Answer all questions in your exam booklet.

1. [3 marks] Suppose we store n distinct elements x_1, \ldots, x_n using an array of m lists L_1, \ldots, L_m in the following way. For each x_i we have a hash value $h(x_i) \in \{1, \ldots, m\}$ and we store x_i in the list $L_{h(x_i)}$. The hash function h is chosen in such a way that, for $x \neq y$,

$$\Pr\{h(x) = h(y)\} < 1/m$$
.

- (a) Consider a value $x \notin \{x_1, \ldots, x_n\}$. Use indicator variables to find the best upper bound possible on the expected size of the list $L_{h(x)}$. That is, prove that $E[|L_{h(x)}|] \leq blah$ for the appropriate value blah
- (b) Consider a value $x_i \in \{x_1, \dots, x_n\}$. Give the best upper bound you can on $E[|L_{h(x_i)}|]$.
- (c) For a particular list L_j and a particular number d > 0, give the best upper bound you can on $\Pr\{|L_j| \geq d\}$.
- 2. [3 marks] Suppose you have a Monte-Carlo algorithm \mathcal{A} for testing whether a graph has some property \mathcal{P} . When we run \mathcal{A} , it runs in O(n+m) time and produces the correct answer (yes or no) with probability 5/9.
 - (a) If we run \mathcal{A} k times, what is the expected number of times \mathcal{A} produces the correct answer?
 - (b) Give a tight upper bound on the probability that \mathcal{A} produces the correct answer fewer than k/2 times.
 - (c) Describe how, using \mathcal{A} as a subroutine, we can get a Monte-Carlo algorithm that runs in O(k(n+m)) time and produces the correct answer with probability at least $1-e^{-\Omega(k)}$.
- 3. [2 marks] Consider an algorithm that works with a list L and runs in m rounds. During round i, the algorithm either appends one element to L (at a cost of $C_i = O(1)$) or deletes some number, $0 \le k_i \le |L|$, of elements from L (at a cost of $C_i = O(1 + k_i)$).
 - (a) Define a non-negative potential function $\Phi(L)$ and use it show that the amortized cost of the *i*th round is O(1).
- 4. [2 marks] Let b_1 , b_2 , m_1 and m_2 be any real numbers such that $m_1 \neq m_2$. Pick a random integer $r \in \{1, ..., k\}$.
 - (a) Give an upper bound on $\Pr\{rm_1 + b_1 = rm_2 + b_2\}$.
 - (b) Give an upper bound on $Pr\{r^2m_1 + rb_1 = r^2m_2 + b_2\}$.