Mining Complex
Networks

Contents

Preface xi
I Core Material 1
1 Graph Theory 3
1.1 Notation 3
1.2 Probability 4
1.3 Linear Algebra 7
1.4 Definition e 9
1.5 Adjacency Matrix. oo 10
1.6 Weighted Graphs o L 11
1.7 Connected Components and Distances 12
1.8 Degree Distribution 13
1.9 Subgraphs 14
1.10 Special Families L 14
1.11 Clustering Coefficient 15
1.12 Experiments Lo L 17
1.13 Practitioner’s Corner L. 21
1.14 Problems e 22
1.15 Recommended Supplementary Reading 24
2 Random Graph Models 27
2.1 Introduction. 27
2.2 Asymptotic Notation 29
2.3 Binomial Random Graphs 30
2.4 Power-Law Degree Distribution 36
2.5 Chung-Lu Model 40
2.6 Random d-regular Graphs 45
2.7 Random Graphs with a Given Degree Sequence 48
2.8 Random Geometric Graphs 51
2.9 Experiments. o 55
2.10 Practitioner’s Corner 56
2.11 Problemso 58
2.12 Recommended Supplementary Reading 60

vii

viii

3 Centrality Measures

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9

Introduction
Matrix Based Measures
Distance Based Measures
Analyzing Centrality Measures
Pruning Unimportant Nodes, k-cores

Group Centrality and Graph Centralization

Experiments
Practitioner’s Corner
Problems 0.
3.10 Recommended Supplementary Reading

4 Degree Correlations

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9

Introduction
Assortativity and Disassortativity
Measures of Degree Correlations
Structural Cut-offs
Correlations in Directed Graphs.
Random Geometric Graphs
Implications for Other Graph Parameters
Experiments.
Practitioner’s Corner
4.10 Problems
4.11 Recommended Supplementary Reading

5 Community Detection

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9

Introduction
Basic Properties of Communities

Synthetic Models with Community Structure

Graph Modularity
Hierarchical Clustering
A Few Other Methods
Experiments.o oo
Practitioner’s Corner
Problems
5.10 Recommended Supplementary Reading

6 Graph Embeddings

6.1
6.2
6.3
6.4
6.5
6.6
6.7

Introduction

Classical and Structural Node Embeddings

Problem Formalization
Techniques
Unsupervised Benchmarking Framework
Other Directions
Experiments.

Contents

Contents

6.8 Practitioner’s Corner
6.9 Problems
6.10 Recommended Supplementary Reading . .

7 Hypergraphs

7.1 Imtroduction.
7.2 Basic Definitions
7.3 Random Hypergraph Models
7.4 Hypergraph Modularity Function
7.5 Community Detection in Hypergraphs . .
7.6 Centrality
7.7 Hypergraph-specific Properties
7.8 Embedding Hypergraphs
7.9 Experiments.
7.10 Practitioner’s Corner
7.11 Problems
7.12 Recommended Supplementary Reading . .

IT Additional Material

8 Detecting Overlapping Communities

8.1 Overlapping Cliques
8.2 Ego-splitting
8.3 Edge Clustering
8.4 Post Processing
8.5 Illustration: Word Association Graph . . .
8.6 ABCD+o0? Benchmark Graphs
8.7 Recommended Supplementary Reading . .

9 Embedding Graphs

9.1 NCI1 and NCI109 Datasets
9.2 Vector Representations of Graphs
9.3 Supervised Learning
9.4 Unsupervised Learning
9.5 Recommended Supplementary Reading . .

10 Network Robustness

10.1 Power Grid Network on the Iberian Peninsula

10.2 Synthetic Networks
10.3 Random Hypergraph Growth
10.4 Conclusion
10.5 Recommended Supplementary Reading . .

11 Road Networks
11.1 Representing a Road Network as a Graph

ix

222
223
224

229
229
230
232
236
241
243
246
251
252
261
262
263

265

267
268
268
270
270
271
272
274

275
275
277
278
280
283

285
286
289
296
297
298

299

X Contents

11.2 Identifying Busy Intersections 300
11.3 Recommended Supplementary Reading 306
12 Fairness in Graph Mining 307
12.1 Measurements of Fairness of Prediction Models 308
12.2 Methods for Improving Model Fairness 310
12.3 Examples 311
12.4 Recommended Supplementary Reading 314

Index 316

Preface

Introduction

Data science is a multi-disciplinary field that uses scientific and computational
tools to extract valuable knowledge from, typically, large data sets. Once the
data is processed and cleaned, it is analyzed and presented in a form that
is appropriate to support decision making processes. As collecting data has
become much easier and cheaper these days than in the past, data science
and machine learning tools have become widely used in companies of all sizes.
Indeed, data-driven businesses were worth hundreds of billions of dollars in
2025 and it is expected to continue growing.

This monograph concentrates on mining networks, a subfield within data
science. Virtually every human-technology interaction, or sensor network, gen-
erates observations that are in some relation with each other. As a result, many
data science problems can be viewed as a study of some properties of com-
plex networks in which nodes represent the entities that are being studied
and edges represent relations between these entities. In these networks (for
example, Instagram and Facebook on-line social networks, respectively the
2nd and the 3rd most downloaded mobile apps of 2024), nodes not only con-
tain some useful information (such as the user’s profile, photos, tags) but are
also internally connected to other nodes (relations based on follower requests,
similar users’ behaviour, age, geographic location). Such networks are often
large-scale, decentralized, and evolve dynamically over time. Mining complex
networks in order to understand the principles governing the organization and
the behaviour of such networks is crucial for a broad range of fields of study, in-
cluding information and social sciences, economics, biology, and neuroscience.
Here are a few selected typical applications of mining networks:

1. community detection (which users on some social media platform
are close friends),
link prediction (who is likely to connect to whom on such platforms),

3. predicting node attributes (what advertisement should be shown to
a given user of a particular platform to match their interests),

4. detecting influential nodes (which users on a particular platform
would be the best ambassadors of a specific product).

xi

xii Preface

After reading this book, one should be able to answer such questions, and
much more, using state-of-the-art methods and computational techniques.

