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The following two computational problems are studied:
Duplicate grouping: Assume that n items are given, each of which is labeled by an

� 4integer key from the set 0, . . . , U y 1 . Store the items in an array of size n such
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Closest pair: Assume that a multiset of n points in the d-dimensional Euclidean
space is given, where d G 1 is a fixed integer. Each point is represented as a
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closest pair, i.e., a pair of points whose distance is minimal over all such pairs.
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In 1976, Rabin described a randomized algorithm for the closest-pair problem
that takes linear expected time. As a subroutine, he used a hashing procedure
whose implementation was left open. Only years later randomized hashing schemes
suitable for filling this gap were developed.

In this paper, we return to Rabin’s classic algorithm to provide a fully detailed
description and analysis, thereby also extending and strengthening his result. As a
preliminary step, we study randomized algorithms for the duplicate-grouping
problem. In the course of solving the duplicate-grouping problem, we describe a
new universal class of hash functions of independent interest.

It is shown that both of the foregoing problems can be solved by randomized
Ž . Ž .algorithms that use O n space and finish in O n time with probability tending to

1 as n grows to infinity. The model of computation is a unit-cost RAM capable of
generating random numbers and of performing arithmetic operations from the set
� 4q, y, ), DIV, LOG , EXP , where DIV denotes integer division and LOG and EXP2 2 2 2

� 4 Ž . ? @ Ž . mare the mappings from N to N j 0 with LOG m s log m and EXP m s 22 2 2
for all m g N. If the operations LOG and EXP are not available, the running time2 2

Ž .of the algorithms increases by an additive term of O log log U . All numbers
Ž .manipulated by the algorithms consist of O log n q log U bits.

Ž .The algorithms for both of the problems exceed the time bound O n or
Ž . yn VŽ1.

O n q log log U with probability 2 . Variants of the algorithms are also given
Ž . Ž ya .that use only O log n q log U random bits and have probability O n of

exceeding the time bounds, where a G 1 is a constant that can be chosen
arbitrarily.

The algorithms for the closest-pair problem also works if the coordinates of the
points are arbitrary real numbers, provided that the RAM is able to perform

� 4arithmetic operations from q, y, ), DIV on real numbers, where a DIV b now
? @ Ž .means arb . In this case, the running time is O n with LOG and EXP and2 2

Ž Ž ..O n q log log d rd without them, where d is the maximum and d ismax max max min
the minimum distance between any two distinct input points. Q 1997 Academic Press

1. INTRODUCTION

The closest-pair problem is often introduced as the first nontrivial prox-
w ximity problem in computational geometry}see, e.g., 26 . In this problem

we are given a collection of n points in d-dimensional space, where d G 1
is a fixed integer, and a metric specifying the distance between points. The
task is to find a pair of points whose distance is minimal. We assume that
each point is represented as a d-tuple of real numbers or of integers in a
fixed range, and that the distance measure is the standard Euclidean
metric.

w xIn his seminal paper on randomized algorithms, Rabin 27 proposed an
algorithm for solving the closest-pair problem. The key idea of the algo-
rithm is to determine the minimal distance d within a random sample of0
points. When the points are grouped according to a grid with resolution
d , the points of a closest pair fall in the same cell or in neighboring cells.0
This considerably decreases the number of possible closest-pair candidates
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Ž .from the total of n n y 1 r2. Rabin proved that with a suitable sample
size the total number of distance calculations performed will be of order n
with overwhelming probability.

A question that was not solved satisfactorily by Rabin is how the points
are grouped according to a d grid. Rabin suggested that this could be0
implemented by dividing the coordinates of the points by d , truncating the0
quotients to integers, and hashing the resulting integer d-tuples. Fortune

w xand Hopcroft 15 , in their more detailed examination of Rabin’s algo-
Ž .rithm, assumed the existence of a special operation FINDBUCKET d , p ,0

which returns an index of the cell into which the point p falls in some
� 4fixed d grid. The indices are integers in the range 1, . . . , n , and distinct0

cells have distinct indices.
Ž w x.On a real RAM for the definition, see 26 , where the generation of

'� 4random numbers, comparisons, arithmetic operations from q, y, ), r, ,
and FINDBUCKET require unit time, Rabin’s random-sampling algorithm

Ž . w x Žruns in O n expected time 27 . Under the same assumptions the
Ž .closest-pair problem can even be solved in O n log log n time in the worst

w x .case, as demonstrated by Fortune and Hopcroft 15 . We next introduce
terminology that allows us to characterize the performance of Rabin’s
algorithm more closely. Every execution of a randomized algorithm suc-
ceeds or fails. The meaning of ‘‘failure’’ depends on the context, but an
execution typically fails if it produces an incorrect result or does not finish
in time. We say that a randomized algorithm is exponentially reliable if, on
inputs of size n, its failure probability is bounded by 2yn «

for some fixed
« ) 0. Rabin’s algorithm is exponentially reliable. Correspondingly, an
algorithm is polynomically reliable if, for every fixed a ) 0, its failure
probability on inputs of size n is at most nya . In the latter case, we allow
the notion of success to depend on a ; an example is the expression ‘‘runs

Žin linear time,’’ where the constant implicit in the term ‘‘linear’’ may and
.usually will be a function of a .

Recently, two other simple closest-pair algorithms were proposed by
w x w xGolin et al. 16 and Khuller and Matias 19 ; both algorithms offer linear

expected running time. Faced with the need for an implementation of the
FINDBUCKET operation, these papers employed randomized hashing

w xschemes that had been developed in the meantime 8, 14 . Golin et al.
presented a variant of their algorithm that is polynomially reliable, but has

Ž . Žrunning time O n log nrlog log n this variant utilizes the polynomially
w x.reliable hashing scheme of 13 .

The preceding time bounds should be contrasted with the fact that in
Žthe algebraic computation-tree model where the available operations are

'� 4comparisons and arithmetic operations from q, y, ), r, , but where
. Ž .indirect addressing is not modeled , Q n log n is known to be the com-
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plexity of the closest-pair problem. Algorithms proving the upper bound
w xwere provided, for example, by Bentley and Shamos 7 and Schwarz et al.

w x30 . The lower bound follows from the corresponding lower bound derived
w x Ž .for the element-distinctness problem by Ben-Or 6 . The V n log n lower

w xbound is valid even if the coordinates of the points are integers 32 or if
w xthe sequence of points forms a simple polygon 1 .

The present paper centers on two issues: First, we completely describe
an implementation of Rabin’s algorithm, including all the details of the
hashing subroutines, and show that it guarantees linear running time
together with exponential reliability. Second, we modify Rabin’s algorithm
so that only very few random bits are needed, but still a polynomial
reliability is maintained.1

As a preliminary step, we address the question of how the grouping of
Ž .points can be implemented when only O n space is available and the

strong FINDBUCKET operation does not belong to the repertoire of available
operations. An important building block in the algorithm is an efficient

Žsolution to the duplicate-grouping problem sometimes called the semisort-
.ing problem , which can be formulated as follows: Given a set of n items,

� 4each of which is labeled by an integer key from 0, . . . , U y 1 , store the
items in an array A of size n so that entries with the same key occupy a

w x w xcontiguous segment of the array, i.e., if 1 F i - j F n and A i and A j
w xhave the same key, then A k has the same key for all k with i F k F j.

Note that full sorting is not necessary, because no order is prescribed for
items with different keys. In a slight generalization, we consider the
duplicate-grouping problem also for keys that are d-tuples of elements

� 4from the set 0, . . . , U y 1 , for some integer d G 1.
We provide two randomized algorithms for dealing with the duplicate-

grouping problem. The first one is very simple; it combines universal
w x Ž . w xhashing 8 with a variant of radix sort 2, p. 77ff and runs in linear time

with polynomial reliability. The second method employs the exponentially
w xreliable hashing scheme of 4 ; it results in a duplicate-grouping algorithm

that runs in linear time with exponential reliability. Assuming that U is a
power of 2 given as part of the input, these algorithms use only arithmetic

� 4operations from q, y, ), DIV . If U is not known, we have to spend
Ž .O log log U preprocessing time on computing a power of 2 greater than

the largest input number; that is, the running time is linear if U s 22 O Žn.
.

Alternatively, we get linear running time if we accept LOG and EXP2 2
among the unit-time operations. It is essential to note that our algorithms

1 In the algorithms of this paper randomization occurs in computational steps like ‘‘pick a
� 4 Ž .random number in the range 0, . . . , r y 1 according to the uniform distribution .’’ Infor-

u vmally we say that such a step ‘‘uses log r random bits.’’2
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w xfor duplicate grouping are conser̈ atï e in the sense of 20 , i.e., all
Ž .numbers manipulated during the computation have O log n q log U bits.

