
COMP3804 Winter 2006 — Assignment 1 — Due Thursday Jan. 19
This assignment is due in class on Thursday January 19th. If you are not able to come

to class then please put your assignment in the COMP3804 assignment box in the CCSS
lounge. The assignments will be picked up from this box immediately after class.

1 Asymptotic Notation

In the following questions, all the functions (f , g, and h) we consider are increasing non-
negative functions of n. All logarithms are base 2 unless stated otherwise.

1.1 Order of Growth.

List the following functions in increasing order of asymptotic complexity. Do this by using
the notation f(n) � g(n) to denote that the function f(n) = o(g(n)) and using the notation
f(n) ≡ g(n) to denote that f(n) = Θ(g(n)). All logarithms are base 2. For example,

log log n � log n ≡ 2 log n � n1/2 � n ≡ 105n � n2 .

Just listing the functions as above will suffice. There is no need to show your work. (Hint:
You may need to lookup Stirling’s inequality in your textbook.)

(log n)3 4log n log n log∗ n n!
en 2n log log n (log n)/(log log n) 2log n

n 105 log n n2 nn

1.2 Application of the Definition

Consider the functions f(n) = log n, g(n) = 2
√

log n and h(n) = n0.001. Prove, using the
definition of o, that f(n) � g(n) � h(n). Show all your work.

1.3 Relationship with Limits

In Calculus, we use the notation limn→∞ f(n) = c if, for every value ε > 0, there exists a
value n′ such that |f(n)− c| < ε for all n ≥ n′. In words, f(n) gets closer and closer to c as
n gets large. Using the appropriate definitions, prove the following:

1. If limn→∞
f(n)
g(n)

= c for some constant c then f(n) = Θ(g(n)).

2. If limn→∞
f(n)
g(n)

= 0 then f(n) = o(g(n)).
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2 Summations

2.1 Exact Closed-Form Solutions

Give exact closed-form formulas for the following summations (after manipulating the sum
a bit, the solutions can be found in the chapter/appendix on summations in your textbook).
You may use the notation Hn as a “closed form” for

∑n
i=1 1/i. Show your work.

As an example, to evaluate the sum
∑n

i=1 2i we could do

n∑
i=1

2i = 2
n∑

i=1

i (1)

= 2n(n + 1)/2 (2)

= n(n + 1) . (3)

(4)

(Step (2) uses the identity
∑n

i=1 i = n(n + 1)/2 that appears on page 1059 of the textbook.)

1.
∑n

i=1(i + 1)

2.
∑n

i=1(2i + 1/i)

3.
∑n

i=1 n/i

4.
∑∞

i=0 1/2i

5.
∑∞

i=1 1/2i

6.
∑b

i=a 1/i

7.
∑n

i=0(−1)i/2i

2.2 Asymptotic Upper Bounds

Give asymptotic (big O) upper bounds on the following summations. For example, to bound∑n
i=1 i we might do

n∑
i=1

i ≤
n∑

i=1

n = n2 = O(n2)

1.
∑n

i=1 2

2.
∑n

i=1 10/i

3.
∑n

i=1 i4

4.
∑n

i=1 n/(3i)

5.
∑log2 n

i=1 2i

6.
∑log2 n

i=1 3i
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2.3 Bounding by Integrals (Part I)

Recall that, for c > 0, the integral
∫ n
0 axc dx = anc+1/(c + 1).

1. Consider the sum
∑n

i=1 i2. Draw a picture that illustrates the relationship between this
sum and the integral

∫ n
0 x2 dx.

2. Using what you discovered above, prove that

n3/3 ≤
n∑

i=1

i2 ≤ n3/3 + n2 .

3. What can you deduce about the sum
∑n

i=1 ic, where c is any constant greater than 1?

2.4 Bounding by Integrals (Part II)

For this question you will need your textbook and a calculus book. In the calculus book,
lookup the integral

∫
1/x2 dx. In your textbook, find the section on bounding harmonic

numbers using integrals. You will find a proof that

ln n ≤ Hn ≤ ln n + 1 .

Use the same technique to prove bounds on the sum
∑n

i=1 1/i2.

3 Recurrences

For the following recurrences state (1) the maximum depth of the recursion tree, (2) the
total number of nodes at the ith level of the recursion tree, (3) the maximum number of
leaves in the recursion tree, and (4) the asymptotic solution of the recurrence. For example,
the recurrence T (n) = 3T (n/2) + O(n) has

1. a recursion tree of depth at most log2 n,

2. the total number of nodes at level i is at most 3i

3. the maximum number of leaves is at most 3log2 n

4. the recurrence is bounded by the sum

T (n) ≤
log2 n∑
i=0

3iO(n/2i) (5)

= O(n)×
log2 n∑
i=0

(3/2)i (6)

= O(n)× (3/2)log2 n+1 − 1

3/2− 1
(7)
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= O(n)× (3/2)(3/2)log2 n − 1

3/2− 1
(8)

= O(n)× (3/2)(3/2)log2 n − 1

1/2
(9)

= O(n)× (3/2)nlog2(3/2) − 1

1/2
(10)

≤ O(n)× (3/2)nlog2(3/2)

1/2
(11)

= O(n)×O(nlog2(3/2)) = O(n1+log2(3/2)) = O(n1.585) (12)

(Note that Step (7) in the above derivation follows from the formula (A.5) for geometric
sums given on page 1060 of the textbook. This always happens when evaluating such sums.)

1. T (n) = 3T (n/3) + O(1)

2. T (n) = 3T (n/3) + O(n)

3. T (n) = 3T (n/3) + O(n2)

4. T (n) = 5T (n/4) + O(1)

5. T (n) = 5T (n/4) + O(n)

6. T (n) = T (n/2) + O(1)

7. T (n) = T (n/2) + O(n)

8. T (n) = 2T (n− 1) + O(1)

9. T (n) = 2T (n− 2) + O(1)

10. T (n) = T (n1) + T (n2) + O(n) where 0 ≤ n1, n2 ≤ n and n1 + n2 = n.

11. T (n) = T (n1) + T (n2) + O(n) where n/3 ≤ n1, n2 ≤ 2n/3 and n1 + n2 = n.
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