Second Edition

The first edition of this book was published in early 2021, and the field has
seen significant advancements since then. While all chapters were reviewed,
the more substantial changes are as follows. New material and examples on
random geometric graphs were added in Sections 2.8 and 4.6. Chapter 6 on
node embeddings was augmented in several places including a discussion on
classical vs. structural embeddings, more details on graph neural networks
(GNNs) as well as other directions. Several new tools and techniques were
introduced in Chapter 7 on mining hypergraphs with new material on cen-
trality, hypergraph-specific properties such as degree vs. edge size correla-
tion, simpliciality and coreness. Some discussion on embedding hypergraphs
was also added. New material on post-processing for overlapping communities
was added in Chapter 8; in particular, new experiments using the ABCD-0?
benchmark. Chapter 9 was mostly re-written with a focus on a framework for
embedding graphs co-developed by the authors. Finally, a short Chapter 12
on fairness in network mining models was added, which represents an active
and important area of research.

Target Audience

The book was written based on the lecture notes for a graduate course enti-
tled Graph Mining (DS 8014) which is offered to students enrolled in the Data
Science and Analytics Master’s program at Toronto Metropolitan University
(Toronto, Canada). This book is aimed to be suitable for an upper-year un-
dergraduate course or a graduate course. Students in programs such as data
science, mathematics, computer science, business, engineering, physics, statis-
tics, and social science will benefit from courses that are based on this book.
Having said that, this monograph can be successfully used by all enthusiasts of
data science at various levels of sophistication who would like to expand their
knowledge or consider changing their career path. The Core Material (Part I)
can be successfully used for a 12-week long course (for example, in Canadian
system) but we additionally provide the Additional Material (Part IT) that can
be added for a 15-week long course (for example, in US or European systems).

Preface xiii

Need for Another Book

This book is not the first (and certainly not the last) monograph related to
network science. There are a number of excellent books, including those that
we list in Section 1.15 that conceptually overlap with our book. Let us then
present a few reasons why we decided to write this book.

Most books present a mixture of various topics in modelling and mining
networks. Modelling complex networks is an important research direction and
a few random graph models are included in our book but are mainly used as
tools to benchmark and guide algorithms or to create synthetic networks for
testing the behaviour of the tools in various scenarios. We focus on aspects
related to mining complex networks, and carefully select the most important
tools to create a nice and coherent blend that is appropriate for a one term
course.

The three authors actively collaborate together, publishing research papers
on various topics related to mining networks, including community detection
algorithms, mining hypergraphs, unsupervised evaluation of graph embed-
dings, synthetic random graph models, anomaly detection algorithms, and
link prediction algorithms. Our respective individual skills and experiences
nicely complement each other, providing three different perspectives: pure
mathematics (Pawet), mining large networks (Frangois), and applying machine
learning tools in business (Bogumit). This cumulative experience enables us
to carefully select problems and tools that are suitable for a one-term course
on mining networks. The content of this book represents the most important
and useful aspects of the daily life of a data scientist, and with its use, data
scientists can make a meaningful impact in business.

Most existing related books concentrate on theory. On the other hand, in
our book the theoretical foundations are combined with practical experiments
where students are expected to code and analyze graph datasets by themselves.
This book is accompanied by Jupyter notebooks! (in Python and Julia) which
not only contain all of the experiments presented in the book but which also
include additional material. We will continue updating them, making sure
they work with currently available environments. In particular, we mainly use
the igraph? library for Python which distinguishes us from other books that
also use Python for their experiments, while other libraries are introduced
as required by the various experiments. The igraph network analysis tool
was chosen due to its superior performance in dealing with large graphs, and
the richness of its library of graph analytics. For example, many centrality
measures and graph clustering algorithms are available directly within igraph.
Moreover, the library is written in C and can be used as such, and there

Isee jupyter.org; also available in Anaconda (www.anaconda.com) and other sources

2igraph.org/python

xiv Preface

are packages for R and Python, two of the most popular languages for data
science. We also have a YouTube channel with some videos that walk the
reader through our notebooks. Finally, we also made slides publicly available
for the instructors to use, which should help them to adopt the book for their
needs and their audience.

A distinguishing feature of mining networks, as opposed to traditional data
mining, is that very often one needs to implement custom algorithms to per-
form an analysis for a given problem at hand. In traditional data mining, there
are standard tools such as deep-learning networks, XGBoost, etc., to which
we typically just pass appropriately prepared data. In mining networks, de-
spite the fact that there exist standard tools and techniques, they usually
require slight modifications to fit the studied problem. Because of this, apart
from applying standard algorithms that are pre-implemented in the libraries
such as igraph, one often needs to complement them with carefully tailored
code that is computationally intensive. The reader will be able to notice this
characteristic in virtually every chapter of this book. In such cases, one needs
tools that allow one to implement such custom code efficiently while ensuring
the code’s speed (as usually complex networks are large). Traditionally, in such
situations data scientists faced the so-called two language problem. In order to
write the code efficiently Python was used, as it is a nice language for proto-
typing. However, these implementations were usually not scalable. Therefore,
the next step was to re-write the prototype in some low level language such
as C++.

In order to solve the two language problem, in this book we provide im-
plementations of the examples not only using the Python language but also
using the Julia language. Julia, like Python, is a high-level language (actually,
in many cases the code is quite similar) but at the same time it is compiled
(as opposed to Python which is interpreted), which allows the execution speed
of the programs to be comparable to languages such as C++. These features
of the Julia language have resulted in its popularity increasing recently, not
only for mining complex networks but for all kinds of data science tasks that
require performance and scalability.