Technically as an ingredient of the duplicate-grouping algorithms, we
introduce a new universal class of hash functions}more precisely, we

w xprove that the class of multiplicative hash functions 21, pp. 509]512 is
w xuniversal in the sense of 8 . The functions in this class can be evaluated

very efficiently using only multiplications and shifts of binary representa-
tions. These properties of multiplicative hashing are crucial to its use in

w xthe signature-sort algorithm of 3 .
On the basis of the duplicate-grouping algorithms we give a rigorous

analysis of several variants of Rabin’s algorithm, including all the details
concerning the hashing procedures. For the core of the analysis, we use an
approach completely different from that of Rabin, which enables us to
show that the algorithm can also be run with very few random bits.
Further, the analysis of the algorithm is extended to cover the case of

Žrepeated input points. Rabin’s analysis was based on the assumption that
.all input points are distinct. The result returned by the algorithm is always

correct; with high probability, the running time is bounded as follows: On
� 4a real RAM with arithmetic operations from q, y, ), DIV, LOG , EXP , the2 2

Ž .closest-pair problem is solved in O n time, and with operations from
� 4 Ž Ž ..q, y, ), DIV it is solved in O n q log log d rd time, where d ismax min max
the maximum and d is the minimum distance between distinct inputmin

Ž ? @points here a DIV b means arb , for arbitrary positive real numbers a
. � 4and b . For points with integer coordinates in the range 0, . . . , U y 1 the

Ž .latter running time can be estimated by O n q log log U . For integer
data, the algorithms are again conservative.

The rest of the paper is organized as follows. In Section 2, the algo-
rithms for the duplicate-grouping problem are presented. The randomized
algorithms are based on the universal class of multiplicative hash func-
tions. The randomized closest-pair algorithm is described in Section 3 and
analyzed in Section 4. The last section contains some concluding remarks
and comments on experimental results. Technical proofs regarding the
problem of generating primes and probability estimates are given in
Appendices A and B.

2. DUPLICATE GROUPING

In this section we present two simple deterministic algorithms and two
randomized algorithms for solving the duplicate-grouping problem. As a
technical tool, we describe and analyze a new, simple universal class of
hash functions. Moreover, a method for generating numbers that are
prime with high probability is provided.
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An algorithm is said to rearrange a given sequence of items, each with a
distinguishing key, stably if items with identical keys appear in the input in
the same order as in the output. To simplify notation in the following
discussion, we will ignore all components of the items except the keys; in
other words, we will consider the problem of duplicate grouping for inputs
that are multisets of integers or multisets of tuples of integers. It will be
obvious that the algorithms presented can be extended to solve the more
general duplicate-grouping problem in which additional data are associ-
ated with the keys.

2.1. Deterministic duplicate grouping

We start with a trivial observation: Sorting the keys certainly solves the
duplicate-grouping problem. In our context, where linear running time is

w xessential, variants of radix sort 2, p. 77ff are particularly relevant.

w x ŽFACT 2.1 2, P. 79 . The sorting problem and hence the duplicate-grouping
. � b 4problem for a multiset of n integers from 0, . . . , n y 1 can be sol̈ ed stably

Ž . Ž .in O b n time and O n space for any integer b G 1. In particular, if b is a
fixed constant, both time and space are linear.

Remark 2.2. Recall that radix sort uses the digits of the n-ary represen-
Ž . wtation of the keys being sorted. To justify the space bound O n instead of

Ž .xthe more natural O b n , observe that it is not necessary to generate and
store the full n-ary representation of the integers being sorted, but that it
suffices to generate a digit when it is needed. Whereas the modulo
operation can be expressed in terms of DIV, ), and y, generating such a
digit needs constant time on a unit-cost RAM with operations from
� 4q, y, ), DIV .

If space is not an issue, there is a simple algorithm for duplicate
grouping that runs in linear time and does not sort. It works similarly to
one phase of radix sort, but avoids scanning the range of all possible key
values in a characteristic way.

LEMMA 2.3. The duplicate-grouping problem for a multiset of n integers
� 4from 0, . . . , U y 1 can be sol̈ ed stably by a deterministic algorithm in time

Ž . Ž .O n and space O n q U .

Proof. For definiteness, assume that the input is stored in any array S
of size n. Let L be an auxiliary array of size U, which is indexed from 0 to

ŽU y 1 and whose possible entries are headers of lists this array need not
.be initialized . The array S is scanned three times from index 1 to index n.

w w xxDuring the first scan, for i s 1, . . . , n, the entry L S i is initialized to
w xpoint to an empty list. During the second scan, the element S i is inserted

w w xxat the end of the list with header L S i . During the third scan, the groups
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w w xxare outputted as follows: for i s 1, . . . , n, if the list with header L S i is
nonempty, it is written to consecutive positions of the output array and

w w xxL S i is made to point to an empty list again. Clearly, this algorithm runs
in linear time and groups the integers stably.

In our context, the algorithms for the duplicate-grouping problem con-
sidered so far are not sufficient because there is no bound on the sizes of
the integers that may appear in our geometric application. The radix-sort
algorithm might be slow and the naive duplicate-grouping algorithm might
waste space. Both time and space efficiency can be achieved by compress-
ing the numbers by means of hashing, as will be demonstrated in the
following text.

2.2. Multiplicatï e unï ersal hashing

To prepare for the randomized duplicate-grouping algorithms, we de-
scribe a simple class of hash functions that is universal in the sense of

w x kCarter and Wegman 8 . Assume that U G 2 is a power of 2, say U s 2 .
� 4 � k 4For l g 1, . . . , k , consider the class HH s h N 0 - a - 2 and a is oddk , l a

� k 4 � l 4of hash functions from 0, . . . , 2 y 1 to 0, . . . , 2 y 1 , where h isa
defined by

h x s ax mod 2 k div 2 ky l for 0 F x - 2 k .Ž . Ž .a

ky1 Ž .The class HH contains 2 distinct hash functions. Because we assumek , l
that on the RAM model a random number can be generated in constant
time, a function from HH can be chosen at random in constant time, andk , l
functions from HH can be evaluated in constant time on a RAM withk , l

� 4 Ž k larithmetic operations from q, y, ), DIV for this 2 and 2 must be
.known, but not k or l .

The most important property of the class HH is expressed in thek , l
following lemma.

� kLEMMA 2.4. Let k and l be integers with 1 F l F k. If x, y g 0, . . . , 2 y
41 are distinct and h g HH is chosen at random, thena k , l

1
Prob h x s h y F .Ž . Ž .Ž .a a ly12

� k 4Proof. Fix distinct integers x, y g 0, . . . , 2 y 1 with x ) y and ab-
� k 4breviate x y y by z. Let A s a N 0 - a - 2 and a is odd . By the

Ž . Ž .definition of h , every a g A with h x s h y satisfiesa a a

k k kylax mod 2 y ay mod 2 - 2 .
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Ž k . Ž k .Since z k 0 mod 2 and a is odd, we have az k 0 mod 2 . Therefore all
such a satisfy

k � ky l 4 � k kyl k 4az mod 2 g 1, . . . , 2 y 1 j 2 y 2 q 1, . . . , 2 y 1 . 2.1Ž .

Ž . sTo estimate the number of a g A that satisfy 2.1 , we write z s z92 with
z9 odd and 0 F s - k. Whereas the odd numbers 1, 3, . . . , 2 k y 1 form a
group with respect to multiplication modulo 2 k, the mapping

a ¬ az9mod 2 k

is a permutation of A. Consequently, the mapping

a2 s ¬ az92 smod 2 kqs s az mod 2 kqs

� s 4is a permutation of the set a2 N a g A . Thus, the number of a g A that
Ž .satisfy 2.1 is the same as the number of a g A that satisfy

s k � ky l 4 � k kyl k 4a2 mod 2 g 1, . . . , 2 y 1 j 2 y 2 q 1, . . . , 2 y 1 . 2.2Ž .

Now, a2 smod 2 k is just the number whose binary representation is given
by the k y s least significant bits of a, followed by s zeroes. This easily

Ž .yields the following result. If s G k y l, no a g A satisfies 2.2 . For
Ž . ky lsmaller s, the number of a g A satisfying 2.2 is at most 2 . Hence the

Ž .probability that a randomly chosen a g A satisfies 2.1 is at most
ky l ky1 ly12 r2 s 1r2 .

Remark 2.5. The lemma says that the class HH of multiplicative hashk , l
w x Žfunctions is two-universal in the sense of 24, p. 140 this notion slightly

w x. w x Žgeneralizes that of 8 . As discussed in 21, p. 509 ‘‘the multiplicative
.hashing scheme’’ , the functions in this class are particularly simple to

evaluate, because the division and the modulo operation correspond to
selecting a segment of the binary representation of the product ax, which
can be done by means of shifts. Other universal classes use functions that

w x w xinvolve division by prime numbers 8, 14 , arithmetic in finite fields 8 ,
w xmatrix multiplication 8 , or convolution of binary strings over the two-

w xelement field 22 , i.e., operations that are more expensive than multiplica-
tions and shifts unless special hardware is available.

