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Let B be an empty quadtree square that lies interior to the convex hull of S. Let R be
a concentric square somewhat bigger than 5 times the side length of B. In the quadtree
construction, each square has a point of S no farther away than twice its side length, so R
cannot be empty. Our aim is to charge the length of QT (S) in B to a “long edge” (length
at least a constant times B’s side length) of MWT(S) with an endpoint in R.

Some triangle A of MWT(S) contains the center ¢ of B. The vertices of A lie outside
B, and so A must have at least two “long” sides. If one of the vertices s; of A is inside
R, we charge the length of QT(S) in B to a long edge of A incident to s;. If all three
vertices of A are far from B, then we choose some other point s; € § somewhat interior
to R. One of the edges of A must cut across R and separate B from s;. We let A’ be the
triangle on the other side of this edge and apply the same argument to A’. By walking
from triangle to triangle in this way, as shown in Figure 8.16, we eventually find a long
edge e in MWT(S) with an endpoint in region R. This is the edge to which we charge
the length of QT(S) inside B.
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FIGURE 8.16

Walking from triangle to triangle leads to a long edge with
a nearby endpoint.

In this scheme, each edge e in MWT(S) is charged by O(1) quadtree squares of a
given size, so that e’s total charge adds in a geometric series proportional to its length.
Thus, the total quadtree edge length is proportional to |[MWT(S)|.

The remaining part of the proof deals with those quadtree squares not interior to the
convex hull of S. Some such squares have a neighbor entirely contained in the convex
hull and can be treated as above. The remaining cases have total length proportional to
the convex hull, and hence to |MWT(S)|. [ |

The quadtree triangulation can be constructed in time O (nlogn + k), where k de-
notes the output complexity [BEG94, BET93]. As we have explained the algorithm,
however, k need not be bounded by a polynomial in n. Eppstein corrected this flaw by
giving an algorithm in which “clusters” of nearby points are triangulated recursively and
then treated as a unit in the overall triangulation. This algorithm uses O(n) Steiner points
and has O(nlogn) running time. (A straightforward way of achieving the same running
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time with O(nlogn) output complexity is to stop subdividing quadtree squares when
the size reaches 1/n times that of the root, and then use any non-Steiner triangulation
algorithm within each tiny square.)

We briefly comment on the special case of minimum weight Steiner triangulation
for point sets in convex position. For this special case, there are a few results beyond the
constant-factor approximation given by the quadtree algorithm. For example, the ring
heuristic and the greedy triangulation give approximations with ratios of ®(logn). Epp-
stein used a similar quadtree triangulation technique as above to show that the minimum
weight triangulation, constrained to use Steiner points only on the boundary of the con-
vex hull, has weight O(1) times [MWST(S)|.

OPEN PROBLEM 8.6 Does every point set have a Steiner triangulation that achieves
the minimum weight? Does every point set in convex position have a minimum weight
Steiner triangulation that uses no interior Steiner points?
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We now turn away from famous individual problems to a large, loosely defined area.
A clustering problem is given by a set of points § in the plane or some other metric
space, and seeks the “best” partition of S into subsets, or clusters. We consider two
different styles of problems: k-clustering, in which we divide S into k clusters, and k-
point clustering, in which we seek the single best cluster containing k points.

8.5.1 MINMAX k-CLUSTERING

To measure the quality of a partition of S, some criterion, such as diameter or variance,
is applied to each cluster individually. Then individual measures are combined into an
overall criterion using a function such as the sum or the maximum.

For the case of fixed k, there are polynomial-time algorithms for minimizing var-
ious combinations of cluster diameters [CRW91, HS91b] and for minimizing the sum
of variances [BH89, IKI94], but other individual cluster criteria, such as the sum of
pairwise distances, give open problems. For example, Euclidean max cut, equivalent to
asking for the two clusters that minimize the sum of all pairwise intracluster distances,
is neither known to be in P nor known to be NP-hard. Letting k vary, however, almost
always gives an NP-complete problem, and very few nontrivial approximation results
are known. In this section, we describe two k-clustering problems—minmax radius and
minmax diameter—that stand out as especially well understood.

Minmax radius clustering, also known as “central clustering” and the “Euclidean k-
center problem,” seeks a partition S = S, U---U §; that minimizes max, <; <k radius(S;),
where radius(S;) is the radius of the smallest disk that covers all points of S;. The
k-center problem is discussed along with other minmax (or bottleneck) problems in



Section 9.4. Minmax diameter clustering, also known as “pairwise clustering,” seeks to
minimize max; diameter(S;), where

diameter(S;) = max{|s;s/| | s;,8 € 5;}.