About the Authors

Bogumil Kamirniski is the Chairman of the Scientific Council for the Disci-
pline of Economics and Finance at SGH Warsaw School of Economics. He is
an expert in applications of mathematical modelling and artificial intelligence
models to solving complex real-life problems. He is also a substantial open-
source contributor to the development of the Julia language and its package
ecosystem.

Preface XV

Pawel Pralat is a Professor of Mathematics at Toronto Metropolitan Uni-
versity, whose main research interests are in random graph theory, especially
in modelling and mining complex networks. He has pursued collaborations
with various industry partners as well as the Government of Canada. He has
written more than 230 papers and 4 books with more than 170 collaborators.

Frangois Théberge holds a B.Sc. degree in applied mathematics from the
University of Ottawa, a M.Sc. in telecommunications from INRS, and a PhD.
in electrical engineering from McGill University. He has been employed by
the Government of Canada since 1996 during which he wast involved in the
creation of the data science team as well as the research group now known as
the Tutte Institute for Mathematics and Computing. He also holds an adjunct
professorial position in the Department of Mathematics and Statistics at the
University of Ottawa.

Accompanied Material

Additional complementary material can be found here
https://www.torontomu.ca/mining-complex-networks
In particular, Jupyter notebooks can be found here
https://github.com/ftheberge/GraphMiningNotebooks
and YouTube channel can be accessed here

https://www.youtube.com/@MiningComplexNetworks

Part 1

Core Material

1

Graph Theory

1.1 Notation

Before we move to graph theory, let us introduce some basic definitions and
notation that will be used throughout this book. We will use R to denote the
set of real numbers, N = {1,2,...} to denote the set of natural numbers,
and Z = {...,-2,-1,0,1,2,...} to denote the set of integers. For given
natural numbers ¢ and k, let [¢] := {1,2,..., £} be the set of the first £ natural
numbers, and [k, ¢] := {k,k+1,...,¢}.

For a given = € R, the floor function |z] is the largest integer less than
or equal to x. Similarly, the ceiling function [z] is the smallest integer that
is greater than or equal to z. Finally, | 2] rounds a real number z to its nearest
integer, with the convention that for each £ € Z, |[£+ 1/2] = £+ 1.

For a given set S, the power set of S is the set of all subsets of .S, including
the empty set and S itself. The power set is usually denoted as P(S) or 2°. It
is easy to see that if S is finite, then |P(S)| = 2!5I. Similarly, for a given set
S and £ € [|S|]U{0} (if S is finite and £ € NU {0} otherwise), (“3) is the set
consisting of all subsets of S of size ¢, that is,

(“Z)_{Tgszm_e}.

Clearly, if S is finite and ¢ € [|S|] U {0}, then

@)1= (%)

and . ;
P =U (5):
== U (5)] -2 ()] -5 (),

4 Graph Theory

something we already knew from the binomial theorem. Indeed, the binomial
theorem says that for any x,y € R and any s € NU {0}, we have

(z+y)® = ZS: (Z) AT

£=0
The above identity follows as a special case when z =y = 1.

Finally, let us mention about the multinomial coefficient, a useful gen-
eralization of the classical binomial coefficient that we used above. For any
natural numbers my, ms, ..., m, such that E?:l m; = d € N, we define it as
follows:

mi, Mo, ..., My mylma! - -my,!

The multinomial coefficients have a direct combinatorial interpretation. Note

that (m d) is equal to the number of ways of depositing d distinct
1,12,...,Mn

objects into n distinct bins, with m; objects in the first bin, msy objects in the

second bin, and so on. It is indeed a generalization of the binomial coefficient
L(dy _ d
as (m) - (m,d—m)'

1.2 Probability

We will also need some basic definitions and notions from probability theory.
The set of possible outcomes of an experiment is called the sample space and
is denoted by 2. An elementary event is an event that contains only a single
outcome in the sample space. For example, when a coin is tossed, there are
two possible outcomes, “head” (represented by 1) and “tail” (represented by
0), and so Q = {0, 1}. If the coin is tossed n times, then there are 2™ possible
outcomes that can be represented by the following sample space Q = {0,1}",
the set of binary vectors of length n.

Note that now we may think of events simply as subsets of (). For reasons
beyond the scope of this book, if 2 is arbitrary, then its power set may be
too large for probabilities to be assigned reasonably to all of its members.
Fortunately, in this book, we typically deal with finite structures or instances
when 2 is countable so this causes no problems. Hence, from now on we will
assume that this assumption holds. In this scenario, a probability measure
is a function P: @ — [0, 1] such that) o P(w) = 1; P(w) is the probability
that an elementary event w holds. Then, the probability that an event A C
Q2 holds is simply equal to P(A) = > _, P(w). The pair (£2,P) is called a
probability space. In our earlier example where the coin is tossed n times,
each outcome occurs with the same probability, that is, P(w) = 2™ for any
w € . Such probability spaces are called uniform.

Probability 5

If P(B) > 0, then the conditional probability that A occurs given that

B occurs is defined to be
B P(AN B)
P(A[B) = TB)

Events A, B are independent if
P(AN B) =P(A)P(B).

In general, events A, Ag, ..., A, are independent if for any I C [n],
P <ﬂ Ai> = [P4).
iel il

Intuitively, the property of independence means that the knowledge of whether
some of the events Ay, Ao, ..., A, occurred does not affect the probability that
the remaining events occur.