It is worth noting that the class HH of multiplicative hash functions mayk , l
be used to improve the efficiency of the static and dynamic perfect-hashing

w x w xschemes described in 14 and 12 , in place of the functions of the type
Ž .x ¬ ax mod p mod m, for a prime p, which are used in these papers and

which involve integer division. For an experimental evaluation of this
w x w xapproach, see 18 . In another interesting development, Raman 29 showed

that the so-called method of conditional probabilities can be used to
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Ž .obtain a function in HH with desirable properties ‘‘few collisions’’ in ak , l
Ždeterministic manner previously known deterministic methods for this

w x.purpose use exhaustive search in suitable probability spaces 14 ; this
allowed him to derive an efficient deterministic scheme for the construc-
tion of perfect hash functions.

In the following lemma is stated a well-known property of universal
classes.

LEMMA 2.6. Let n, k, and l be positï e integers with l F k and let S be a
� k 4set of n integers in the range 0, . . . , 2 y 1 . Choose h g HH at random.k , l

Then

n2

Prob h is 1]1 on S G 1 y .Ž . l2

Proof. By Lemma 2.4,

1 n2
nProb h x s h y for some x , y g S F ? F .Ž . Ž .Ž . ly1 lž /2 2 2

2.3. Duplicate grouping ¨ia unï ersal hashing

Having provided the universal class HH , we are now ready to describek , l
our first randomized duplicate-grouping algorithm.

THEOREM 2.7. Let U G 2 be known and a power of 2 and let a G 1 be
an arbitrary integer. The duplicate-grouping problem for a multiset of n integers

� 4in the range 0, . . . , U y 1 can be sol̈ ed stably by a conser̈ atï e randomized
Ž . Ž .algorithm that needs O n space and O a n time on a unit-cost RAM with

� 4arithmetic operations from q, y, ), DIV ; the probability that the time bound
is exceeded is bounded by nya . The algorithm requires fewer than log U2
random bits.

� 4Proof. Let S be the multiset of n integers from 0, . . . , U y 1 to be
uŽ . vgrouped. Further, let k s log U and l s a q 2 log n and assume with-2 2

out loss of generality that 1 F l F k. As a preparatory step, we compute 2 l.
The elements of S are then grouped as follows. First, a hash function h
from HH is chosen at random. Second, each element of S is mappedk , l

� l 4 Ž Ž ..under h to the range 0, . . . , 2 y 1 . Third, the resulting pairs x, h x ,
Ž .where x g S, are sorted by radix sort Fact 2.1 according to their second

components. Fourth, it is checked whether all elements of S that have the
same hash value are in fact equal. If this is the case, the third step has
produced the correct result; if not, the whole input is sorted, e.g., with
merge sort.
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l Ž .The computation of 2 is easily carried out in O a log n time. The four
Ž . Ž . Ž . Ž .steps of the algorithm proper require O 1 , O n , O a n , and O n time,

Ž .respectively. Hence, the total running time is O a n . The result of the
Ž .third step is correct if h is 1]1 on the distinct elements of S, which

happens with probability

n2 1
Prob h is 1]1 on S G 1 y G 1 yŽ . al n2

by Lemma 2.6. In case the final check indicates that the outcome of the
third step is incorrect, the call of merge sort produces a correct output in
Ž .O n log n time, which does not impair the linear expected running time.

The space requirements of the algorithm are dominated by those of the
Ž .sorting subroutines, which need O n space. Whereas both radix sort and

merge sort rearrange the elements stably, duplicate grouping is performed
stably. It is immediate that the algorithm is conservative and that the
number of random bits needed is k y 1 - log U.2

2.4. Duplicate grouping ¨ia perfect hashing

We now show that there is another, asymptotically even more reliable,
duplicate-grouping algorithm that also works in linear time and space. The
algorithm is based in the randomized perfect-hashing scheme of Bast and

w xHagerup 4 .
The perfect-hashing problem is the following: Given a multiset S :

� 40, . . . , U y 1 , for some universe size U, construct a function h: S ª
� < <4 Ž0, . . . , c S , for some constant c, so that h is 1]1 on the distinct

. w xelements of S. In 4 a parallel algorithm for the perfect-hashing problem
is described. We need the following sequential version.

w xFACT 2.8 4 . Assume that U is a known prime. Then the perfect-hashing
� 4problem for a multiset of n integers from 0, . . . , U y 1 can be sol̈ ed by a

Ž . Ž .randomized algorithm that requires O n space and runs in O n time with
probability 1 y 2yn V Ž1.

. The hash function produced by the algorithm can be
e¨aluated in constant time.

To use this perfect-hashing scheme, we need to have a method for
computing a prime larger than a given number m. To find such a prime,
we again use a randomized algorithm. The simple idea is to combine a

Ž w x.randomized primality test as described, e.g., in 10, p. 839ff with random
sampling. Such algorithms for generating a number that is probably prime

w x w x w xare described or discussed in several papers, e.g., in 5 , 11 , and 23 .
Whereas we are interested in the situation where the running time is
guaranteed and the failure probability is extremely small, we use a variant
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of the algorithms tailored to meet these requirements. The proof of the
following lemma, which includes a description of the algorithm, can be
found in Appendix A.

LEMMA 2.9. There is a randomized algorithm that, for any gï en positï e
integers m and n with 2 F m F 2 u n1r4 v, returns a number p with m - p F 2m

Ž .such that the following statement holds: the running time is O n and the
probability that p is not prime is at most 2yn1r4

.

Remark 2.10. The algorithm of Lemma 2.9 runs on a unit-cost RAM
� 4with operations from q, y, ), DIV . The storage space required is constant.

Ž .Moreover, all numbers manipulated contain O log m bits.

THEOREM 2.11. Let U G 2 be known and a power of 2. The duplicate-
� 4grouping problem for a multiset of n integers in the range 0, . . . , U y 1 can

Ž .be sol̈ ed stably by a conser̈ atï e randomized algorithm that needs O n
� 4space on a unit-cost RAM with arithmetic operations from q, y, ), DIV , so

Ž . yn V Ž1.
that the probability that more than O n time is used is 2 .

� 4Proof. Let S be the multiset of n integers from 0, . . . , U y 1 to be
grouped. Let us call U large if it is larger than 2 u n1r4 v and take U9 s

� u n1r4 v4min U, 2 . We distinguish between two cases. If U is not large, i.e.,
U s U9, we first apply the method of Lemma 2.9 to find a prime p
between U and 2U. Then, the hash function from Fact 2.8 is applied to

� 4 � 4map the distinct elements of S : 0, . . . , p y 1 to 0, . . . , cn , where c is a
constant. Finally, the values obtained are grouped by one of the determin-

Žistic algorithms described in Section 2.1 Fact 2.1 and Lemma 2.3 are
.equally suitable . In case U is large, we first ‘‘collapse the universe’’ by

� 4 � 4mapping the elements of S : 0, . . . , U y 1 into the range 0, . . . , U9 y 1
by a randomly chosen multiplicative hash function, as described in Section
2.2. Then, using the ‘‘collapsed’’ keys, we proceed as before for a universe
that is not large.

Let us now analyze the resource requirements of the algorithm. It is
Ž . Ž � 1r4 4.easy to check conservatively in O min n , log U time whether or not

U is large. Lemma 2.9 shows how to find the required prime p in the
� 4 Ž . yn1r4

range U9 q 1, . . . , 2U9 in O n time with error probability at most 2 .
In case U is large, we must choose a function h at random from HH ,k , l

k u 1r4 v lwhere 2 s U is known and l s n . Clearly, 2 can be calculated in
Ž . Ž 1r4. Ž .time O l s O n . The values h x , for all x g S, can be computed in
Ž < <. Ž .time O S s O n ; according to Lemma 2.6, h is 1]1 on S with probabil-

ity at least 1 y n2r2 n1r4
, which is bounded below by 1 y 2yn1r5

if n is large
enough. The deterministic duplicate-grouping algorithm runs in linear
time and space, because the size of the integer domain is linear. Therefore
the whole algorithm requires linear time and space and it is exponentially
reliable because all the subroutines used are exponentially reliable.
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Whereas the hashing subroutines do not move the elements and both
deterministic duplicate-grouping algorithms of Section 2.1 rearrange the
elements stably, the whole algorithm is stable. The hashing scheme of Bast
and Hagerup is conservative. The justification that the other parts of the
algorithm are conservative is straightforward.

Remark 2.12. As concerns reliability, Theorem 2.11 is theoretically
stronger than Theorem 2.7, but the program based on the former will be
much more complicated. Moreover, n must be very large before the
algorithm of Theorem 2.11 is actually significantly more reliable than that
of Theorem 2.7.

In Theorems 2.7 and 2.11 we assumed U to be known. If this is not the
case, we have to compute a power of 2 larger than U. Such a number can
be obtained by repeated squaring, simply computing 2 i, for i s
0, 1, 2, 3, . . . , until the first number larger than U is encountered. This

Ž .takes O log log U time. Observe also that the largest number manipulated
will be at most quadratic in U. Another alternative is to accept both LOG2
and EXP among the unit-time operations and to use them to compute2
2 u log 2U v. As soon as the required power of 2 is available, the preceding
algorithms can be used. Thus, Theorem 2.11 can be extended as follows
Ž .the same holds for Theorem 2.7, but only with polynomial reliability .

