along the (3 dimensional) line segment pg. In many cases, this will lead to a
faster query time. If p and ¢ are visible, then the line segment pg does not properly intersect
T. In this case pg is not likely to intersect many of the regions of influence of the vertex
splits, and the selective refinement procedure will finish very quickly indeed. In p and ¢ are
not visible, then pg may intersect many of the regions of influence of vertex splits, but the
selective refinement procedure can be stopped the first time a triangle of 7" is found which
intersects pg. See Figure 14 for an example. This method also has the advantage that it

doesn’t require the points p and ¢ to be on the surface.

4.4 External Memory Progressive Meshes

External memory methods for meshes are of significant practical relevance to the field of
GIS, as the amount of geographic data currently available exceeds the capacity of inter-
nal memories. This motivates the development of an external memory storage scheme for
progressive meshes. With such a scheme, the coarse grained mesh, M, could be stored in
internal memory, and user could perform selective refinement to refine a small portion of this
mesh and work with it. A number of external memory spatial data structures exist which

can be used to store progressive TINs in the external memory. We believe that the R-Tree
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[12], or one of it’s variants, is a data structure well suited for this application. R-trees are
designed specifically for storing axis aligned boxes. (A variety of other possible spatial index
structures exist see e.g. [10, 11, 16, 23] and also consult the new survey article by Nievergelt
and Widmayer [19].) In particular, one variant of the R-tree, the packed R-tree constructs
an R-tree in a bottom up fashion from a static set of axis aligned boxes.

Thus in order to construct an external memory representation of a progressive mesh,
build a packed R-tree on the list of vertex splits, where the box associated with a vertex
split v is roi(v). When performing selective refinement we use the packed R-tree to extract
the relevant vertex splits and then proceed in the manner described in Section 3 to sort and
apply the splits.

Using this representation, the algorithms for point location, elevation queries, and visibil-

ities queries can all be applied to TINs stored in the PM representation in external memory.

5 Conclusions

This work has extended Hoppe’s progressive mesh representation so that it efficiently sup-
ports selective refinement. Using this selective refinement scheme a number of algorithms
for fundamental problems in computational geometry and geographic information systems
have been devised.

Perhaps as important as the refinement scheme itself are some of the ideas behind it.
Augmenting the DAG-based hierarchies of Dobrindt and de Berg [2] and Puppo [22] with
the roi information described in Section 3 could be beneficial to these schemes as well. For
one, it would allow the type of exact selective refinement described in Section 3 (as opposed
to the heuristic computer graphics oriented methods currently used), and could improve the
performance of these schemes by replacing complicated point-in-triangle tests with the much
simpler point-in-rectangle test. Of course, an empirical study would be needed to determine
whether the increase in performance due to the simpler tests is enough to offset the increase
in work caused by the bounding box approximation.

It is also worth noting that algorithms in Section 4 which were described for the progres-
sive mesh could also be used with other multiresolution surface models. For this to work,
these models would need a method of exact selective refinement like the one described in

Section 3. Since such methods can be designed by using analagous techniques, namely the
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rot information, the algorithms in Section 4 actually solve a number of problems on most
multiresolution surface models.

Any problem related to surface models can be attempted in multiresolution models as
well. It may be possible to use the multiresolution aspect of the model to advantage. One
obvious approach is to provide faster approximation algorithms by simply running the stan-
dard algorithm on a mesh with a lower level of detail. In this case, it is important to bound
the quality of the resulting approximation, either theoretically or empirically. One could also
imagine using these models to develop interruptible algorithms, i.e., algorithms that can be
interrupted at any time to produce an approximate result but which will eventually converge
to an exact solution given enough time. This could be done by finding an exact solution
on the coarse mesh M, and improving it by increasing the resolution of the mesh in certain

areas.
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