A (real) random variable on a probability space (2,P) is a function
X : Q — R. The expectation, or the expected value, of a (real) random
variable X is defined as follows:

E[X] =) Pw)X(w).

weN

We say that two random variables X and Y are independent if, for all z,y € R,
events {w € Q: X(w) =2} and {w € Q: Y(w) = y} are independent, that is:

PX=2AY =y)=PX =2) -PY =y). (1.1)

This definition can be naturally extended to more than two random variables.

Coming back to our example, let X be the random variable counting the
number of heads in n independent coin tossings. Let X; denote the outcome
of the i-th coin tossing: X; = 1 (“head”) with probability p € [0, 1]; other-
wise, X; = 0 (“tail”). Such a random variable is called the Bernoulli ran-
dom variable. Clearly X = " | X;. A random variable formed as the sum
of independent Bernoulli random variables is called the binomial random
variable with the probability of success (that is, getting a head) equal to p,
and denoted by Bin(n, p). Now, as X; are independent, from (1.1) we get that:

P(X =k)= <Z>pk(l —p)" k. 0<k<n,

and so

6 Graph Theory

by the binomial theorem. The expectation of Bin(n, p) can be obtained slightly
easier using the linearity of expectation that claims that for any two ran-
dom variables X,Y and a,b € R,

ElaX +bY] =a E[X] + b E[Y].

For our example (X € Bin(n, p)) we observe that E[X;] =1-p+0-(1—p) =p
for all 7, and so we get that

zxi] B =Y =

i=1

E[X]=E

The variance of random variable X is defined as follows:

Var[X] = E{(X—E[X]ﬂ — E[X?] — (E[x])?
= 3 (X(w) - EX])* Pw).

The variance has the following properties: Var[X] > 0,
Var[aX + b] = a® Var[X],
and
Var[X +Y] = Cov[X,X]+2 Cov[X,Y]+ Cov]Y,Y]
Var[X] 4+ 2 Cov[X,Y] 4+ Var[Y],

where the covariance Cov|[X, Y] is defined as follows:
Cov]X,Y] = E[(X —E[X))(Y - E[Y])} — E[XY] - E[X] E[Y].

Finally, assuming that both X and Y have positive variance, the Pearson’s
correlation coefficient, a statistic that measures the linear correlation be-
tween two random variables X and Y, is defined as follows:

pxy = Cov[X,Y] . (12)

Var[X] Var[Y]

As a direct consequence of the Cauchy—Schwarz inequality, we get that
px,y can only take values from the interval [—1, 1]. Indeed, after defining the
following auxiliary inner product on the set of random variables, (X,Y) :=
E[XY], the Cauchy—Schwarz inequality (|(u,v)|* < (u,u)- (v,v)), can be used
to show that

‘cov[xy Y]‘Q

B[(x - B (v - =) |

|(X - EIX],Y - ElY])
(X —E[X], X — E[X]) - (¥ —E[Y],Y — E[Y])
E[(X - EIX))’] -E[(X - EX])’]

Var[X] Var[Y].

‘ 2

I IA

Linear Algebra 7

An extreme value of 1 implies that there exists a constant o > 0 such that
a(X — E[X]) = Y — E[Y]. The other extreme value of —1 implies that the
same relationship holds for some a < 0. Note that, as X and Y have positive
variance, it is not possible that a = 0.

If px,y = 0, then there is no linear correlation between the two variables.
Note that these variables do not have to be independent. For example, consider
the following random variables: X is uniformly distributed over the [—1,1]
interval and Y = X?2. These random variables are clearly dependent but are
not correlated, since

Cov[X,Y] = E[XY] — E[X] E[Y] = E[X?] — E[X] E[Y] =0 —0-E[Y] = 0.

(Note that both X and X? are symmetric around zero and have a finite
support so their expected value exists and is 0.) However, if random variables
X and Y are independent, then Cov[X,Y] = pxy = 0.

Let us use these facts to calculate Var[X], where X € Bin(n,p). As above,
let X; denote the independent Bernoulli random variable with probability of
success equal to p. First, note that

Var[X,] = B[X7] — (E[Xi])* = p— p* = p(1 — p).

3

Now, since Cov[X;, X;] = 0 for ¢ # j we get that

ZXi] = ZVar[Xi] =np(1l —p).

For a complete introduction to probability theory see, for example, Blitzen-
stein and Hwank (2019).

Var[X] = Var

1.3 Linear Algebra

In order to describe some of the models that we introduce in this book, we
will use tools from linear algebra. In this section, we introduce some basic
notation that we will use and recall a few key theorems that we will need.
A reader interested in a more in-depth material is encouraged to look at one
of the many textbooks on linear algebra such as Strang (2016) or Boyd (2018).

We typically denote vectors using bold lowercase letters such as x, and
always consider them to be column vectors. Matrices are denoted using bold
uppercase letters such as A, and all matrices we use in this book have real
valued elements. The identity matrix (of size n) is the n x n square matrix
with ones on the main diagonal and zeros elsewhere, and is denoted as I, or
simply I when the size is determined by the context. When A is m x n matrix,
then

I,A=AI, =A.

8 Graph Theory

The transpose of a matrix A, denoted by A”, flips a matrix over its
diagonal, that is, it switches the row and column indices of the matrix A.
Formally, AT = (al;) = (ajs). A square matrix whose transpose is equal to
itself is called symmetric; that is, A is symmetric if AT = A. There are many
interesting and important properties that are related to transposing matrices.
For example, (AT)T = A, and (AB)” = BTAT.

The determinant, denoted det(A), is a real number that can be computed
from the elements of a square matrix A and encodes certain properties of
the linear transformation described by A. Geometrically, it can be viewed as
the signed volume scaling factor of the corresponding linear transformation.
More importantly from our applications point of view, the determinant det(A)
can be used to solve a system of linear equations represented by matrix A,
although other methods of solution are much more computationally efficient.
The determinant has many properties such as det(I) = 1, det(AT) = det(A),
and det(AB) = det(A) - det(B).