THEOREM 2.13. The duplicate-grouping problem for a multiset of n inte-
� 4gers in the range 0, . . . , U y 1 can be sol̈ ed stably by a conser̈ atï e

Ž .randomized algorithm that needs O n space and

Ž . Ž . �1 O n time on a unit-cost RAM with operations from q, y, ), DIV,
4LOG , EXP or2 2

Ž . Ž .2 O n q log log U time on a unit-cost RAM with operations from
� 4q, y, ), DIV .

The probability that the time bound is exceeded is 2yn V Ž1.
.

2.5. Randomized duplicate grouping for d-tuples

In the context of the closest-pair problem, the duplicate-grouping prob-
� 4lem arises not for multisets of integers from 0, . . . , U y 1 , but for

� 4multisets of d-tuples of integers from 0, . . . , U y 1 , where d is the
dimension of the space under consideration. Even if d is not constant, our
algorithms are easily adapted to this situation with a very limited loss of
performance. The simplest possibility would be to transform each d-tuple

� d 4into an integer in the range 0, . . . , U y 1 by concatenating the binary
Žrepresentations of the d components, but this would require handling e.g.,

.multiplying numbers of around d log U bits, which may be undesirable.2
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In the proof of the following theorem we describe a different method,
which keeps the components of the d-tuples separate and thus deals with

Ž .numbers of O log U bits only, independently of d.

THEOREM 2.14. Theorems 2.7, 2.11, and 2.13 remain ¨alid if ‘‘multiset of
n integers’’ is replaced by ‘‘multiset of n d-tuples of integers’’ and both the time
bounds and the probability bounds are multiplied by a factor of d.

Proof. It is sufficient to indicate how the algorithms described in the
proofs of Theorems 2.7 and 2.11 can be extended to accommodate d-
tuples. Assume that an array S containing n d-tuples of integers in the

� 4range 0, . . . , U y 1 is given as input. We proceed in phases d9 s 1, . . . , d.
ŽIn phase d9, the entries of S in the order produced by the previous phase
.or in the initial order if d9 s 1 are grouped with respect to component d9

Žby using the method described in the proofs of Theorems 2.7 and 2.11. In
the case of Theorem 2.7, the same hash function should be used for all

.phases to avoid using more than log U random bits. Even though the2
d-tuples are rearranged with respect to their hash values, the reordering is

Ž .always done stably, no matter whether radix sort Fact 2.1 or the naive
Ž .deterministic duplicate-grouping algorithm Lemma 2.3 is employed. This

observation allows us to show by induction on d9 that after phase d9 the
d-tuples are grouped stably according to components 1, . . . , d9, which
establishes the correctness of the algorithm. The time and probability
bounds are obvious.

3. A RANDOMIZED CLOSEST-PAIR ALGORITHM

In this section we describe a variant of the random-sampling algorithm
w xof Rabin 27 for solving the closest-pair problem, complete with all details

concerning the hashing procedure. For the sake of clarity, we provide a
detailed description for the two-dimensional case only.

Let us first define the notion of ‘‘grids’’ in the plane, which is central to
Ž .the algorithm and which generalizes easily to higher dimensions . For all

d ) 0, a grid G with resolution d , or briefly a d grid G, consists of two
infinite sets of equidistant lines, one parallel to the x axis, the other
parallel to the y axis, where the distance between two neighboring lines is
d . In precise terms, G is the set

2 < < < <x , y g R x y x , y y y g d ? ZŽ .� 40 0

Ž . 2 2for some ‘‘origin’’ x , y g R . The grid G partitions R into disjoint0 0
Ž . Ž .regions called cells of G, two points x, y and x9, y9 being in the same

?Ž . @ ?Ž . @ ?Ž . @ ?Ž . @cell if x y x rd s x9 y x rd and y y y rd s y9 y y rd0 0 0 0
Ž .that is, G partitions the plane into half-open squares of side length d .
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� 4Let S s p , . . . , p be a multiset of points in the Euclidean plane. We1 n
w xassume that these points are stored in an array S 1 . . . n . Further, let c be

a fixed constant with 0 - c - 1r2, to be specified later. The algorithm for
computing a closest pair in S consists of the following steps.

1r2qc Ž .1. Fix a sample size s with 18n F s s O nrlog n . Choose a
� 4 � 4sequence t , . . . , t of s elements of 1, . . . , n randomly. Let T s t , . . . , t1 s 1 s

and let s9 denote the number of distinct elements in T. Store the points pj
w x Ž .with j g T in an array R 1 . . . s9 R may contain duplicates if S does .

2. Deterministically determine the closest-pair distance d of the0
sample stored in R. If R contains duplicates, the result is d s 0, and the0
algorithm stops.

3. Compute a closest pair among all the input points. For this, draw
a grid G with resolution d and consider the four different grids G with0 i
resolution 2d , for i s 1, 2, 3, 4, that overlap G, i.e., that consist of a subset0
of the lines in G.

3a. Group together the points of S falling into the same cell of G .i
3b. In each group of at least two points, deterministically find a

closest pair. Finally output an overall closest pair encountered in this
process.

w xIn contrast to Rabin’s algorithm 27 , we need only one sampling. The
Ž 1r2qc.sample size s should be V n , for some fixed c with 0 - c - 1r2, to

Ž . Ž .guarantee reliability cf. Section 4 and O nrlog n to ensure that the
sample can be handled in linear time. A more formal description of the
algorithm is given in Fig. 1.

w xIn 27 , Rabin did not describe how to group the points in linear time.
As a matter of fact, no linear-time duplicate-grouping algorithms were
known at the time. Our construction is based on the algorithms given in
Section 2. We assume that the procedure ‘‘duplicate-grouping’’ rearranges
the points of S so that all points with the same group index, as determined

Ž . Ž .by the grid cells, are stored consecutively. Let x y and x ymin min max max
Ž .be the smallest and largest x coordinate y coordinate of a point in S.

Ž .The group index of a point p s x, y is

x q dx y x y q dy y ymin min
group p s , ,Ž .d x ,d y ,d ž /d d

Ž ŽŽ . .. Ž ŽŽ . ..a pair of numbers of O log x y x rd and O log y y y rdmax min max min
bits. To implement this function, we have to preprocess the points to
compute the minimum coordinates x and y .min min

The correctness of the procedure ‘‘randomized-closest-pair’’ follows
from the fact that, because d is an upper bound on the minimum distance0
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FIG. 1. A formal description of the closest-pair algorithm.

between two points of the multiset S, a closest pair falls into the same cell
in at least one of the shifted 2d grids.0

Remark 3.1. When computing the distances we have assumed implicitly
that the square-root operation is available. However, this is not really
necessary. In Step 2 of the algorithm we could calculate the distance d of0

Ž .a closest pair p , p of the sample using the Manhattan metric La b 1
instead of the Euclidean metric L . In step 3b of the algorithm we could2
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compare the squares of the L distances instead of the actual distances.2
Whereas even with this change, d is an upper bound on the L distance0 2
of a closest pair, the algorithm will still be correct. On the other hand, the
running-time estimate for step 3, as given in the next section, does not

Ž .change. See the analysis of step 3b following Corollary 4.4. The tricks just
mentioned suffice to show that the closest-pair algorithm can be made to
work for any fixed L metric without computing pth roots, if p is ap
positive integer or `.

Remark 3.2. The randomized closest-pair algorithm generalizes natu-
Ž .rally to any d-dimensional space. Note that two shifts by 0 and d of 2d0 0

grids are needed in the one-dimensional case, in the two-dimensional case
4 and in the d-dimensional case 2 d shifted grids must be taken into
account.

Remark 3.3. For implementing the procedure ‘‘deterministic-closest-
pair’’ any of a number of algorithms can be used. Small input sets are best
handled by the ‘‘brute-force’’ algorithm, which calculated the distances

Ž .between all n n y 1 r2 pairs of points. In particular, all calls to
‘‘deterministic-closest-pair’’ in step 3b are executed in this way. For larger
input sets, in particular, for the call to ‘‘deterministic-closest-pair’’ in step
2, we use an asymptotically faster algorithm. For different numbers d of
dimensions various algorithms are available. In the one-dimensional case
the closest-pair problem can be solved by sorting the points and finding
the minimum distance between two consecutive points. In the two-
dimensional case one can use the simple plane-sweep algorithm of

w xHinrichs et al. 17 . In the multidimensional case, the divide-and-conquer
w xalgorithm of Bentley and Shamos 7 and the incremental algorithm of

w xSchwarz et al. 30 are applicable. Assuming d to be constant, all the
Ž . Ž .algorithms mentioned previously run in O n log n time and O n space.

