Convexifying Polygons with Simple Projections

Jorge Alberto Calvo* Danny Krizanc! Pat Morin?
Michael Soss® Godfried Toussaint$

July 18, 2000

Abstract

It is known that not all polygons in 3D can be convexified when crossing
edges are not permitted during any motion. In this paper we prove that if a 3D
polygon admits a non-crossing orthogonal projection onto some plane, then the
3D polygon can be convexified. If an algorithm to convexify the planar projection
exists and runs in time P, then our algorithm to convexify the 3D polygon runs
in O(n + P) time. By published results, this implies algorithms for any polygon
with a convex, monotonic, or star-shaped projection.

1 Introduction

A closed chain of n line segments with lengths Iy, ...,1,, embedded in R? forms a space
polygon. We are concerned with simple space polygons which are trivially knotted
(also called unknots). The problem we address is that of convexifying a polygon in
3D, that is, reconfiguring it to a planar convex polygon while maintaining the edges
rigid with fixed lengths and not allowing the edges to cross each other during any
motion. Recently Cantarella and Johnston [5] and independently, Biedl, et al. [2]
studied the embedding classes of such objects and discovered that there exist stuck
(or locked) unknotted simple polygons. In the setting of linkage convexification, the
existence of these locked polygons is key, since it implies that not every unknotted
linkage in 3D can be convexified.

Such results are relevant to understanding how small-scale rigidity influences the
shape of DNA and other complex circular (ring) molecules [8, 9].

On the other hand, Biedl, et al. [2] showed that a planar polygon in 3D can always
be convexified in O(n?) time with O(n?) simple motions in which no more than four
joints are rotated at once. Recently Jeff Erickson pointed out that with a small modi-
fication the algorithm in [2] runs in linear time with linearly many simple motions. A
simple motion is defined as a movement of the chain where only a constant number
of angles at vertices and dihedral angles change, and all such changes are monotonic.
Therefore, during a simple motion of &k joints, there exists a partition of the polygon
into k pieces (determined by the k joints), each of which remains rigid with respect to
itself during the motion. If the number of angles changing is larger than a constant,
the motion is said to be a complexr motion.

Here we consider classes of non-planar polygons in 3D that can be convexified.

*Dept. of Mathematics, North Dakota State University, Fargo, ND. jorge_calvo@ndsu.nodak.edu
TDept. of Mathematics, Wesleyan University, Middletown, CT. dkrizanc@wesleyan.edu

¥School of Computer Science, Carleton University, Ottawa, ON. morin@scs.carleton.ca

§School of Computer Science, McGill University, Montreal, QC. {soss, godfried}@cs.mcgill.ca



AN

Figure 1: Coplanar edges whose projection is a single edge.

L —=

—

Figure 2: Pulling a spring until it straightens.

2 Polygons with Simple Projections

Connelly, Demaine, and Rote have recently shown that any simple 2D polygon can be
convexified in the plane [6]. Suppose a 3D polygon has a simple orthogonal projection
to some plane, which WLOG we will assume to be the zy-plane. Then by keeping
the height (z-coordinate) of each vertex fixed, we can convexify the projection on the
zy-plane while making the polygon in 3D track this motion. Thus we can reconfigure
any polygon with a simple projection into a polygon with a convex projection.

We now give an algorithm to convexify a polygon with a convex projection, thereby
implying that a polygon with a simple projection can be convexified.

3 Polygonal Chains and Springs

Our algorithm works by repeatedly reconfiguring the polygon while maintaining con-
vexity in the projection. The overall motion is a simple combination of basic primitives,
and as such, the motions are easy to compute and visualize. We now explain our first
primitive motion, which straightens a monotonic polygonal chain which lies on a single
vertical plane.

Consider the planar polygonal chain in Figure 1. If we wish to straighten this
series of edges, we need only to pull the rightmost vertex to the right, moving only
the last two vertices (and changing the angle at the third). When the second vertex
straightens, we freeze that joint permanently as straight, thereby effectively deleting a
vertex, resulting in a polygonal chain of one fewer vertex. We then proceed by induction
until the chain is a single line segment. As this motion resembles the straightening
of a spring (see Figure 2), we refer to this straightening as a spring-unfolding of a
polygonal chain. The straightening motions are illustrated in Figure 3. In keeping
with this terminology, we will define a spring as a consecutive sequence of at least two
(non-colinear) edges whose simple orthogonal projection is a single line segment. Thus
the polygonal chain in Figure 1 is a spring.

