
Name: Student Number: 1

COMP4804 Assignment 3: Due Tuesday March 16th, 23:59EDT

Print this assignment and answer all questions in the boxes provided. Any text outside of the
boxes will not be considered when marking your assignment.

1 Lazy Deletion

Suppose a student has implemented a balanced binary search tree (e.g., AVL-tree, red-black tree, etc.)
that performs insertion and search operations in O(log n) time, but was too lazy to implement deletion.
Instead, they have implemented a lazy deletion mechanism: To delete an item, we search for the node
that contains it (in O(log n) time) and then mark that node as deleted. When the number of marked
nodes exceeds the number of unmarked nodes (during a deletion) the entire tree is rebuilt (in O(n)
time) so that it contains only unmarked (i.e., undeleted) nodes.

1. Define a non-negative potential function and use it to show that the amortized cost of deletion
is O(log n).

2. How does your potential function affect the amortized cost of insertion?



2 LAZY INSERTION DATA STRUCTURES 2

2 Lazy Insertion Data Structures

Suppose we have a static data structure for some search problem. Given n elements, we can build
a data structure in O(n log n) time that answers queries in O(log n) time. We convert this into an
insertion-only data structure as follows: We maintain two static data structures, D1 has size at most√

n and D2 has size at most n. To insert a new element we first check if the number of elements in D1 is
less than

√
n. If so, we add the newly inserted element to D1 and rebuild D1 at a cost of O(

√
n log n).

Otherwise (there are too many elements in D1) we take all the elements of D1, move them to D2 and
rebuild D2 at a cost of O(n log n). To search for an element, we search for it in both D1 and D2 at a
cost of O(log n + log

√
n) = O(log n).

1. Define a potential function on D1 and D2 to show that the amortized cost of insertion is
O(
√

n log n).

2. Show that during the second case of the insertion procedure, even if we only insert half the
elements of D1 into D2, the amortized cost of insertion is still only O(

√
n log n).



2 LAZY INSERTION DATA STRUCTURES 3

3. Suppose we generalize this data structure so that we maintain d static data structures D1, . . . , Dd

where Di has maximum size ni/d. Whenever Di becomes full we empty it and put all its elements
in Di+1.

Define a potential function on D1, . . . , Dd to show that the amortized cost of insertion is O(n1/d log n).



3 ARRAY-BASED PRIORITY QUEUES 4

3 Array-Based Priority Queues

In this question, we investigate an implementation of priority queues based on a collection of sorted
lists. In this implementation we store O(log n) sorted lists L0, . . . , Lk, where the list Li has size at most
2i. To find the minimum element, we simply look at the first element of each list (remember, they are
sorted) and report the minimum, so the operation FindMin takes O(log n) time.

1. To do an insertion, we find the smallest value of i such that Li is empty, merge the new element
as well as L0, . . . , Li−1 into a single list and make that list be Li. At the same time, we make
L0, . . . , Li−1 be empty.

Prove, by induction on i, that the list Li has size at most 2i.

2. Show how to merge L0, . . . , Li−1 so that the cost of this merging (and hence the insertion) is
O(2i).



3 ARRAY-BASED PRIORITY QUEUES 5

3. Starting with an empty priority queue and then performing a sequence of n insertions, how many
times does list Li go from being empty to being non-empty.

4. Using your answer from the previous question, what is the total running time of a sequence of n
insertions beginning with an empty priority queue?

5. As this data structure evolves, the elements move to lists with larger and larger indices. Define
a non-negative potential on the element x so that when x is in L0 its potential is log n and when
x is in Llog n, its potential is 0.



3 ARRAY-BASED PRIORITY QUEUES 6

6. Define a non-negative potential function on this data structure so that, when we build the list
Li, the potential decreases by at least c2i, for some constant c.

7. Show that the amortized cost of insertion (using your potential function from the previous ques-
tion) is O(log n).


	Lazy Deletion
	Lazy Insertion Data Structures
	Array-Based Priority Queues