Be aware, however, that the complexity depends heavily on d.

4. ANALYSIS OF THE CLOSEST-PAIR ALGORITHM

In this section, we prove that the algorithm given in Section 3 has linear
time complexity with high probability. Again, we treat only the two-
dimensional case in detail. Time bounds for most parts of the algorithm
were established in previous sections or are immediately clear: step 1 of

Ž . Ž .the algorithm taking the sample of size s9 F s obviously uses O s time.
Ž . Ž .Whereas we assumed that s s O nrlog n , no more than O n time is

Žconsumed in step 2 for finding a closest pair within the sample see
.Remark 3.3 . The complexity of the grouping performed in step 3a was

analyzed in Section 2. To implement the function group , whichd x,d y,d
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Ž .returns the group indices, we need some preprocessing that takes O n
time.

It remains only to analyze the cost of step 3b, where closest pairs are
found within each group. It will be shown that a sample of size s G

1r2qc Ž .18n , for any fixed c with 0 - c - 1r2, guarantees O n -time perfor-
mance with a failure probability of at most 2yn c

. This holds even if a
closest pair within each group is computed by the brute-force algorithm
Ž .see Remark 3.3 . On the other hand, if the sampling procedure is
modified in such a way that only a few fourwise independent sequences are
used to generate the sampling indices t , . . . , t , linear running time will1 s

Ž ya .still be guaranteed with probability 1 y O n , for some constant a ,
while the number of random bits needed is drastically reduced.

The analysis is complicated by the fact that points may occur repeatedly
� 4in the multiset S s p , . . . , p . Of course, the algorithm will return two1 n

identical points p and p in this case, and the minimum distance is 0.a b
w xNote that in Rabin’s paper 27 as well as in that of Khuller and Matias

w x19 , the input points are assumed to be distinct.
w xAdapting a notion from 27 , we first define what it means that there are

‘‘many’’ duplicates and show that in this case the algorithm runs fast. The
longer part of the analysis then deals with the situation where there are
few or no duplicate points. For reasons of convenience we will assume
throughout the analysis that n G 800.

Ž . Ž .For a finite multi set S and a partition D s S , . . . , S of S into1 m
nonempty subsets, let

m
1 < < < <N D s S ? S y 1 ,Ž . Ž .Ý m m2

ms1

Ž .which is the number of unordered pairs of elements of S that lie in the
same set S of the partition. In the case of the natural partition D of them S

� 4multiset S s p , . . . , p , where each class consists of all copies of one of1 n
the points, we use the abbreviation

� 4N S s N D s i , j N 1 F i - j F n and p s p .Ž . Ž . � 4S i j

Ž .We first consider the case where N S is large; more precisely, we
Ž .assume for the time being that N S G n. In Appendix B it is proved that

'under this assumption, if we pick a sample of somewhat more than n
random elements of S, with high probability the sample will contain at
least two equal points. More precisely, Corollary B.2 shows that the
s G 18n1r2qc sample points chosen in step 1 of the algorithm will contain
two equal points with probability at least 1 y 2yn c

. The deterministic
closest-pair algorithm invoked in step 2 will identify one such pair of
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duplicates and return d s 0; at this point the algorithm terminates,0
having used only linear time.

For the remainder of this section we assume that there are not too many
Ž .duplicate points, that is, that N S - n. In this case, we may follow the

argument from Rabin’s paper. If G is a grid in the plane, then G induces a
Žpartition D of the multiset S into disjoint subsets S , . . . , S withS,G 1 m

.duplicates . Two points of S are in the same subset of the partition if and
only if they fall into the same cell of G. As in the preceding special case of
Ž .N S , we are interested in the number

N S, G s N DŽ . Ž .S ,G

� 4s i , j N p and p lie in the same cell of the grid G .� 4i j

w xThis notion, which was also used in Rabin’s analysis 27 , expresses the
work done in step 3b when the subproblems are solved by the brute-force
algorithm.

w xLEMMA 4.1 27 . Let S be a multiset of n points in the plane. Further, let
G be a grid with resolution d and let G9 be one of the four grids with

3Ž . Ž .resolution 2d that o¨erlap G. Then N S, G9 F 4N S, G q n.2

Proof. We consider four cells of G whose union is one cell of G9.
Assume that these four cells contain k , k , k , and k points from S1 2 3 4
Ž . Ž .with duplicates , respectively. The contribution of these cells to N S, G is

1 4 Ž . Ž . Ž .b s Ý k k y 1 . The contribution of the one larger cell to N S, G9is1 i i2
1 4Ž .is k k y 1 , where k s Ý k . We want to give an upper bound onis1 i2

1 Ž .k k y 1 in terms of b.2
Ž . w .The function x ¬ x x y 1 is convex in 0, ` . Hence

4
1 1 1 1k k y 1 F k k y 1 s b.Ž .Ž . Ý i i4 4 4 2

is1

This implies

1 1 3 1 1 3 3k k y 1 s k k y 4 q k F 8 ? k k y 1 q k F 4 ? b q k .Ž . Ž . Ž .2 2 2 4 4 2 2

Summing the last inequality over all cells of G9 yields the desired inequal-
3Ž . Ž .ity N S, G9 F 4N S, G q n.2

Remark 4.2. In the case of d-dimensional space, this calculation
can be carried out in exactly the same way. This results in the estimate

1d dŽ . Ž . Ž .N S, G9 F 2 N S, G q 2 y 1 n.2

Ž .COROLLARY 4.3. Let S be a multiset of n points that satisfies N S - n.
Ž .Then there is a grid G* with n F N S, G* - 5.5n.
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Proof. We start with a grid G so fine that no cell of the grid contains
Ž . Ž .two distinct points in S. Then, obviously, N S, G s N S - n. By repeat-

Ž .edly doubling the grid size as in Lemma 4.1 until N S, G9 G n for the first
time, we find a grid G* satisfying the claim.

COROLLARY 4.4. Let S be a multiset of size n and let G be a grid with
resolution d . Further, let G9 be an arbitrary grid with resolution at most d .

Ž . Ž .Then N S, G9 F 16N S, G q 6n.

Proof. Let G , for i s 1, 2, 3, 4, be the four different grids with resolu-i

tion 2d that overlap G. Each cell of G9 is completely contained in some
cell of at least one of the grids G . Thus, the sets of the partition inducedi

by G9 can be divided into four disjoint classes depending on which of the
grids G covers the corresponding cell completely. Therefore, we havei
Ž . 4 Ž .N S, G9 F Ý N S, G . Applying Lemma 4.1 and summing up yieldsis1 i
Ž . Ž .N S, G9 F 16N S, G q 6n, as desired.

Now we are ready to analyze step 3b of the algorithm. As previously
Ž .stated, we assume that N S - n; hence the existence of some grid G* as

in Corollary 4.3 is ensured. Let d * ) 0 denote the resolution of G*.
Ž .We apply Corollary B.2 to the partition of S with duplicates induced by

G* to conclude that with probability at least 1 y 2yn c
the random sample

taken in step 1 of the algorithm contains two points from the same cell of
G*. It remains to show that if this is the case, then step 3b of the algorithm

Ž .takes O n time.
Whereas the real number d calculated by the algorithm in step 2 is0

bounded by the distance of two points in the same cell of G*, we must
Žhave d F 2d *. This is the case even if in step 2 the Manhattan metric L0 1

.is used. Thus the four grids G , G , G , G used in step 3 have resolution1 2 3 4
2d F 4d *. We form a new conceptual grid G** with resolution 4d * by0

Ž .omitting all but every fourth line from G*. By the inequality N S, G* -
Ž .5.5n Corollary 4.3 and a double application of Lemma 4.1, we obtain

Ž . Ž .N S, G** s O n . The resolution 4d * of the grid G** is at least 2d .0
Hence we may apply Corollary 4.4 to obtain that the four grids

Ž . Ž .G , G , G , G used in step 3 of the algorithm satisfy N S, G s O n , for1 2 3 4 i
Ž 4 Ž Ž .i s 1, 2, 3, 4. Obviously the running time of step 3b is O Ý N S, G qis1 i

..n ; by the foregoing statement this bound is linear in n. This finishes the
analysis of the cost of step 3b.

It is easy to see that Corollaries 4.3 and 4.4 as well as the analysis of step
3b generalize from the plane to any fixed dimension d. Combining the
preceding discussion with Theorem 2.13, we obtain the following theorem.
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THEOREM 4.5. The closest-pair problem for a multiset of n points in
d-dimensional space, where d G 1 is a fixed integer, can be sol̈ ed by a

Ž .randomized algorithm that needs O n space and

Ž . Ž . �1 O n time on a real RAM with operations from q, y, ), DIV,
4LOG , EXP or2 2

Ž . Ž Ž ..2 O n q log log d rd time on a real RAM with operationsmax min
� 4from q, y, ), DIV ,

where d and d denote the maximum and the minimum distance betweenmax min
any two distinct points, respectï ely. The probability that the time bound is
exceeded is 2yn V Ž1.