It is a simple matter to compute when each vertex straightens given a RAM com-
puter which can compute square roots (and therefore distances). Because only two
edges move at once, each motion, which straightens a vertex, can be computed in con-
stant time. Thus the entire spring can be straightened in time linear in the number of
its vertices.



i

N—
3

;
|

Figure 3: A spring-unfolding of a planar chain.

4 The Spring Algorithm

Our algorithm requires that the convex projection be a triangle. Changing a polygon
from one convex position to another is not difficult and can be accomplished in linear
time [1, 10]. As mentioned above, by keeping the height (z-coordinate) of each vertex
fixed, we can reconfigure the projection on the zy-plane while making the polygon in
three-space track this motion.

Once the projection is a triangle, note that all the edges of the polygon lie along
three vertical planes. Therefore the polygon is composed of three or fewer springs.
We adopt the terminology k-spring as a polygon which contains exactly k springs.
For example, a polygon with a triangular projection Aabc that has only one edge
projecting onto ab, but several edges projecting onto each ac and bc is a 2-spring.

The Spring Algorithm works just as one would intuitively straighten a triangle made
of springs. From a high-level standpoint, we repeatedly pull on vertices, straightening
a spring each time. Since the straightening (spring-unfolding) of a spring implies a
straightening of vertices, we are guaranteed to finish in linearly many such motions.
For low-level details, it will become apparent that we can easily compute which vertices
of a spring move and at which time, as their motions are uniquely linked to the high-
level description of the springs.

The following is our algorithm in a high-level form.

The Spring Algorithm
1. While the polygon has more than four edges,

(a) If the polygon is a 3-spring, reconfigure it into a 2-spring (as per Figure 4).

e Keeping the height of ¢ fixed, pull ¢ orthogonally away from ab until
one of the springs (ac or be) straightens. At any moment, each of the
three springs remain in a single vertical plane, and thus the projection
is always a triangle during this step.

(b) Else if the polygon is a 2-spring, reconfigure it into a 1-spring (as per Fig-
ure 5).

e Let ab be the non-spring edge. Keeping the height of ¢ fixed, pull ¢
orthogonally away from ab until one of the springs (ac or bc) straightens.
As in the previous step, each of the three springs remain in a single
vertical plane, so that the projection is always a triangle throughout
this step.

(c¢) Else if the polygon is a 1-spring, reconfigure it into a 2- or 3-spring (as per
Figure 6).

w



Figure 4: Step la. Reconfiguring a 3-spring into a 2-spring.
b C. b c

a a

Figure 5: Step 1b. Reconfiguring a 2-spring into a 1-spring.

e Let ab, bc be the non-spring edges. Fix in space the median! vertex d
of the springed edge ac. Keeping c at a fixed height, rotate bc to open
the internal angle at b while unfolding the spring c¢d until one of the
two following possibilities occurs.

i. If the edges ab and bc achieve colinear projections, we attain a 3-
spring, unless a,b, and ¢ happen to be colinear, in which case we
attain a 2-spring.

ii. If the spring cd straightens, we now rotate c¢d to open the internal
angle at ¢ while keeping d at a fixed height and while unfolding the
spring ad. Again we have two cases. Either bc and cd will achieve
colinear projections, resulting in a 2-spring (or 1-spring should b, ¢,
and d be colinear), or the spring ad will straighten, resulting in a
3D-quadrilateral.

2. If the polygon has four edges, label it abed. Rotate ¢ about bd until the quadri-
lateral is planar. Convexify the planar quadrilateral.

3. Return the convexified polygon.

Each high-level motion (Step la, 1b, or 1c) is easily computable. We simply add
up the lengths of all edges in the springs to discover their length when straightened
to see which spring straightens first. For the low-level description of the motions of
individual vertices for each spring, we can determine which vertex opens and when
during its spring-unfolding since we know the motion of the spring and therefore how
its length increases over time. As noted in Section 3, a spring-unfolding of a chain can
be computed in time linear in the number of vertices in the spring, and the spring-
unfolding is determined solely by the motion of the endpoints of the spring. Therefore
each high-level motion can be computed in time linear in the number of vertices of the
polygon.

During every two or three iterations of the while loop (Step 1), the polygon will
be in a 1-spring configuration. If the polygon has n (unstraightened) vertices at this

2]

1Suppose the spring ac contains k vertices. By the phrase, “median vertex d of the edge ac,” we
mean a vertex d such that each ad and dc contain roughly k/2 vertices. (To be exact, the two chains
ad and ac contain [k/2] vertices and [(k + 1)/2] vertices.)