Given a square matrix A, if for some A (possibly complex) there exists a
vector x such that Ax = A\x, then we call A\ an eigenvalue of a matrix and
X its eigenvector. Equation Ax = Ax can be equivalently stated as

(A — D)z =0,

where I is the identity matrix and O is the zero vector. In turn, this equation
has a non-zero solution x if and only if

det(A — AT) = 0. (1.3)

It can be shown that the left hand of (1.3) is a polynomial function of the
variable \ of degree n, the order of the matrix A. This polynomial is called
the characteristic polynomial of A. The Fundamental Theorem of Al-
gebra implies that there are exactly n roots of the characteristic polynomial:
A1, A2, ..., An. The roots may be real numbers but in general are complex
numbers. Moreover, they may not all have distinct values.

It can be shown that det(A) =[]\, A;. The trace tr(A) is, by definition,
the sum of the diagonal entries of matrix A but it can be shown that tr(A) =
>7 1 Ai. Also note that eigenvalues of a matrix are equal to the eigenvalues
of its transpose, since they share the same characteristic polynomial. Finally,
it is known that if A is symmetric, then all its eigenvectors are orthogonal
(that is, the inner product of any pair of them is zero) and all its eigenvalues
are real numbers.

An n x n square matrix A is called invertible if there exists an n x n
square matrix B such that

AB =BA =1,.

If this is the case, then the matrix B is uniquely determined by A, and is
called the inverse of A, denoted by A~!. It can be shown that A is invertible
if and only if det(A) # 0.

Definition 9

If A= = AT, then we call a square matrix A orthogonal. As already
mentioned above, if for two vectors x and y we have x”y = 0 we call these
vectors orthogonal. If additionally det(A) = 1, then we call A a rotation
matrix, and if det(A) = —1, then A is called roto-reflection matrix (also
called improper rotations). As the name suggests, a rotation matrix is a
transformation matrix that is used to perform a rotation in the corresponding
Euclidean space.

We call a square matrix A irreducible if, when it is considered as an
adjacency matrix of a directed graph (where each non-zero entry represents
an edge), it induces a strongly connected graph, that is, there exists a di-
rected path between any two nodes of this graph. (Adjacency matrix is for-
mally introduced in Section 1.5; see Section 1.7 for a formal definition of
strongly connected graphs.) If an irreducible matrix additionally has only
non-negative elements, then following the Perron—Frobenius theorem the
following properties hold: a) its eigenvalue that has the largest norm is real and
positive—we call it the leading eigenvalue, b) there is exactly one eigenvec-
tor (up to multiplication) associated with this eigenvalue whose components
are all positive and this is the only such eigenvector of this matrix.

Given any real matrix A, we call G = ATA the Gram matrix (or
Gramian matrix). Notably, G is symmetric and has non-negative eigenvalues.
As a consequence, xT Gx > 0 for any vector x. If we denote by Amin and Amax
the minimum and, respectively, the maximum eigenvalue of G, then it can be
shown that for any non-zero vector x we have Apin < x7 Gx/(x7x) < Anax.

1.4 Definition

In this and the following sections we introduce basic concepts from graph
theory that will be used in this book. For a more complete review of this
topic, we refer the reader to one of the standard textbooks, for example, West
(2000) or Bollobas (2002).

A (undirected) graph G = (V, E) consists of V, the set of nodes, and
E, the set of edges. Each edge uv € E has two endpoints, u and v, and so
each edge in G is formally a subset of V of size two. If uv € E, then we say
that v is adjacent to v. Note that under this definition the order of nodes
when specifying an edge is not important: uv and vu refer to the same edge.

In particular, we will usually assume that the graph is simple, meaning
there are no loops (edges from v to itself) nor parallel edges (multiple edges
between v and). Hence,

EC (‘2/):{e:uv:{u,v}:ecme|:2}.

10 Graph Theory

We will occasionally deal with multi-graphs (graphs where loops and par-
allel edges are allowed), but such situations will be clearly marked.

A directed graph D = (V, E) consists of the set of nodes and, respec-
tively, the set of edges. However, this time each edge uv € FE is a directed edge
from u to v. Formally, each edge uv € F is then an ordered pair (u,v), and
we say that an edge uv goes from node u to node v. Hence, the order of nodes
when specifying an edge is important, as (u,v) is not the same as (v,u). As
before, we assume that the graph is simple and so

Eg{e:uv:(u,v):uEV,UEV\{u}}.

1.5 Adjacency Matrix

Let D = (V, E) be any directed graph on n nodes. Alternatively, let G = (V, E)
be any graph on n nodes. An adjacency matrix A = (a(u,v))ycv is a
square matrix used to represent a graph. The elements of the matrix indicate
whether pairs of nodes are adjacent or not. In the case of simple and un-
weighted graphs (regardless whether they are directed or undirected), we use
a(u,v) = 1 to indicate that there is an edge from u to v; otherwise, a(u, v) = 0.
As a result, the adjacency matrix is a {0, 1}-matrix with zeros on its diagonal.
We will generalize this notion to weighted graphs in the next section. Clearly,
if the graph is undirected, then the adjacency matrix is symmetric.