.

Proof. The running time of the randomized closest-pair algorithm is
dominated by that of step 3a. The group indices used in step 3a are

� u v4d-tuples of integers in the range 0, . . . , d rd . By Theorem 2.14,max min
Ž . Ž .parts 1 and 2 of the theorem follow directly from the corresponding

parts of Theorem 2.13. Whereas all the subroutines used finish within their
respective time bounds with probability 1 y 2yn V Ž1.

, the same is true for
the whole algorithm. The amount of space required is obviously linear.

In the situation of Theorem 4.5, if the coordinates of the input points
� 4happen to be integers drawn from a range 0, . . . , U y 1 , we can replace

the real RAM by a conservative unit-cost RAM with integer operations;
Ž . Ž .the time bound of part 2 then becomes O n q log log U . The number of

random bits used by either version of the algorithm is quite large, namely,
essentially as large as possible with the given running time. Even if the
number of random bits used is severely restricted, we can still retain an
algorithm that is polynomially reliable.

THEOREM 4.6. Let a , d G 1 be arbitrary fixed integers. The closest-pair
problem for a multiset of n points in d-dimensional space can be sol̈ ed by a
randomized algorithm with the time and space requirements stated in Theorem

Ž Ž .. w Ž4.5 that uses only O log n q log d rd random bits or O log n qmax min
. � 4xlog U random bits for integer input coordinates in the range 0, . . . , U y 1

Ž ya .and that exceeds the time bound with probability O n .

u 3r4 vProof. We let s s 16a ? n and generate the sequence t , . . . , t in1 s
the algorithm as the concatenation of 4a independently chosen sequences
of four-independent random values that are approximately uniformly dis-

� 4tributed in 1, . . . , n . This random experiment and its properties are
described in detail in Corollary B.4 and Lemma B.5 in Appendix B. The

Ž . Ž .time needed is o n , and the number of random bits needed is O log n .
The duplicate grouping is performed with the simple method described in

Ž Ž .. Ž .Section 2.3. This requires only O log d rd or O log U random bits.max min
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The analysis is exactly the same as in the proof of Theorem 4.5, except that
Corollary B.4 is used instead of Corollary B.2.

5. CONCLUSIONS

We have provided an asymptotically efficient algorithm for computing a
closest pair of n points in d-dimensional space. The main idea of the
algorithm is to use random sampling to reduce the original problem to a
collection of duplicate-grouping problems. The performance of the algo-
rithm depends on the operations assumed to be primitive in the underlying
machine model. We proved that, with high probability, the running time

Ž .is O n on a real RAM capable of executing the arithmetic operations
� 4from q, y, ), DIV, LOG , EXP in constant time. Without the operations2 2

LOG and EXP , the running time increases by an additive term of2 2
Ž Ž ..O log log d rd , where d and d denote the maximum andmax min max min

the minimum distance between two distinct points, respectively. When the
� 4coordinates of the points are integers in the range 0, . . . , U y 1 , the

Ž . Ž .running times are O n and O n q log log U , respectively. For integer
data the algorithm is conservative, i.e., all the numbers manipulated

Ž .contain O log n q log U bits.
We proved that the bounds on the running times hold also when the

collection of input points contains duplicates. As an immediate corollary of
this result we get that the following decision problems, which are often

Ž w x.used in lower-bound arguments for geometric problems see 26 , can be
solved as efficiently as the one-dimensional closest-pair problem on the

Ž .real RAM Theorems 4.5 and 4.6 :
Ž .1 Element-distinctness problem: Given n real numbers, decide if

any two of the numbers are equal.
Ž .2 «-closeness problem: Given n real numbers and a threshold value

« ) 0, decide if any two of the numbers are at distance less than « from
each other.

Finally, we would like to mention practical experiments with our simple
duplicate-grouping algorithm. The experiments were concluded by Tomi

Ž .Pasanen University of Turku, Finland . He found that the duplicate-
grouping algorithm described in Theorem 2.7, which is based on radix sort
Ž .with a s 3 , behaves essentially as well as heap sort. For small inputs
Ž .n - 50,000 , heap sort was slightly faster, whereas for large inputs, heap
sort was slightly slower. Randomized quick sort turned out to be much
faster than any of these algorithms for all n F 1,000,000. One drawback of
the radix-sort algorithm is that it requires extra memory space for linking
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Ž .the duplicates, whereas heap sort as well as in-place quick sort does not
require any extra space. One should also note that in some applications
the word length of the actual machine can be restricted to, say, 32 bits.

11 ŽThis means that when n ) 2 and a s 3, the hash function h g HH seek ,l
.the proof of Theorem 2.7 is not needed for collapsing the universe; radix

sort can be applied directly. Therefore the integers must be long before
the full power of our methods comes into play.

APPENDIX A. GENERATING PRIMES

In this appendix we provide a proof of Lemma 2.9. The main idea is
expressed in the proof of the following lemma.

LEMMA A.1. There is a randomized algorithm that, for any gï en integer
m G 2, returns an integer p with m - p F 2m such that the following

ŽŽ .4.statement holds: the running time is O log m and the probability that p is
not prime is at most 1rm.

Proof. The heart of the construction is the randomized primality test
w x w x Ždue to Miller 25 and Rabin 28 for a description and an analysis, see,

w x.e.g., 10, p. 839ff . If an arbitrary number x of b bits is given to the test as
an input, then the following holds:

Ž . Ž .1 If x is prime, then Prob the result of the test is ‘‘prime’’ s 1.
Ž . Ž .2 If x is composite, then Prob the result of the test is ‘‘prime’’ F

1r4.
Ž . Ž .3 Performing the test once requires O b time and all numbers

Ž .manipulated in the test are O b bits long.

By repeating the test t times, the reliability of the result can be increased
such that for composite x we have

Prob the result of the test is ‘‘prime’’ F 1r4 t .Ž .

To generate a ‘‘probable prime’’ that is greater than m we use a random
Ž .sampling algorithm. We select s to be specified later integers from the

� 4interval m q 1, . . . , 2m at random. Then these numbers are tested one by
one until the result of the test is ‘‘prime.’’ If no such result is obtained, the
number m q 1 is returned.

The algorithm fails to return a prime number if there is no prime among
the numbers in the sample or if one of the composite numbers in the
sample is accepted by the primality test. Next we estimate the probabilities
of these events.



A RANDOMIZED ALGORITHM FOR CLOSEST PAIRS 41

Ž . <� 4 <It is known that the function p x s p N p F x and p is prime ,
defined for any real number x, satisfies

n
p 2n y p n )Ž . Ž .

3 ln 2nŽ .
Žfor all integers n ) 1. For a complete proof of this fact, also known as the

w x .inequality of Finsler, see 31, Sects. 3.10 and 3.14 . That is, the number of
� 4 Ž Ž ..primes in the set m q 1, . . . , 2m is at least mr 3 ln 2m . We choose

2s s s m s 3 ln 2mŽ . Ž .Ž .
and

t s t m s max log s m , log 2m .� 4Ž . Ž . Ž .2 2

w Ž . Ž . xNote that t m s O log m . Then the probability that the random sample
contains no prime at all is bounded by

Ž .ln 2 ms Ž .3 ln 2 m1 1 1
ln Ž2 m.1 y F 1 y - e s .ž / ž /ž /3 ln 2m 3 ln 2m 2mŽ . Ž .

The probability that one of the at most s composite numbers in the sample
will be accepted is smaller than

1t ylog sŽm. ylog Ž2 m.2 2s m ? 1r4 F s m ? 2 ? 2 s .Ž . Ž . Ž .
2m

Summing up, the failure probability of the algorithm is at most
Ž Ž ..2 ? 1r 2m s 1rm, as claimed. If m is a b-bit number, the time required

4Ž . ŽŽ . .is O s ? t ? b , that is, O log m .

Remark A.2. The problem of generating primes is discussed in greater
w xdetail by Damgard et al. 11 . Their analysis shows that the proof of˚

Lemma A.1 is overly pessimistic. Therefore, without sacrificing reliability,
the sample size s andror the repetition count t can be decreased; in this
way considerable savings in the running time are possible.

LEMMA 2.9. There is a randomized algorithm that, for any gï en positï e
integers m and n with 2 F m F 2 u n1r4 v, returns a number p with m - p F 2m

Ž .such that the following statement holds: the running time is O n , and the
probability that p is not prime is at most 2yn1r4

.

Proof. We increase the sample size s and the repetition count t in the
algorithm of Lemma A.1 as

1r4s s s m , n s 6 ? ln 2m ? nŽ . Ž . u v

and
1r4t s t m , n s 1 q max log s m , n , n .Ž . Ž . u v� 42
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As before, the failure probability is bounded by the sum of the terms

Ž .s m , n1 1r4 1r4y2 u n v y1yn1 y - e - 2ž /3 ln 2mŽ .

and

Ž . 1r4 1r4t m , n yŽ1qu n v. y1yns m , n ? 1r4 F 2 F 2 .Ž . Ž .

