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Definitions
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. A graph is called planar if it can be drawn in a plane without
~any two edges intersecting.

- Such a draWing we call a planar embedding of the graph.

= A plane graph is a particular planar embeddlng of a planar

T
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Motivation

Circuit boards.

Connecting utilities -
(electricity, water, gas)
to houses.

Hig-hWay/ Railroads /
Subway design.
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Consider any plane embedding of a planar connected graph.

Fet: \/ __be the number of vertices,

E - be the number of edges and

[ - be the number of faces (including the single unbounded face),

“Then =V — B+ F =2

- Euler formula gives the necessary condition for a graph to be planar.
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Consider any plane embedding of a planar CM graph.

'Le.’; _V - be _thé number of vertices,

E - be the number of edges and

[ - be the number of faces (including the single unbounded face),
‘Ther V. — B+ F=7
Then: Vo= F = 8

C - is the number of connected components.



Euler’s formula.

V=6

E=12

F=8 A
=tk - =4

=12 +8 — 2
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| Let G be any plane embeddmg of a connected planar graph Wlth
_V = 3 vertices. Then

1. G has at most SVe— 6 edges, and

2. This embedding has at most 2/ — 4 faces'(includin‘g the
unbounded one). -
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Let G be any plane embedding of a connected planar graph with
_V = 3 vertices. Then |

1. G has at most 31/ — 6 edges, and

2. This embedding has at most 2/ — 4 faces'(inclu,dihg the

unbounded one). = e
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€; > 3F
== ZOS
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Let G be any plane em‘bedding of a connected planar graph with
_V = 3 vertices. Then |

1. G has at most 3V — 6 edges, and

2. This embedding has at most 2/ — 4 faces'(inclu,dihg the

unbounded one). = e
z e; < 2E |
— el B
=1 — P
F S
€; > 3F
== ZOS










E =10
= 36
)4






V—FExL -2
s k= r— 6

K33 1s not pilanar‘. e )y ]

V=6

E=9

= V=6

=42
“Euler formula gives the
necessary (but not sufficient!)

condition for a graph to be
planar.




N V—E+F=2
| = & E<3V -6
Corollary 2 E<2V—-4 F<2V-4%
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Let G be any pIane em‘bedding of a connected planar graph with

_V = 4 vertices. Assume that this embedding has no trlangles i.e.
there are no cycles of length 3. Then

B 4
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Quiz © Is the following graph planar?
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What makes a graph non-planar?

et = - —

= Euler's conditions are necessary but not sufficient.
= We proved that K5 and K35 are non-planar.

* Next we look at Kuratowski's and Wagner's Theorems for
conditions of sufficiency.



What makes a graph non-planar?
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= K and K33 are the smallest non-planar.

= Every non-plan-ar'graph contains them, but not simply as a
subgraph.

» Every non-planar graph contains a subdivision of Ks or Kj 5.

subdivision

Subdividing an edge in
a planar graph does not
make it non-planar. .



/subdivision‘ [/‘
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What makes a graph non-planar?

An example of a graph which
doesn't have K. or K, , as its
subgraph. However, it has a
subgraph that is homeomorphic
to K, , and is therefore not planar.
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A graph is planar if and only if it does not contain a subdivision
_of Ks or K33. '

Kuratowski's Theorem.
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Proof:

&= Sufficiency immediately
- follows from non-planarity
of K5 and K3 3.
Any subdivision of K5 and
K3 3 is also non-planar.

1930 by Kazimierz Kuratowski
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Kuratowski's Theorem.

A graph is planar if and only if it does not contain a subdivision
of Ks or K35. | |

Proof:

== . Suppose G is non-planar.

~» Remove edges and vertices .of G
such that it becomes a minimal
non-planar graph.

* l.e. removing any edge will make
the resulting graph planar.



/subdivision‘ [/‘

A graph is planar if and only if it does not contain a subdivision
of Ks or K35. | |

Kuratowski's Theorem.
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Proof:

m—)

/=
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Kuratowski's Theorem.

A graph is planar if and only if it does not contain a subdivision
of Ks or K35. | |
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Kuratowski's Theorem.

A graph is planar if and only if it does not contain a subdivision

of Ks or K33. /\
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Kuratowski's Theorem.

A graph is planar if and only if it does not contain a subdivision
of Ks or K35. | |

= £
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Wagner ‘s Theorem.

A graph is planar if and only if it does not contain a subgraph
which has K5 or K33 as a minor.

\/ minor

| | Shrinking an edge
* | of a planar graph
\\\ G to make a single

vertex does not

~ make G non-planar
1937 by Klaus Wagner
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Wagner ‘s Theorem.

_Every graph has either ’a planar embedding, or a minor of one of

two types: Ks or K33. It is also possible for a single graph to have
both types of minor.

R

1937 by Klaus Wagner
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Petersen graph.

Petersen graph has both K5 and K33 as minors.

It also has a subdivision of K3 3.



It also has a subdivision of K3 3.



