Markov: For any non-negative random variable X and any q > 0, $\Pr\{X > q\} \le \mathrm{E}[X]/q$. Chernoff: For any binomial(p,n) random variable B and any $\epsilon > 0$, $\Pr\{B \ge (1+\epsilon)np\} \le e^{-\epsilon^2 np/3}$ and $\Pr\{B \le (1-\epsilon)np\} \le e^{-\epsilon^2 np/2}$.

COMP4804 Midterm Exam — Duration 1h20m

Winter 2010

Answer all questions in your exam booklet. No notes, calculators, or books allowed.

- 1. [2 marks] Suppose you have a Monte Carlo randomized algorithm \mathcal{A} that, with probability 1/10, gives a correct answer and, with probability 9/10 doesn't give any answer at all. In either case, \mathcal{A} runs in O(n) time. Explain how to use \mathcal{A} to make a Las Vegas algorithm \mathcal{A}' that runs in O(n) expected time and always outputs a correct answer.
- 2. [2 marks] Suppose you have a Las Vegas randomized algorithm \mathcal{B} that always outputs a correct answer and runs in expected time f(n). Describe how to use \mathcal{B} to get a Monte Carlo algorithm \mathcal{B}' that runs in time $20 \cdot f(n)$ in the worst case and that outputs a correct answer with probability at least $1 1/2^{10}$.
- 3. [3 marks] Suppose you have a Monte Carlo algorithm \mathcal{C} for solving some problem. When we run \mathcal{C} , it runs in O(n) time and produces the correct answer (yes or no) with probability 7/8.
 - (a) If we run C k times, what is the expected number of times C produces the correct answer?
 - (b) Give a tight upper bound on the probability that \mathcal{C} produces the correct answer fewer than k/2 times.
 - (c) Describe how, using C as a subroutine, we can get a Monte Carlo algorithm C' that runs in O(kn) time and produces the correct answer with probability at least $1 e^{-\Omega(k)}$.
- 4. [2 marks] Suppose we have n elements x_0, \ldots, x_{n-1} arranged in a circular list, so that x_i is adjacent to $x_{(i-1) \bmod n}$ and $x_{(i+1) \bmod n}$. We color this list by assigning, to each x_i , a random color uniformly and independently from the set $\{1, 2\}$
 - (a) An element x_i is bad if either of its two neighbours receive the same color as x_i . What is the probability that x_i is bad? What is the expected number of bad elements?
 - (b) The t+1 elements x_i, \ldots, x_{i+t} form a bad streak of length t if they all have the same color. For a particular value of i, what is the probability, as a function of t, that x_i, \ldots, x_{i+t} form a bad streak?
 - (c) Set $t = 2\log_2 n$ and give a good upper bound on the probability that there exists any bad streak (starting at any x_i , for any $i \in \{1, ..., n\}$) of length t.

[FYI: This gives an efficient parallel algorithm for 3-coloring a cycle. Do the random 2-coloring described above (in parallel) and then (sequentially) color each of the bad streaks using 3 colors.]

- 5. [2 marks] Consider an algorithm that works with a list L and runs in m rounds. During round i, the algorithm either appends one element to L (at a cost of $C_i = O(1)$) or deletes some number, $0 \le k_i \le |L|$, of elements from L (at a cost of $C_i = O(1+k_i)$).
 - (a) Define a non-negative potential function $\Phi(L)$ and use it show that the amortized cost of the *i*th round is O(1).