This proves the bound 2yn1r4
on the failure probability. The running time

is

O s ? t ? log m s O log m ? n1r4 ? log log m q log n q n1r4 ? log mŽ . Ž . Ž .Ž .
s O n .Ž .

APPENDIX B. RANDOM SAMPLING IN PARTITIONS

In this appendix we deal with some technical details of the analysis of
the closest-pair algorithm. For a finite set S and a partition D s
Ž .S , . . . , S of S into nonempty subsets, let1 m

< < � 4P D s p : S N p s 2 n 'm g 1, . . . , m : p : S .Ž . � 4m

Ž . < Ž . <Note that the quantity N D defined in Section 4 equals P D . For the
analysis of the closest-pair algorithm, we need the following technical fact:

'Ž .If N D is linear in n and more than 8 n elements are chosen at random
from S, then with a probability that is not too small, two elements from
the same subset of the partition are picked. A similar lemma was proved

w xby Rabin 27, Lemma 6 . In Appendix B.1 we give a totally different proof,
Ž .resting on basic facts from probability theory viz., Chebyshev’s inequality ,

which may make it more obvious than Rabin’s proof why the lemma is
true. Further, it will turn out that full independence of the elements in the
random sample is not needed, but rather that fourwise independence is
sufficient. This observation is crucial for a version of the closest-pair
algorithm that uses only few random bits. The technical details are given in
Appendix B.2.

B.1. The sampling lemma

LEMMA B.1. Let n, m, and s be positï e integers, let S be a set of size
Ž .n G 800, let D s S , . . . , S be a partition of S into nonempty subsets with1 m
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Ž .N D G n, and assume that s random elements t , . . . , t are drawn indepen-1 s 'dently from the uniform distribution o¨er S. Then if s G 8 n ,

� 4 � 4Prob ' i , j g 1, . . . , s 'm g 1, . . . , m : t / t n t , t g SŽ .i j i j m

'4 n
) 1 y . B.1Ž .

s

Proof. We first note that we may assume, without loss of generality,
that

n F N D F 1.1n. B.2Ž . Ž .

Ž .To see this, assume that N D ) 1.1n and consider a process of repeat-
edly refining D by splitting off an element x in a largest set in D, i.e., by

'making x into a singleton set. As long as D contains a set of size 2n q 2
Ž .or more, the resulting partition D9 still has N D9 G n. On the other

'hand, splitting off an element from a set of size less than 2n q 2 changes
' 'N by less than 2n q 1 s 200rn ? 0.1n q 1, which for n G 800 is at

most 0.1n. Hence if we stop the process with the first partition D9 with
Ž . Ž .N D9 F 1.1n, we will still have N D9 G n. Whereas D9 is a refinement

of D, we have for all i and j that

t and t are contained in the same set SX of D9i j m

« t and t are contained in the same set S of D ;i j m

Ž .thus, it suffices to prove B.1 for D9.
p Ž .We define random variables X , for p g P D and 1 F i - j F s, asi, j

1 if t , t s p ,� 4i jpX si , j ½ 0 otherwise.

Further, we let

X s Xp .Ý Ý i , j
Ž . 1Fi-jFspgP D

Ž .Clearly, by the definition of P D ,

X s i , j N 1 F i - j F s n t / t n t , t g S for some m G 0.Ž .� 4i j i j m

Ž .Thus, to establish B.1 , we only have to show that

'4 n
Prob X s 0 - .Ž .

s



DIETZFELBINGER ET AL.44

Ž . Ž .For this, we estimate the expectation E X and the variance Var X of
the random variable X, with the intention of applying Chebyshev’s in-
equality:

Var XŽ .
Prob X y E X G t F for all t ) 0. B.3Ž . Ž .Ž . 2t

ŽFor another, though simpler, application of Chebyshev’s inequality in a
w x.similar context, see 9 .

� 4 Ž .First note that for each p s x, y g P D and 1 F i - j F s the follow-
ing equality holds:

2
pE X s Prob t s x n t s y q Prob t s y n t s x s . B.4Ž .Ž . Ž .Ž .i , j i j i j 2n

Thus,

E X s E XpŽ . Ž .Ý Ý i , j
Ž . 1Fi-jFspgP D

2ss P D ? ?Ž . 2ž /2 n

s2 1
s N D ? ? 1 y . B.5Ž . Ž .2 ž /sn

' 'By assumption, s G 8 n G 8 800 , so that 1 y 1rs G 1r1.01. Let a s
' Ž . Ž .sr n . Using the assumption N D G n, we get from B.5 that

a 2

E X G . B.6Ž . Ž .
1.01

Ž .Next we derive an upper bound on the variance of X. With the standard
notation

Cov Xp , Xp 9 s E Xp ? Xp 9 y E Xp ? E Xp 9 ,Ž .Ž . Ž . Ž .i , j i9 , j9 i , j i9 , j9 i , j i9 , j9

we may write
22Var X s E X y E XŽ . Ž . Ž .Ž .

s Cov Xp , Xp 9 . B.7Ž .Ž .Ý Ý i , j i9 , j9
Ž . 1Fi-jFsp , p 9gP D

1Fi9-j9Fs

Ž p p 9 .We split the summands Cov X , X occurring in this sum into severali, j i9, j9
Ž .classes and estimate the contribution to Var X of the summands in each

of these classes. For all except the first class, we use the simple bound

Cov Xp , Xp 9 F E Xp ? Xp 9 s Prob Xp s Xp 9 s 1 .Ž . Ž . Ž .i , j i9 , j9 i , j i9 , j9 i , j i9 , j9
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� 4For i g 1, . . . , s , if t s x g S, we will say that i is mapped to x. Subse-i
� 4quently we bound the probability that i, j is mapped onto p , while at the

� 4 � 4same time i9, j9 is mapped onto p 9. Let J s i, j, i9, j9 .
< < p p 9Class 1. J s 4. In this case the random variables X and X arei, j i9, j9

Ž p p 9 .independent, so that Cov X , X s 0.i, j i9, j9
< < Ž p p 9 . Ž p .Class 2. J s 2 and p s p 9. Now E X ? X s E X , so the totali, j i9, j9 i, j

Ž .contribution to Var X of summands of Class 2 is at most

E Xp s E X .Ž .Ž .Ý Ý i , j
Ž . 1Fi-jFspgP D

< < < <Class 3. J - p j p 9 . In this case J cannot be mapped onto p j p 9, so
p p 9 Ž p p 9 .X ? X ' 0 and Cov X , X F 0.i, j i9, j9 i, j i9, j9

< < � 4 < < � 4Whereas J g 2, 3, 4 and p j p 9 g 2, 3, 4 , the only case not cov-
< < < � 4ered is J s 3 and p j p 9 g 2, 3 . To simplify the discussion of this final

� 4 � 4case, let us call the single element of i, j l i9, j9 the central domain
< <element. Correspondingly, if p j p 9 s 3, we call the single element of

p l p 9 the central range element. The argument proceeds by counting the
number of summands of certain kinds as well as estimating the size of each
summand.

< < < < � 4Class 4. J s 3 and p j p 9 g 2, 3 . The central domain element and
� 4 � 4the other elements of i, j and i9, j9 can obviously be chosen in no more

than s3 ways.
< <Class 4a. J s 3 and p s p 9. By definition, p s p 9 can be chosen in

Ž . p pN D ways. Furthermore, X s X s 1 only if the central domaini, j i9, j9
element is mapped to one element of p , while the two remaining elements
of J are both mapped to the other element of p , the probability of which

Ž .Ž .Ž . 3 Ž .is 2rn 1rn 1rn s 2rn . Altogether, the contribution to Var X of
3 Ž . 3 3 2summands of Class 4a is at most s ? N D ? 2rn F 2.2 s rn .

< < < <Class 4b. J s 3 and p j p 9 s 3. The set p j p 9 can be chosen in
< <Sm mÝ ways, after which there are three choices for the central rangeps1 ž /3

Ž .element and two ways to complete p and, implicitly, p 9 with one of the
remaining elements of p j p 9. Xp s Xp 9 s 1 only if the central domaini, j i9, j9
element is mapped to the central range element, while the remaining

� 4element of i, j is mapped to the remaining element of p and the
� 4remaining element of i9, j9 is mapped to the remaining element of p 9,

the probability of which is 1rn3. It follows that the total contribution to
Ž .Var X of summands of Class 4b is bounded by

m m3 3s s3
< < < < < < < <S S y 1 S y 2 ? F S y 1 ? . B.8Ž .Ž . Ž . Ž .Ý Ým m m mž / ž /ž / ž /n nms1 ms1
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m 3 Ž m 2 .3r2 ŽWe use the inequality Ý a F Ý a a special case of Jensen’sms1 m ms1 m

. Ž .inequality, valid for all a , . . . , a G 0 and the assumption B.2 to bound1 m
Ž .the right hand side in B.8 by

3r2m 3 3s s3r2< < < <S S y 1 ? F 2 ? 1.1n ?Ž .Ž .Ý m m ž / ž /ž / n nms1

3s
3r2 3s 2.2 ? - 3.3a .ž /'n

Bounding the contributions of the summands of the various classes to the
Ž . Ž 1r2 .sum in B.7 , we get using that n G 25

Var X F E X q 2.2 s3rn2 q 3.3a 3Ž . Ž .
s E X q 2.2ny1r2 q 3.3 a 3Ž . Ž .
- E X q 3.5a 3. B.9Ž . Ž .

