1. Let \(T \) be a random binary search tree that stores the keys \(1, \ldots, n \) and, for each \(i \in \{1, \ldots, n\} \), let \(v_i \) the node of \(T \) that stores the key \(i \).

(a) What is the probability that \(v_1 \) is a leaf?

(b) Fix some \(i \in \{2, \ldots, n - 1\} \). What is the probability that \(v_i \) is a leaf in \(T \)? (Hint: The answer doesn’t depend on \(i \).)

(c) What is the expected number of nodes in \(T \) that are leaves?

(d) What is the expected number of nodes in \(T \) that have exactly one child?

(e) What is the expected number of nodes in \(T \) that have exactly two children?

2. Let \(T_1 \) and \(T_2 \) be two binary search trees that each contain the keys the elements \(1, \ldots, n \). Let \(d_T(i) \) denote the depth (distance from the root) of element \(i \) in tree \(T \).

(a) Show that there exists a ternary (3-ary) search tree \(T_3 \) such that, for every \(j \in \{1, \ldots, n\} \),
\[
 d_{T_3}(j) \leq \min\{d_{T_1}(j), d_{T_2}(j)\}
\]
(Hint: The standard algorithm for deleting a value in a binary search tree does not increase the depth of any node.)

(b) Prove that the converse of the above statement is not true. That is, there exists a ternary search tree \(T_3 \) containing the elements \(1, \ldots, n \) such that no pair of binary search trees \(T_1 \) and \(T_2 \) has the property that
\[
 \min\{d_{T_1}(j), d_{T_2}(j)\} \leq d_{T_3}(j)
\]
for all \(j \in \{1, \ldots, n\} \). (Hint: In a perfectly balanced ternary tree, all nodes have depth at most \(\lceil \log_3 n \rceil \).)

3. This question is about doing iterated search using biased search trees (instead of fractional cascading). Consider any increasing sequence \(x_0 = -\infty, x_1, \ldots, x_k, x_{k+1} = \infty \) of numbers and let \(I_i, 0 \leq i \leq k \), denote the interval \([x_i, x_{i+1})\). Let \(W_i, 0 \leq i \leq k \), be an arbitrary positive weight associated with \(I_i \) and let \(W = \sum_{i=0}^k W_i \). A biased search tree is a binary search tree built on \(x_1, \ldots, x_k \) in such a way that, given any number \(x \), we can determine the interval \(I_i \) containing \(x \) in \(O(1) + \log(W/W_i) \) time.

(a) Suppose you have two lists \(A \) and \(B \) containing a total of \(n \) numbers. Show how to use a biased search tree on the elements of \(A \) so that, using this search tree, we can locate any element \(x \) in both \(A \) and \(B \) using \(O(1) + \log n \) comparisons. (Hint: \(\log(W/W_i) = \log W - \log W_i \))

(b) Generalize the above construction so that, given lists \(A_1, \ldots, A_r \) containing a total of \(n \) numbers, we can locate any element \(x \) in \(A_1, \ldots, A_r \) using a total of \(O(r) + \log n \) comparisons.

1 In a ternary search tree each node contains up to 2 keys \(a \) and \(b \) with \(a < b \) and these are used to determine whether a search for \(x \) search proceeds to the left (\(x < a \)), middle (\(a < x < b \)) or right (\(x > b \)) child.
4. This question is about an application of persistence. Recall that persistent binary search trees take \(O(\log n) \) time per insert/delete/search operation and require \(O(1) \) extra space per insert/delete operation.

Let \(S := \{(x_i, y_i, z_i) : i \in [1, \ldots, n]\} \) be a set of points in \(\mathbb{R}^3 \). We want to design a data structure that accepts a query \((m, z)\).

Design a data structure of size \(O(n) \) that preprocesses \(S \) so that you can quickly answer a query of the form \((m, q)\) that returns \(\min\{z > q : (x, y, z) \in S \text{ and } y > mx\} \). In words, we look at all the points in \(S \) whose projection onto \(xy \)-plane is above the line \(y = mx \) and, among those we find the one whose \(z \)-coordinate is closest to (but bigger than) \(q \).

5. This question is about another application of persistence.

Suppose we are given an array \(x_1, \ldots, x_n \) of (not necessarily sorted) numbers. We want to construct a data structure that supports “range location queries.” Given a query \((a, b, x)\), find the smallest value \(x' \in \{x_a, \ldots, x_b, \infty\} \) that is greater than or equal to \(x \). Describe a data structure of size \(O(n \log n) \) that supports range location queries in \(O(\log n) \) time. (Hint: A range location query \((a, b, x)\) can be answered if we have two binary search trees, one that stores \(x_a, \ldots, x_c \) and one that stores \(x_{c+1}, \ldots, x_b \) for some \(c \in [a, \ldots, b].\))