
Name: Student Number:

COMP4804 Assignment 1: Due Tuesday January 26, 23:59EDT

Print this assignment and answer all questions in the boxes provided. Any text outside of the boxes
will not be considered when marking your assignment.

1 Frequency Assignment in Wireless Networks

We have a graph G = (V,E) in which every vertex has degree 6, |V | = n and |E| = m. For each
vertex v ∈ V , we color v uniformly (and independently from all other vertices) at random with a color
selected from the set {1, . . . , k}.

1. We say that an edge e = (u, v) is good if u and v are assigned different colors in the above
experiment and bad otherwise. What is the probability that an edge e is bad?

2. What are the expected numbers of bad edges and good edges?

3. We say that a vertex v is dead if all 6 of v’s incident edges are bad. What is the probability that
a particular vertex v is dead? What is the expected number of dead vertices?

4. How many colors k do we need if we want the expected number of dead vertices to be at most:
(a) n/10, (b) n/100, and (c) n/1000

1

Name: Student Number:

2 Approximating Max-2-Sat

A 2-CNF formula is the conjunction of a set clauses, where each clause is the disjunction of two (possibly
negated, but distinct) variables. For example, the boolean formula

(a ∨ b) ∧ (b ∨ ¬d) ∧ (¬a ∨ c)

is a 2-CNF formula with 3 clauses. When we assign truth values to the variables (a, b, c and d above)
we say that the assignment satisfies the formula if the formula evaluates to true. In general, it is not
always possible to satisfy a 2-CNF-Formula, so we may try to satisfy most of the clauses.

1. Describe an analyze a very simple randomized algorithm that takes as input a 2-CNF formula
with n clauses and ouputs a truth-assignment such that the expected number of clauses satisfied
by the assignment is at least 3n/4. (Prove that the running time of your algorithm is small
and that the expected number of clauses it satisfies is at least 3n/4. You may assume that the
variables are named a1, . . . , am, m ≤ n, so that you can associate truth values with variables by
using an array of length m.)

2. Your algorithm implies something about all 2-CNF formulas having at most 3 clauses. What
does it imply?

3. What does your algorithm guarantee for d-CNF formulas? (Where each clause contains d distinct
variables.)

2

Name: Student Number:

3 Computing the OR of a Bit String

We have are given a bit-string B1, . . . , Bn and we want to compute the or of its bits, i.e., we want to
compute B1∨B2∨· · ·∨Bn. Suppose we use the following algorithm to do this:
1: for i← 1, . . . , n do
2: if Bi = 1 then
3: return 1
4: return 0

1. In the worst case, what is the number of times line 2 executes, i.e., how many bits must be
inspected by the algorithm? Describe an input B1, . . . , Bn that achieve the worst case when the
output is 0 and when the output is 1.

2. Consider the following modified algorithm:
Toss a coin c
if c comes up heads then

for i← 1, . . . , n do
if Bi = 1 then

return 1
else

for i← n, . . . , 1 do
if Bi = 1 then

return 1
return 0

Assume that exactly one input bit Bk = 1. Then what is the expected number of input bits that
the algorithm examines.

3

Name: Student Number:

4 3-Way Partitioning

Suppose you are working on a system where two values can only be compared using the < operator.
(Sorting in Python is an example.) Here is an algorithm that, given an array A[1], . . . , A[n] and a value
x classifies the elements of A as either less than, greater than or equal to x.

3-Way-Partition(A, x)
1: for i = 1 to n do
2: if A[i] < x then
3: add A[i] to S<

4: else if A[i] > x then
5: add A[i] to S>

6: else
7: add A[i] to S=

1. Let n<, n> and n= denote the number of elements of A that less than, greater than or equal to
x, respectively. State the exact number of comparisons performed by 3-Way-Partition.

2. Show that there exists a randomized algorithm that uses only 1 random bit (coin toss) and
performs and expected number of comparisons that is 2n= + 3

2(n< + n>).

4

Name: Student Number:

5 The height of a skiplist

Suppose we start with a list L0 = l1, . . . , ln. We obtain a new list L1 by tossing a fair coin for each
element li and adding li to L1 iff the coin toss comes up heads.

1. What is the probability that li is in L1? From this, compute the expected size of L1.

2. Suppose we continue in this manner to obtain a list L2 by tossing coins for each element of L1.
In general, to obtain Li (i > 0), we toss a coin for each element in Li−1 and add that element to
Li iff the coin toss comes up heads.

What is the probability that any particular element lj is in Li? From this, compute the expected
size of Li.

3. Show that the expected time required to build all the lists L1, L2, L3, . . . is O(n).

5

Name: Student Number:

4. Define the indicator variable

Ii =

{
1 if Li is not empty
0 otherwise.

Observe that Ii never exceeds the size of Li. The random variable X =
∑∞

i=0 Ii is the height of
the skip list. Show that E[X] = log2 n + O(1). [Hint: You can use either inequality Ii ≤ 1 or
Ii ≤ |Li| depending on the value of i.]

FYI: Skiplists are an efficient simple alternative to balanced binary search trees that support insertion
and deletion in O(1) expected time and searching in O(log n) expected time. Feel free to use Google
for more information. Here’s picture of one:

−∞ 52 63 74 ∞1

6

6

7

7

7

∞

∞

∞

−∞

−∞

−∞

6

	Frequency Assignment in Wireless Networks
	Approximating Max-2-Sat
	Computing the OR of a Bit String
	3-Way Partitioning
	The height of a skiplist