Ž .By B.3 we have

Var XŽ .
Prob X s 0 F Prob X y E X G E X F .Ž . Ž . Ž .Ž . 2E XŽ .Ž .

Ž . Ž .By B.9 and B.6 , this yields

1 3.5a 3 1.01 3.5 ? 1.012

Prob X s 0 F q F q .Ž . 2 2E X aaŽ . E XŽ .Ž .

Whereas 1.01ra q 3.5 ? 1.012 - 4, we get

'4 4 n
Prob X s 0 - s ,Ž .

a s

as claimed.

'In case the size of the chosen subset is much larger than n , the
estimate in the lemma can be considerably sharpened.

COROLLARY B.2. Let n, m, and s be positï e integers, let S be a set of size
Ž .n G 800, let D s S , . . . , S be a partition of S into nonempty subsets with1 m

Ž .N D G n, and assume that s random elements t , . . . , t are drawn indepen-1 s 'dently from the uniform distribution o¨er S. Then if s G 9 n ,

� 4 � 4Prob ' i , j g 1, . . . , s 'm g 1, . . . , m : t / t n t , t g SŽ .i j i j m

.ysrŽ18 n') 1 y 2 .



A RANDOMIZED ALGORITHM FOR CLOSEST PAIRS 47

Proof. Split the sequence t , . . . , t into disjoint subsequences of length1 s' 'u vs9 s 8 n F 9 n each, with fewer than s9 elements left over. By Lemma
B.1, in each of the corresponding subexperiments the probability that two

1'elements in the same subset S are hit is at least 1 y 4 n rs9 G .m 2

Whereas the subexperiments are independent and their number is at least
' '? Ž .@ Ž .sr 9 n G sr 18 n , the stated event will occur in at least one of them

ys rŽ18 n .'with probability at least 1 y 2 . Clearly, this is also a lower bound
on the probability that the whole sequence t , . . . , t hits two elements1 s
from the same S .m

B.2. Sampling with few random bits

We now show that the effect described in Lemma B.1 can be achieved
also with a random experiment that uses very few random bits.

COROLLARY B.3. Let n, m, s, S, and D be as in Lemma B.1. Then the
conclusion of Lemma B.1 also holds if the s elements t , . . . , t are chosen1 s
according to a distribution o¨er S that only satisfies the following two
conditions:

Ž . � 41 The sequence is four-independent, i.e., for all sets i, j, k, l :
� 41, . . . , s of size 4 the ¨alues t , t , t , t are independent.i j k l

Ž . � 42 For all i g 1, . . . , s and all x g S, we ha¨e

1 y « 1 q «
- Prob t s x - ,Ž .in n

where « s 0.0025.

Proof. This is proved almost exactly as Lemma B.1. We indicate the
Ž .light changes that have to be made. Equation B.4 is replaced by

21 y « 2 1 y 2«Ž .
pE X G 2 ? G .Ž .i , j 2ž /n n

Ž .Equation B.5 changes into

s2 1
E X G N D ? ? 1 y 2« ? 1 y .Ž . Ž . Ž .2 ž /sn

' Ž .Ž .Whereas s G 8 800 and « s 0.0025, we get 1 y 2« 1 y 1rs G 1r1.01,
Ž . Ž .such that B.6 remains valid. The contributions to Var X of the sum-

mands of the various classes defined in the proof of Lemma B.1 are
bounded as follows.

Class 1. The contribution is 0. For justifying this, fourwise independence
is sufficient.
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Ž .Class 2. E X .
Class 3. F0.

3 Ž . Ž 3. Ž .3 3 2Class 4a. s ? N D ? 2rn ? 1 q « F 2.3s rn .
Ž .3r2 Ž 3. Ž .3 3Class 4b. 2.2n ? srn ? 1 q « F 3.3a .

Ž .Finally, estimate B.9 is replaced by

Var x F E X q 2.3ny1r2 q 3.3 a 3 - E X q 3.5a 3 ,Ž . Ž . Ž . Ž .

where we used that n1r2 G 25. The rest of the argument is verbally the
same as in the proof of Lemma B.1.

In the random sampling experiment, we can even achieve polynomial
reliability with a moderate number of random bits.

u 3r4 vCOROLLARY B.4. In the situation of Lemma B.1, let s G 4 n and let
a G 1 be an arbitrary integer. If the experiment described in Corollary B.3 is

Ž .repeated independently 4a times to generate 4a sequences t , . . . , t , withl,1 l, s
1 F l F 4a , of elements of S, then

� 4 � 4 � 4Prob 'k , l g 1, . . . , 4a ' i , j g 1, . . . , s 'm g 1, . . . , m :Ž
t / t n t , t g S ) 1 y nya ..k ,i l , j k ,i l , j m

Proof. By Corollary B.3, for each fixed l the probability that the
sequence t , . . . , t hits two different elements in the same subset S is atl,1 l, s m

y1r4'least 1 y 4 nrs G 1 y n . By independence, the probability that this
Ž y1r4.4ahappens for one of the 4a sequences is at least 1 y n . Clearly,

this is also a lower bound on the probability that the whole sequence t ,l,i
with 1 F l F 4a and 1 F i F s, hits two different elements in the same
set S .m

� 4 u 3r4 vLEMMA B.5. Let S s 1, . . . , n for some n G 800 and take s s 4 n .
Then the random experiment described in Corollary B.3 can be carried out

Ž . Ž 6. win o n time using a sample space of size O n or, informally, using
Ž . x6 log n q O 1 random bits .2

Proof. Let us assume for the time being that a prime number p with
Žs - p F 2 s is given. We will see at the end of the proof how such a prime

. w xcan be found within the time bound claimed. According to 9 , a four-in-
dependent sequence tX , . . . , tX , where each tX is uniformly distributed in1 p j
� 4 X0, . . . , p y 1 , can be generated as follows: Choose four coefficients g ,0

X X X � 4g , g , g randomly from 0, . . . , p y 1 and let1 2 3

3
X X rt s g ? j mod p for 1 F j F p.Ýj rž /

rs0
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Ž .By repeating this experiment once independently , we obtain another such
sequence tY, . . . , tY . We let1 p

t s 1 q tX q ptY mod n for 1 F j F s.Ž .j j j

Ž 4.2 8 Ž 6.Clearly, the overall size of the sample space is p s p s O n , and
Ž .the time needed for generating the sample is O s . We must show that the

Ž . Ž .distribution of t , . . . , t satisfies conditions 1 and 2 of Corollary B.3.1 s
Ž X X . Ž Y Y .Whereas the two sequences t , . . . , t and t , . . . , t originate from1 p 1 p

independent experiments and each of them is four-independent, the
sequence

tX q ptY , . . . , tX q ptY
1 1 s s

Ž .is four-independent; hence the same is true for t , . . . , t , and 1 is proved.1 s
X Y � 2 4Further, t q pt is uniformly distributed in 0, . . . , p y 1 , for 1 F j F s.j j

From this, it is easily seen that, for x g S,

2 2p 1 p 1
Prob t s x g ? , ? .Ž .j 2 2½ 5n np p

? 2 @ 2 u 2 v 2Now observe that p rn rp - 1rn - p rn rp and that

2 2p 1 p 1 1 1 1 1 1 «
? y ? F - F s ? - ,2 2 2 2 3r2 'n n n np p p s 16n 16 n

'Ž .where we used that n G 800, whence 1r 16 n - 1r400 s 0.0025 s « .
Ž .This proves 2 .

Finally, we briefly recall the fact that a prime number in the range
� 4 Ž . Žs q 1, . . . , 2 s can be found deterministically in time O s log log s . Note
that we should not use randomization here, because we must take care not

.to use too many random bits. The straightforward implementation of the
Ž w x.Eratosthenes sieve see, e.g., 31, Sect. 3.2 for finding all the primes in

� 41, . . . , 2 s has running time

1
O s q 2 srp s O s ? 1 q s O s log log s ,u v Ž .Ý Ýž / p� 0� 0' 'pF 2 s pF 2 s

p prime p prime

where the last estimate results from the fact that

1
s O log log x .Ž .Ý ppFx

p prime
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Ž Ž .For instance, this can easily be derived from the inequality p 2n y
Ž . Ž . wp n - 7nr 5 ln n , valid for all integers n ) 1, which is proved in 31,

x .Sect. 3.14 .
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