
Final EXAMINATION April 2006
DURATION: 3 HOURS No. of Students 70

Department Name & Course Number: Computer Science COMP4804
Course Instructor(s): P. Morin

Authorized Memoranda: None Closed Book Examination. No Aids

Students must count the number of pages in this examination question paper before begin-
ning to write, and report any discrepancy to a proctor. This question paper has 4 pages.

This examination question paper may be taken from the examination room.

In addition to this question paper, students require: an examination booklet yes no

a scantron sheet yes no

Remember Markov’s Inequality: For a non-negative random variable X

Pr{X ≥ tE[X]} ≤ 1/t

and Chernoff’s Bounds: For a binomial(p, n) random variable B,

Pr{B ≥ (1 + ε)np} ≤ e−ε
2np/3 and Pr{B ≤ (1− ε)np} ≤ e−ε

2np/2 .

1 [5 marks] Expectation of a Product

Let X and Y be two independent random variables, i.e.,

Pr{X = x ∩ Y = y} = Pr{X = x} × Pr{Y = y} (1)

for any x and y. Prove that E[X × Y] = E[X]× E[Y]. Here’s what the proof looks like

E[X × Y] =
∑
x

∑
y

xy Pr{X = x ∩ Y = y}

= · · ·
= E[X]× E[Y] .

Complete the proof by filling in the · · ·.

2 [10 marks] Universal Hashing

Suppose we store n distinct elements x1, . . . , xn using an array of m lists L1, . . . , Lm in the
following way. For each xi we have a hash value h(xi) ∈ {1, . . . ,m} and we store xi in the
list Lh(xi). The hash funcion h is chosen in such a way that, for x 6= y,

Pr{h(x) = h(y)} ≤ 1/m .

1

1. Consider a value x 6∈ {x1, . . . , xn}. Use indicator variables to find the best upper bound
possible on the expected size of the list Lh(x). That is, prove that E[|Lh(x)|] ≤ blah for
the appropriate value blah

2. Consider a value xi ∈ {x1, . . . , xn}. Give the best upper bound you can on E[|Lh(xi)|].

3 [15 marks] A Recursive Algorithm on Lists

Consider a subroutine that operates on a list. If we give the subroutine a list of length n
then it runs in O(n) time and, once it is complete, the input list has expected size n/2. We
want to repeatedly call the subroutine until the list has size O(1).

1. We say that a call to the subroutine is a success if it reduces the size of the list by a
factor of at least 3/4 (|L′| ≤ 3|L|/4). Give a lower bound on the probability that a
particular call to the subroutine is a success.

2. Let Xk denote the number of successes that occur during a sequence of k consecutive
calls. Give a lower bound on E[Xk].

3. Give an upper bound on the probability that the algorithm requires more than c log4/3 n
calls to the subroutine.

4 [10 marks] Dynamically Growing and Shrinking Ar-

rays

Consider the following memory-efficient implementation of a stack as an array A. Initially,
we allocate an array A of size 1. Let n denote the size (number of elements on the stack) at
some point in time.

If the user pushes an element on to the stack but the array is already full (because it has
size n, i.e, |A| = n) then we allocate a new array A′ of size d3n/2e, copy A into A′, and set
A← A′.

Conversely, if the user pops an element from the stack, but the stack has size 2n (|A| = 2n)
then we allocate a new array A′ of size d3n/2e, copy the first n elements of A into A′ and
then set A← A′.

1. Define a non-negative potential function, Φ(n, |A|), that will allow you to prove that
both push and pop take O(1) amortized time. (Hint: Having |A| = 3n/2 is good, but
having |A| = n or |A| = 2n is bad.)

2. Using your potential function, show that push takes O(1) amortized time.

3. Using your potential function, show that pop takes O(1) amortized time.

2

5 [5 marks] Hardness of Truck Packing

Imagine you work at a shipping center and a truck is leaving from your shipping center to
the one in Medicine Hat, Alberta. The truck has a maximum weight limit of W . You have
n boxes of varying weights w1, . . . , wn that need to be shipped to Medicine Hat and would
like to load the truck down as heavily as possible without exceeding its maximum weight
limit. Explain why this problem is NP-hard by showing that, if you could solve this truck
packing problem, you could solve one of the NP-hard problems discussed in class.

6 [20 marks] NP-Completeness of 3-Hitting-Set

Let S = {(ai, bi, ci) : 1 ≤ i ≤ n} be a set of n triples with ai, bi, ci ∈ {1, . . . ,m} and let k
be a positive integer. The 3-Hitting-Set problem asks us to find a set X of k items such
that, for every 1 ≤ i ≤ n at least one of ai, bi or ci is in X. For example, if we are given the
triples:

S = {(1, 2, 3), (2, 3, 4), (1, 5, 6), (2, 7, 8)}

then X = {1, 2} is a hitting set of size 2 since every triple contains either a 1 or a 2.

1. Show that 3-Hitting-Set is NP-complete.

2. Give an O(3kn) time algorithm to solve 3-Hitting-Set.

3. Give a polynomial time greedy 3-approximation algorithm for 3-Hitting-Set. Be
sure to analyze both the running time and approximation factor of the algorithm.

4. Using linear programming we can find x1, . . . , xm, with each 0 ≤ xi ≤ 1, such that

xai
+ xbi + xci ≥ 1 (2)

for all 1 ≤ i ≤ n and
m∑
i=1

xi

is minimized.

Describe how, starting with x1, . . . , xm, to find x′1, . . . , x
′
m that also satisfy (2), such

that each x′i is either 0 or 1, and

m∑
i=1

x′i ≤ 3
m∑
i=1

xi .

3

7 [5 bonus marks] Bonus Algorithms Question

Save this question for when you’ve answered everything else. Let A = 〈A1, . . . , An〉 be
a sequence of n distinct real numbers. Give an O(n log n) time algorithm that finds a
subsequence Ai1 , . . . , Aid√ne of length d

√
ne that is either strictly increasing (Aij < Aij+1

) or
stricting decreasing (Aij > Aij+1

). For example, in the sequence

A = 〈9, 4, 2, 6, 5, 1, 3, 8, 7〉

the subsequence 〈A3, A5, A9〉 = 〈2, 5, 7〉 is strictly increasing.

4