There are several other ways to represent a graph in a computer such as
edge list, adjacency list, and incidence matrix. Some situations or algo-
rithms that one wants to run on a graph call for one representation but others
require a different representation. Moreover, the decision which representa-
tion should be used to achieve the best complexity of the algorithm usually
depends on whether the graph that needs to be dealt with is sparse or dense.
Fortunately, in high level languages such as Python or Julia, there are effi-
cient libraries that allow one to work with graphs without deciding about the
choice of the best data structure for a given algorithm. In the Jupyter note-
books associated with this book, we use the igraph library for Python and the
Graphs. j1 package for Julia. However, if more advanced programmers want
to explicitly work with a given data structure, then both languages provide
built-in modules and installed packages to do so. In particular, for many algo-
rithms working on sparse graphs, it is convenient to store adjacency matrix in
a sparse matrix. Sparse matrices are available in Python in the SciPy package
and they are built-in into Julia standard installation. As a result, both Python
and Julia can take advantage of the fact that almost all complex networks are
sparse to improve the computation time of the performed experiments. As a
special feature of the Julia, it is possible to pass an information to an algo-
rithm about additional properties of the involved data structures such as the

Weighted Graphs 11

fact that the associated adjacency matrix is symmetric if the corresponding
graph is undirected. The language can then take advantage of this fact and
further improve the performance.

1.6 Weighted Graphs

Let D = (V, E) be any directed graph on n nodes. Alternatively, let G = (V, E)
be any graph on n nodes. In weighted graphs, the value of a(u,v) for an edge
uv € FE between nodes u and v (or from node u to node v, if the graph
is directed) can take arbitrary positive real number; we usually avoid using
weight zero as it is reserved to indicate that there is no edge between u and v.
It is often mathematically convenient to assume that 0 < a(u,v) < 1 but
this is not a hard constraint and one can be flexible, if needed. As mentioned
in the previous section, for unweighted directed graphs, we will assume that
a(u,v) = 1 if there is an edge from wu to v (or between u and v for undirected
graphs).

The interpretation of the weights, however, is very important and it could
vary a lot depending on the context or application in mind. A natural inter-
pretation for weights is to represent some notion of distance (or dissimilarity)
between the involved nodes. In that case, we can generalize notions such as a
shortest path between nodes to take the weights into account. (Paths will be
formally defined in the next section.) On the other hand, this has the opposite
effect for measures of centrality: a node that is far from every other node is
usually considered less central.

It is also possible for edge weights to measure some notion of similarity
or closeness between the nodes; for example, if the weights correspond to
the bandwidth in a communication network, then high values correspond to
tightly connected nodes. Another example, as we will see in Section 3.7, is
for weights to represent the amount of exchange between nodes such as the
number of passengers travelling between two cities that are represented as
nodes. In those examples, higher edge weights often cause incident nodes to
be considered more central. In such cases, the notion of path length is not clear
anymore: we might consider the length of a path to be inversely proportional
to the edge weights in some sense, or just reduce it to the unweighted definition
of path length (the number of edges on a shortest path between two nodes).

12 Graph Theory

1.7 Connected Components and Distances

Let D = (V, E) be any directed graph on n nodes. Alternatively, let G = (V, E)
be any graph on n nodes. Let us also fix a pair of two nodes, u,v € V.
A sequence of nodes P = (wp,w1,...,wp) is called a path from u to v if
wy = u, we = v, and w;—1w; € F (that is, a(w;—1,w;) > 0) for all 7 € [¢]. The
length of a path P is defined as the weight of the path, that is, it is equal to
Zz‘e[f] a(w;—1,w;). In particular, for unweighted graphs it is simply equal to
the number of edges P consists of.

A connected component of an undirected graph G is a maximal sub-
graph in which any two nodes are connected to each other by a path. If G has
precisely one connected component, then we say that G is connected; other-
wise, we say that G is disconnected. The same definition applies to a directed
graph D, but in this case we say that it defines a strongly connected com-
ponent, as there are some other natural generalizations to directed graphs.

The distance dist(u,v) from node u to node v is defined as the minimum
length of a path (directed or undirected) from u to v, that is,

dist(v,u) = min : Z a(w;—1,w;), (1.4)

(v=wo,w1,...,we=u il

where the minimum is taken over all paths from v to u. In particular,
dist(v,v) = 0 as there is a degenerate path P = (v) from v to v of length 0.
Note that dist(u, v) is not defined when the two nodes belong to two different
connected components. Having said that, there are many natural extensions
to disconnected graphs such as setting dist(u,v) = n for such pairs of nodes.
Note that the proposed weight of n is slightly larger than n — 1, the maximum
possible distance between two nodes within the same connected component
(for both weighted and unweighted graphs).

Finally, the diameter of a strongly connected directed graph D (or a
connected undirected graph G) is defined as the maximum distance between
two nodes, that is,

diam(D) = max dist(u,v).
u,veV
Having said that, let us mention that the igraph library generalizes this def-
inition to disconnected graphs. In this generalization, one simply takes the
maximum distance dist(u,v) over all pairs of nodes u,v that belong to the
same strongly connected component. Though this definition is neither natural
nor is it always intuitive (in some situations, the diameter may decrease after
removing some edges), we sporadically use it in our experiments later on.

Degree Distribution 13

1.8 Degree Distribution

Let G = (V, E) be any graph on n nodes and m edges. For a given node v € V|
let N(v) be the set of neighbours of v, that is,

Nw)={ueV:weE}={ueV:a(u,v) >0}

Similarly, let Ny(v) and N<; be the set of nodes at distance exactly ¢ and,
respectively, at distance at most £, that is,

Ne(v) = {ueV :dist(u,v) =¢}
Neo(v) = {weV:dist(u,v) < £}

Let deg(v) = >_,cy a(v, u) be the degree of a node v. For unweighted graphs,
deg(v) = |N(v)| is simply equal to the number of neighbours of v; for weighted
ones, it is a sum of weights of edges incident to v. The degree sequence is
simply the sequence d = (deg(v))yey. In order for the degree sequence to be
well-defined, we always assume that the degree sequence is non-decreasing,
that is,

d= (deg(vl), deg(”Z)v s ,deg(vn))

with deg(vy) < deg(vz) < ... < deg(vy).