Figure 6: Step 1c. Reconfiguring a 1-spring. The top diagram illustrates Step 1(c)i;
the bottom illustrates Step 1(c)ii.

point in the algorithm, n — 1 of these will be contained in the spring. During the
execution of Step 1c, the spring is separated into two nearly equal parts, each of which

contains no less than 252 vertices. After two or three more iterations of the algorithm,

the polygon is again a2 1-spring. Therefore at least one of these two springs of ";4
vertices each was straightened. Therefore after at most every three iterations of the
algorithm, the polygon’s complexity, and thus the time complexity of each iteration,
is approximately halved. By this geometric progression, the entire algorithm finishes

in linear time.

Theorem 1 A polygon which admits a convex projection can be convexified in O(n)
time with O(n) simple motions.

Building on the proof by Connelly, Demaine, and Rote that any 2D polygon can
be convexified, we arrive at the following theorem.

Theorem 2 A polygon which admits a simple orthogonal projection can be convezified.

Since their proof only demonstrates the existence of a convexifying sequence of
motions, and not an algorithm to find one, we do not have a general algorithm to con-
vexify a polygon with an arbitrary simple orthogonal projection. There are currently
two classes of planar polygons which have convexifing algorithms . Algorithms have
been designed to convexify monotone polygons [3] and star-shaped polygons [7]; these
results yield the following two theorems.

Theorem 3 A polygon which admits a monotonic projection can be convexified in
O(n?) time with O(n?) simple motions.



Theorem 4 A polygon which admits o star-shaped projection can be convexified in
O(n?) time with O(n) complex motions.

Given our three results, it becomes important to be able to determine if a polygon
has such an orthogonal projection. Bose, Gomez, Ramos, and Toussaint have an
algorithm to determine whether or not a polygon has a simple orthogonal projection
in O(n*) time, and another which determines whether or not a polygon has a monotonic
projection in O(n?) [4]. To our knowledge, determining whether or not an arbritary
polygon has a star-shaped projection is an open problem.

5 Concluding Remarks

Building on the recent result by Connelly, Demaine, and Rote [6], we have proven
that having a simple orthogonal projection is sufficient to insure that a polygon can
be convexified. Of course, one can easily construct convexifiable polygons which do
not possess such a projection, thus the condition is sufficient but not necessary. It is
obvious that a polygon must be unknotted if it is to be convexifiable. What other
conditions are sufficient, and what others are necessary? For example, can a polygon
with a regular perspective projection be convexified?

References

[1] Oswin Aichholzer, Erik D. Demaine, Jeff Erickson, Ferran Hurtado, Mark Over-
mars, Michael A. Soss, and Godfried T. Toussaint. Reconfiguring convex polygons.
In Proceedings of the Twelfth Canadian Conference on Computational Geometry,
Fredericton, Canada, August 2000.

[2] T. Biedl, E. Demaine, M. Demaine, S. Lazard, A. Lubiw, J. O’'Rourke, M. Over-
mars, S. Robbins, I. Streinu, G. T. Toussaint, and S. Whitesides. Locked and
unlocked polygonal chains in 3D. In Proceedings of the Tenth ACM-SIAM Sym-
posium on Discrete Algorithms, pages 866-867, 1999.

[3] Therese C. Biedl, Erik D. Demaine, Sylvain Lazard, Steven M. Robbins, and
Michael A. Soss. Convexifying monotone polygons. In Proceedings of the Tenth
International Symposium on Algorithms and Computation, pages 415-424, Chen-
nai, India, December 1999.

[4] Prosenjit Bose, Francisco Gomez, Pedro Ramos, and Godfried T. Toussaint. Draw-
ing nice projections of objects in space. In Graph Drawing (Proc. GD ’95), volume
1027 of Lecture Notes Comput. Sci., pages 52—63. Springer-Verlag, 1996.

[5] Jason Cantarella and Heather Johnston. Nontrivial embeddings of polygonal in-
tervals and unknots in 3-space. Journal of Knot Theory and its Ramifications,
7(8):1027-1039, 1998.

[6] Robert Connelly, Erik D. Demaine, and Giinter Rote. Every polygon can be
untangled. In Proceedings of the Sixzteenth European Workshop on Computational
Geometry, Eliat, Israel, March 2000.

[7] H. Everett, S. Lazard, S. Robbins, H. Schréder, and S. Whitesides. Convexify-
ing star-shaped polygons. In Proceedings of the Tenth Canadian Conference on
Computational Geometry, pages 2—3, 1998.



[8] Maxim D. Frank-Kamenetskii. Unravelling DNA. Addison-Wesley, 1997.

[9] C. Holden. Random samples: Locked but not knotted. Science, 283:931, February
12, 1999.

[10] W. J. Lenhart and S. H. Whitesides. Reconfiguring closed polygonal chains in
Euclidean d-space. Discrete Comput. Geom., 13:123-140, 1995.