Gonzalez [Gon85] proposed the following algorithm, called farthest-point cluster-
ing. Let an arbitrary point s;, be the representative for the first cluster. Pick the point Si,
farthest from s;, to represent the second cluster. Pick si, to maximize the distance to the
nearer of 5;, and s;,. Continue this process for k steps, at each step picking s;; to maximize
min {|s;,s;, |, |si,Si;1, ..., |si,_,5i;| }. After all representatives are chosen, we can define the
partition of S: cluster S; consists of all points closer to s;, than to any other representa-
tive. The following theorem is due to Gonzalez [Gon85]:

THEOREM 8.14  For either radius or diameter clustering, farthest-point clustering
computes a partition with maximum cluster size at most twice optimal.

Proof. Let s, be an input point that maximizes
8 = min{|s; si,, |, ..., |85, 1}

in other words, the point that would be chosen if we picked one more representative. All
pairwise distances among s, 5;,, ..., §;,,, are at least 8. In any k-clustering, two of these
points must be in the same cluster, hence § and §/2 are respectively lower bounds for the
diameter and radius of the worst cluster. Farthest-point clustering places each s; into a
cluster with representative si; such that |s;s;,| < 8. Thus, each cluster has radius at most
3, and by the triangle inequality, diameter at most 26. [ ]

This proof uses no geometry beyond the triangle inequality, so Theorem 8.14 holds
for any metric space (see Exercise 9.2). The obvious implementation of farthest-point
clustering has running time O (nk). Feder and Greene [FG88] give a two-phase algorithm
with optimal running time O (nlogk). The first phase of their algorithm clusters points
into rectangular boxes using Vaidya’s [Vai89] “box decomposition”—a sort of quadtree
in which cubes are shrunk to bounding boxes before splitting. The second phase resem-
bles farthest-point clustering on a sparse graph that has a vertex for each box.

The approximation ratio of Theorem 8.14 is, depending upon the metric, opti-
mal or nearly optimal—“best possible” in the terminology of Section 9.4. This non-
approximability result, quite rare for a geometric problem, is proved with a problem
reduction that creates a “nasty gap,” with “no” instances mapped far away from “yes”
instances. It is interesting to note that this reduction, for metric spaces, starts from a
planar-graph problem that admits a polynomial-time approximation scheme [Bak94].
(Planar graphs [Bak94] and certain geometric intersection graphs [HMR*94] typically
admit such approximation schemes for problems in which the solution is simply a set of
vertices; see Section 9.3.3.4. Planar graph network-design problems, however, are cur-
rently as open as their geometric counterparts.) The specific constructions below are due
to Feder and Greene [FG88]; there are also earlier, weaker results [Gon85, MS84].

THEOREM 8.15 It is NP-hard to approximate the Euclidean minmax radius k-clus-
tering (or Euclidean k-center) with an approximation ratio smaller than 1.822, or the
Euclidean minmax diameter k-clustering with ratio smaller than 1.969.
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Proof. Both problem reductions start from vertex cover for 3-regular planar graphs

(see [GJ77]). As shown in Figure 8.17(a), any 3-regular planar graph G can be embedded

in the plane so that each edge e becomes a path p, with some odd number of edges, at
least 3, which we shall denote by |p.|. The paths meet at 120° angles at vertices, and
remain well separated away from vertices. The midpoints S of the unit-length edges form
an instance of the k-clustering problem.

It is not hard to see that S has a k-clustering with maximum cluster radius % if and
only if k — Ze(lpel —2) vertices can cover all edges in G. A cluster of radius o > %
helps reduce this number only if a disk of radius & can cover more than 3 points of §
near an original vertex of G. If each original vertex of G has local neighborhood as in
the top illustration of Figure 8.17(b), then it takes a disk of diameter d) = V13/221.80,
radius d,/2, to cover 4 points. The bottom illustration shows an improved construc-
tion in which a disk must have diameter d| = (1 ++/7)/2 ~ 1.822 to cover more than
3 points.

Figure 8.17(c) shows analogous constructions for minmax diameter clustering.
In the basic construction (top illustration), a cluster must have diameter d) =
(1++/3)/ V2 = 1.93 to cover more than 3 points. In the improved construction, the crit-
ical distance is d} = 2cos(10°) = 1.969. .

(a) (b)

FIGURE 8.17

(a) Embedding the edges of a 3-regular planar graph as
paths. Endpoints of embedded edge are circles; midpoints
are dots. (b) Detail of a node for minmax radius clustering.
(¢) Detail of a node for minmax diameter clustering.

For the rectilinear metric, Feder and Greene give a similar, simpler construction that
shows that it is NP-hard to approximate either minmax radius or minmax diameter with
a ratio smaller than 2.