The degree distribution d, of a graph is defined to be the fraction of
nodes with degree ¢, that is, dy = ng/n, where ny is the number of nodes
of degree £. It is often more convenient (especially for weighted graphs) to
consider d<g, the fraction of nodes with degree at most ¢. It will be also
convenient to use

()=~ 3 deg(v) = Y0 de = 2

veV LeN

to denote the average degree in the unweighted graph G. In general, for
any s € N, the sth moment of the degree sequence (deg(v))yecy is defined as

follows:)
(k) =~ > deg(v)® =) € dy.

veV £eN

Using the language from probability theory, note that if X is a node taken
uniformly at random from the set of nodes V', then we can simply write (k%) =
E[deg(X)"].

Clearly, not every sequence of non-negative integers d = (dy,da, ..., d,)
can occur as a degree sequence of some graphs. For example, since in any graph
G = (V,E) we have) deg(v) = 2|E|, it is a trivially necessary condition
(but not sufficient one) that } ;. di be even. We will come back to this issue
and provide the necessary and sufficient condition in (2.8). In any case, this
shows that it is important to recognize which sequences are feasible and which

14 Graph Theory

ones are not. A sequence of numbers is said to be a graphic sequence if one
can construct a graph having the sequence as its degree sequence.

We will also need the following related definitions: for a given set of
nodes S C V, the volume of set S is defined as vol(S) =) g deg(v).
In particular, the volume of a graph G = (V,E) with m edges is equal
to vol(V) = > oy deg(v) = 2m. Finally, we define the minimum and the
maximum degree of a graph G as §(G) = min,cy deg(v) and, respectively,
A(G) = max,cy deg(v).

Let D = (V, E) be any directed graph on n nodes. One can easily generalize
the notion of neighbourhoods to directed graphs but this time we have two
types of neighbours: nodes that point towards v and nodes that v points
to. As a result, we distinguish between in-neighbours and out-neighbours. In
particular, we define the following two sets:

N™(w) = {ueV:w e E}={ueV:alu,v) >0}
N (v) = {ueV:vwueE}={uecV:alv,u) >0},

and the two corresponding types of degrees: deg”(v) = > wev a(u,v) and
deg™" (v) = 2,y a(v,u).

1.9 Subgraphs

A graph G' = (V' E’) is asubgraph of G = (V, E) if V' C V and E' C E. In
particular, G’ = (V', E’) is a spanning subgraph of G if G’ is a subgraph
of Gand V' =V.If V' CV, then

GVl =V {uw € E:u,veV'})
is the subgraph of G induced by V’. Similarly, if £’ C F then G[E'] = (V', E’)

where
V' ={v eV :3e € E such that v € e}

is also an induced subgraph of G (by E’).

1.10 Special Families
Let G = (V, E) be any graph. The complement of G is the graph G = (V, E)

with node set V =V and edge set E defined as follows: uv € E if and only if
ww ¢ E.

Clustering Coefficient 15

Earlier in this chapter, we defined paths of length ¢. Let us now introduce a
few more special families of graphs which are often of interest, including paths
(for completeness). Let G = (V, E) be any graph and consider the following
structures defined on subsets of its nodes:

e A sequence of distinct nodes Ppy; = (wp,w1,...,wy) is called a path of
length ¢ if w;_qw; € E for each i € [{].

e A sequence of distinct nodes Cy = (wy,ws, ..., wp) is called a cycle of length
£ if wjw;41 € E for each ¢ € [¢ — 1] and wpw; € E.

e A set of nodes Ky = {wy,ws,...,w} is called a complete graph on ¢ nodes
(sometimes also called a clique) if it induces a set of pairwise adjacent nodes,
that is, if w;w; € E for all 4, j € [¢] such that i < j.

e A set of nodes Ky = {wy,ws,...,w} is called an empty graph on ¢ nodes
(sometimes also called an independent set) if it induces a set of pairwise
non-adjacent nodes, that is, if w;w; ¢ E for all 4,j € [{] such that ¢ < j.

A graph G = (V, E) is bipartite if V = XUY, where XNY = @ and every
edge xy € F satisfies z € X and y € Y. Subsets X and Y of the set of nodes
are called partite sets. A complete bipartite graph K, , = (XUY,E) is
the graph with partite sets X,Y with |X|=m, |Y| = n, and edge set

E={zy:zeX,yeY}.
Clearly, |E| = mn.

A forest is a graph with no cycle. A tree is a connected forest (every
connected component of a forest is a tree). A leaf is a node of degree 1.
A spanning tree of a connected graph G = (V, E) is a spanning subgraph
G' = (V,E’) of G that is a tree (note that it implies that G’ is connected).
In particular, a path P,, and a star K; ,_; are examples of trees on n nodes.
Each tree on n nodes has n — 1 edges.

Let d € NU{0} and n € N such that n > d+1. We say that G = (V, E) is a
d-regular graph on n nodes if |V| = n and deg(v) = d for each v € V. Since
the total volume of any graph G = (V, E) is equal to 2|E| (even number), n
has to be even if d is odd. If n = d+ 1, then there is only one d-regular graph,
namely, the complete graph K441. On the other hand, if n is much larger than
d, then there are many of them. We will consider this family of graphs, for
example, when discussing random d-regular graphs in Section 2.6.

1.11 Clustering Coefficient

The clustering coefficient is a graph parameter that tries to measure the ten-
dency for nodes to cluster together. It has been experimentally verified that

16 Graph Theory

many real-world networks (including social networks) consist of tightly con-
nected groups of nodes; the likelihood of seeing such behaviour in a random
network, in which each pair of nodes is independently connected with a rela-
tively small probability, is very low. This natural phenomena can be informally
described as “friends of my friends are often my friends too.” The presence of
such structure highly affects many important processes occurring in networks
such as promotion of products via viral marketing or the spreading of com-
puter viruses and infectious diseases. Formally, there are two versions of the
clustering coefficient: the global and the local.

