
COMP3804 Midterm — 2h50m Winter 2006
Answer all questions in the exam booklet. In your answers you may use any algorithm

discussed in class or on the assignments as a black-box. This exam contains 3 pages.

1 [3 marks] Recurrences

Solve the following recurrences by: (a) stating the number of nodes at level i in the recursion
tree, (b) stating the size of each node at level i in the recursion tree, (c) stating the work
done at each node at level i in the recursion tree, and (d) evaluating the sum of all the work
done at all levels in the recursion tree.

1. T (n) = 2T (n/3) + O(1)

2. T (n) = 4T (n/2) + O(n2)

3. T (n) = 4T (n/3) + O(n)

2 [1 mark] Fast Sorting(?)

Name a sorting algorithm discussed in class that runs in O(n3) time.

3 [1 mark] Closest Pair

Let A1, . . . , An be an array of real numbers. Describe an O(n log n) time algorithm to find
the pair Ai and Aj, i 6= j such that |Ai − Aj| is minimum.

4 [1 mark] Maximal elements

Let p1, . . . , pn be a set of points in the plane, where pi = (xi, yi). We say that pi is maximal if
there is no pj such that xj > xi and yj > yi (there is no point pj in pi’s upper right quadrant;
see the figure which shows the maximal points in black). Give an O(n log n) time algorithm
to identify the maximal elements of p1, . . . , pn.
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5 [3 marks] Finding the Majority

Let A1, . . . , An be an array of real numbers. Give an O(n) time algorithm to determine if
some element x occurs at least dn/2e times in the array.

Generalize this to give an O(kn) time algorithm to determine some element x occurs
dn/ke times in the array.

6 [3 marks] Integer Element Uniqueness

Let A1, . . . , An be an array of integers taken from the set {1, . . . ,m}. Give an O(n + m)
time algorithm to determine if there are two indices i and j, i 6= j such that Ai = Aj.

For large values of m, the running time can be improved to O(n(log m/ log n)). Explain
how.

7 [1 mark] Incremental Location

Let A0, . . . , An be an array of real numbers, with A0 = ∞. Give an O(n log n) time algorithm
to determine, for each i the smallest value in A0, . . . , Ai−1 that is greater than Ai (Find
k1, . . . , kn where ki = min{Aj : 0 ≤ j < i and Aj > Ai}.

8 [1 mark] Boolean Matrix Multiplication

Let A and B be two n × n boolean matrices, with n a power of 2. The boolean matrix
product A×B is the matrix C with

Cij = (Ai,1 ∧B1,j) ∨ (Ai,2 ∧B2,j) ∨ · · · ∨ (Ai,n ∧Bn,j)

Describe how Strassen’s algorithm could be used to compute the boolean matrix product in
O(nlog2 7) time.

9 [2 marks] Super-Heroes and Super-Villains Get Dressed

Topologically sort the clothing worn by Skeletor, Wonder Woman and Batman.
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10 [1 mark+1 bonus] Shortest Uncommon Subsequence

Design a fast algorithm that, given two sequences s = 〈s1, . . . , sn〉 and r = 〈r1, . . . , rn〉,
computes the shortest subsequence of s that is not a subsequence of r. (Hint: To solve this,
you really have to understand how the LCS problem is reduced to a graph problem. Save
this one for last.)

11 [2 marks] Dijkstra’s Algorithm

In the graph on the right below, illustrate the execution of Dijkstra’s algorithm with source
s by listing the values of d(u) for each vertex u over time and by showing the resulting
shortest-path tree. The figure on the left gives an example.

1 4 1
1

1

1

s
0

∞, 1

∞, 2 ∞, 3

∞, 5, 4 ∞, 5
s

1

2

1

3

1

1

4

example do this one

12 [3 marks] Fast Exponentiation

You are given a real number x and an integer n and you want to compute xn using as
few multiplications as possible. Show how, if n is a power of 2, you can compute xn using
O(log n) multiplications.

Show how to extend your algorithm to the case where n is not a power of 2. (Hint:
consider the binary representation of n.)
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