COMP2804: Discrete Structures

Assignment 4

If your browser has trouble rendering MathJaX, then use this PDF file

Administrivia

- Your assignment must be submitted as a single PDF file through cuLearn
- Late assignments will not be accepted under any circumstances. If you're unable to complete the assignment due to a valid and documented medical or personal situation then the weight of this assignment can be shifted to the weight of the remaining assignments.
- You are encouraged to collaborate on assignments, but at the level of discussion only. When writing your solutions, you must do so in your own words.
- Past experience has shown conclusively that those who do not put adequate effort into the assignments do not learn the material and have a probability near 1 of doing poorly on the exams.
- When writing your solutions:
- You must justify your answers.
- The answers should be concise, clear and neat.
- When presenting proofs, every step should be justified.

Meat

ID

1. Make sure the first thing on page 1 of your assignment is your name and student number.

1. Rolling two D20

Consider what hapens when we roll two 20 -sided dice d_{1} and d_{2} (so the sample space is $S=\left\{\left(d_{1}, d_{2}\right): d_{1}, d_{2} \in\{1,2,3, \ldots, 20\}\right\}$ and $\operatorname{Pr}(\omega)=1 /|S|$ for each $\omega \in S$). Consider the following events:

- A is the event " $d_{1}=13$ "
- B is the event " $d_{1}+d_{2}=15$ "
- C is the event " $d_{1}+d_{2}=21$ "

Use the definitions of independence and conditional probability to answer these two questions:

1. Are the events A and B independent?
2. Are the events A and C independent?

2. Randomized Leader Election

A group of $n \geq 3$ people x_{0}, \ldots, x_{n-1} stand around forming a circle facing inward so that $x_{(i+1) \bmod n}$ is standing to the right of x_{i} for each $i \in\{0, \ldots, n-1\}$. They play the following game, called "Leader Election" that repeats the following two steps until only one or two people, "The Leaders" remain:

- For each $i \in\{0, \ldots, n-1\}$, person i, tosses a fair coin c_{i}.
- If $c_{i}=H$ and $c_{(i-1) \bmod n}=c_{(i+1) \bmod n}=T$ then person i leaves the circle.

The two steps above are called a round of the game.

1. What is the maximum number of people who leave the game at the end of the first round?
2. We say that a person playing the game survives the first round if they don't leave. For a particular person x_{i}, what is the probability that x_{i} survives the first round?
3. For a particular person x_{i}, what is the probability that Person i survives the first r rounds, for some integer $r<\log _{2}(n / 3)$? What is the expected number of people who survive the first r rounds?

3. Sampling With Replacement

We have a biased coin that, when we toss it, comes up tails (T) with probability $2 / n$ and comes up heads (H) with probability $1-2 / n$. Imagine we toss this coin infinitely many times resulting in an infinite sequence $\pi_{1}, \pi_{2}, \ldots, \pi_{\infty} \in\{H, T\}^{\infty}$.

1. Let X be the index of the first head in the sequence. That is, $\pi_{1}=\pi_{2}=\cdots=\pi_{X-1}=T$ and $\pi_{X}=H$. What is $\mathbf{E}[X]$?
2. Let Y be the index of the first tail in the sequence. That is $\pi_{1}=\pi_{2}=\cdots=\pi_{X-1}=H$ and $\pi_{X}=T$. What is $\mathbf{E}[Y]$?

4. Sampling Without Replacement

We have $n-2$ beer bottles b_{1}, \ldots, b_{n-2} and 2 cider bottles c_{1} and c_{2}. Consider a uniformly random permutation π_{1}, \ldots, π_{n} of these n bottles (so that each of the $n!$ permutations is equally likely).

1. Let X be the index of the first beer bottle in the permutation. That is, $\left\{\pi_{1}, \ldots, \pi_{X-1}\right\} \subseteq\left\{c_{1}, c_{2}\right\}$ and $\pi_{X} \in\left\{b_{1}, \ldots, b_{n}\right\}$. What is $\mathbf{E}[X]$?
2. Let Y be the index of the first cider bottle in the permutation. That is $\left\{\pi_{1}, \ldots, \pi_{Y-1}\right\} \subseteq\left\{b_{1}, \ldots, b_{n}\right\}$ and $\pi_{X} \in\left\{c_{1}, c_{2}\right\}$. What is $\mathbf{E}[Y]$?

5. Doing (much) Better by Taking the Min

Let X be a random variable that takes on the values in the set $\{1, \ldots, n\}$ that satisfies the inequality $\operatorname{Pr}(X \geq i) \leq a / i$ for some value $a>0$ and all $i \in\{1, \ldots, n\}$.

Recall that (or convince yourself that)

$$
\mathbf{E}(X)=\sum_{i=1}^{n} i \operatorname{Pr}(X=i)=\sum_{i=1}^{n} \operatorname{Pr}(X \geq i)
$$

1. Given what little you know so far, give the best upper bound you can on $\mathbf{E}(X)$.
2. Let X_{1} and X_{2} be two independent copies of X and let $Z=\min \left\{X_{1}, X_{2}\right\}$. What can you say about $\operatorname{Pr}(Z \geq i)$?
3. Give the best upper bound you can on $\mathbf{E}(Z)$.
4. Use Euler's result on the Basel Problem to show that $\mathbf{E}(Z)$ has an upper bound that depends only on a (and not on n).