It also has a subdivision of K3 3.



How to test planarity?
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How to apply Kuratowski's theorem7 Assume, you want to test a glven
graph G for K5 subdivision.

* Choose 5 vertices of G.
~* Check if all 5 vertices are connected by 10 distinct paths as K:.
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How to apply Kuratowski's theorem? Assume, you want to test a glven
graph G for K5 subdivision.

* Choose 5 vertices of G.
~* Check if all 5 vertices are connected by 10 distinct paths as K:.

Planarify testing using Wagner's Theorem:
* Choose an edge of G - there are E choices.
* Shrink it.
* If 6 vertices are remaining check for K33. (if 5 - check for Kg).
* Repeat



How to test planarity?
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How to apply Kuratowski's theorem? Assume, you want to test a glven
graph G for K5 subdivision.

* Choose 5 vertices of G.
~* Check if all 5 vertices are connected by 10 distinct paths as K:.

Planarify testing using Wagner's Theorem:
* Choose an edge of G - there are E choices.
* Shrink it.

* If 6 vertices are remaining check for K33. (if 5 - check for Kg).

* Repeat | O(E!)



Planarity Algorithms.
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= The first polynomial-time algorithms for planarity are due to

Auslander and Parter(1961) Goldstein (1963), and, independently,
8 Bader(1964)

» Path addition method: In 1974, Hopcroft and TarJan proposed the first
linear-time planarity testing algorithm.

- Vertex addition method: due to Lempel, Even and Cederbaum(1967).

- = Edge addition method: Boyer and Myrvold (2004).




FMR Algorithm. (Left-Right algorithm)
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= Due to Hubert de Fraysselx Patrice Ossona de Mendez and Plerre
| Rosenstiehl. (2006) ‘

« The fastest known algorithm.



FMR Algorithm. (Left-Right algorithm)
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* The most important technique, common to almost all the algorithms,
- is Depth First Search. -

Tremaux tree
o]
Palm tree




Left-Right criterion.

Theorem: Let G be a
graph with Tremaux tree T.
Then G is. planar iff there
exists a partition of the
back-edges of G into two
classes, so that any two
edges belong to a same
class if they are T-alike
and any two edges belong
to different classes if they
are T-opposite.

case (1) case (ii)

a and 3 are T-alike « and 3 are T-opposite  « and [3 are T-opposite




Left-Right criterion.

case (i) case (ii) case (iii)

a and 3 are T-alike « and 3 are T-opposite « and 3 are T-opposite




Properties..
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= For any connected planar graph: E <3V -6, F <2V —4.
= All pIanar graphs contain at least one vertex with degree < 5.

Zd(v) =2F <6V -12<6V
* Planar graphs are 4-colorable. i=1

= Every triangle-free planar graph is 3- coIorabIe and such a 3-coloring
can be found in linear time.

» The size of a planar graph on n vertices is 0(n), (including faces,
edges and vertices). They can be efficiently stored.



Crossing Number of G

CR(K;2)
CR(Kyq) =7
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CR (K3,3') =1

CR(G) -the minimum number of crossings over all possible embeddings of G.



Can we find a lower bound on CR(G)?

s = - —— - ————— o — — -

Given G with n vertices and m edges; select a subset of vertices of G (caII it S)
by plcklng each vertex “with probablllty D.

G(S) Sike graph induces on S.



Can we find a lower bound on CR(G)?
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Given G with n vertices and m edges; select a subset of vertices of G (call it 5)
by picking each vertex with probability p. 4. v, vy v,

G(S) - the -graph induces on S. 2 G v, G(S)
Pr(xy € G(S)|%y € G) = p? ' '

Uy Uy

E(# of edges of G(S)) = mp?



Can we find a lower bound on CR(G)?

=, X - V— —— 4 — i ———— —— -

Given G with n vertices and m edges; select a subset of vertices of G (call it S)

by picking each vertexfwith probability p. V4 o Vs
G(S) - the graph induces on S. 2 G v, G(S)
Pr(xy € G(S)|%y € G) = p? N
V, V,
E(# of edges of G(S)) = mp?
| 4

Pr(crossing appears in G(S)|crossingin G) = p

E(# of crossings in G(S)) = p*CR(G)



E=31V_6"

Can we find a lower bound on CR(G)?

s = - —— - ————— o — — -

CR(G) = m — (3n—._6) >m-—3n
E[CR(G(S))] = E[ms — 3n,] = E[mg] — E[3n,]
p*CR(G) = mp? — 3pn

m 3n
CR(G) = 5 — =



Can we find a lower bound oh CR(G)?
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CR(G) 2m— (3n — 6) zlm— 3n
E[CR(G(S))] = E[ms — 3n,] = E[mg] — E[3n,]
p“CR(G)'z mp? — 3pn e Hns

W\O\T‘." :
CR(G)
/ sSe

m 3n m?3 =4
CR(G) > = =

4n\* [(4n\> 64n?
& (=)
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