Let G = (V, E) be an unweighted graph. The local clustering coefficient of
a node in a graph quantifies how close its neighbours are to a clique. Formally,
for a given node v € V' of degree at least 2, the local clustering coefficient
is defined as follows:

() = Huw € E : u,w € N(v)}|
Ea) ’

2

that is, ¢(v) is the probability that two neighbours of v selected at random are
adjacent. Alternatively, ¢(v) can be defined as the ratio between the number
of triangles involving node v and the number of paths of length two with v
being its internal node. Clearly 0 < ¢(v) < 1. The definition of ¢(v) can be
easily adjusted to directed graphs. For any node v in an unweighted directed
graph D = (V, E) that is of in-degree (respectively, out-degree) at least 2,

\{uw_e E:uw € N ()}
deg™(v) - (deg™(v) — 1)

Huw € E : u,w € N°“(v)}]
deg”™(v) - (deg™ (v) = 1) -

ci"(v) _

Cout (’U)

(Note that in these definitions the order of nodes u and w matters.)

Note that the local clustering ¢(v) is defined individually for each node and
it can be noisy, especially for the nodes of not too large degrees. Therefore,
the following global characteristic is usually studied. For d € N\ {1}, let C(d)
be the local clustering coefficient averaged over the nodes of degree d, that is,

ZvEV:deg(v):d C(U)
d

) = T e v - deg(o) = a)

provided that {v € V : deg(v) = d} # 0. C(d) was extensively studied both
theoretically and empirically. For example, it was observed for many real-world
networks that C'(d) is proportional to d~% for some ¢ > 0, often ¢ = 1.

The above definitions characterize a graph by a sequence C(d) for various
values of d. However, sometimes we are interested in a single number that
gives us an aggregate information about the clustering of a graph. The global
clustering coefficient Cgio1,(G) of a graph G is the ratio of three times the

Ezxperiments 17

number of triangles in G to the number of pairs of adjacent edges in G. In other
words, if one samples a random pair of adjacent edges in G, then Cyion(G) is
the probability that these three nodes form a triangle. This measure gives an
indication of the clustering in the whole network (global), and can be applied
to both undirected and directed networks.

Alternatively, one may consider the average local clustering coefficient,
that is, Cioc(G) = D, cy ¢(v)/n. Note that in the definition of c¢(v) above we
assumed that deg(v) > 2. It is natural to extend this definition to isolated
nodes and leaves (that is, when deg(v) € {0,1}) by assigning c(v) = 0 to
those nodes. Alternatively, one may define Cj.(G) as the average over nodes
of degree at least 2. Both variants are available in the igraph library and
the latter one is assumed to be the default despite the fact that the former
seems more natural. If G is d-regular, then Cioc(G) = Cgion(G) but, in general,
the two graph parameters can differ substantially. Consider, for example, the
bike wheel graph that contains two hub nodes and n rim nodes. The hub
nodes are connected (by the axel, in the bike terminology). Moreover, the hub
nodes are connected to every rim node (by a spoke, in the bike terminology).
No rim nodes are connected. Formally, the bike wheel graph is the graph
B, = (V,E), where V = {a,b,1,2,...,n} and wv € E if and only if {u,v} N
{a,b} # 0. Tt is easy to see that

lim Cloe(Bn) =1 whereas lim Cyion(By) = 0.

n—oo n—oo
To see an example of the other extreme, consider the lollipop graph L,
consisting of a complete graph on [nQ/ 3] nodes and a path of length n attached
to one of the nodes of the complete graph. Again, it is easy to see that this
time

lim Cloe(Ly) =0 whereas lim Cyion(Ly,) = 1.

n—oo

n— oo

1.12 Experiments

Looking at some basic statistics such as the degree distribution and the distri-
bution of lengths of shortest paths, one can often identify several differences
between different types of graphs. This, in turn, may affect the running time
or quality of various algorithms that the user might be interested in. As a
result, looking at such statistics is typically the first step of exploratory anal-
ysis before any serious experiment is performed. In this section, we look at an
example of a social-type graph, and a transportation-type network.

The first graph we consider is a GitHub! developers network from June
2019 (Rozemberczki, Allen, and Sarkar, 2019; Leskovec and Krevl, 2014). This
graph is unweighted and undirected with 37,700 nodes and 289,003 edges.

Lsnap.stanford.edu/data/github-social.html

18 Graph Theory

Nodes are associated with developers who have starred at least 10 repositories
and are of two types: web developers or machine learning developers. There is
an edge between two developers if they follow at least one common repository.

The second graph we consider is the electric grid network of Europe from
2016 extracted by GridKit? (Wiegmans, 2016), which is built from Open-
StreetMap?. It shows interconnections between different power stations and
joints in the European high voltage electricity grid network. This graph is
also undirected and we do not assign any weights to the edges (and remove
multi-edges), although we could for example consider the physical distance as
edge weights. There are 13,871 nodes and 17,277 edges in this graph.

The main characteristics of those graphs are summarized in Table 1.1, with
respect to degree distribution, diameter, connected components, and cluster-
ing coefficient. For the GitHub graph, since there are two types of nodes, we
additionally consider the two subgraphs induced by only one type of nodes,
that is, the web developers (web) nodes and the machine learning developers
(ml) nodes.

There are some striking differences between the two graphs, not only in
terms of the corresponding edge densities, but also degree distributions. For
the GitHub graphs, the median degree is lower than the mean degree, and
there are some very high degree nodes. As we will see later, this is a common
property of graphs that model some social interactions: there are many low
degree nodes and a few nodes of very high degree (see Section 2.4). For the grid
graph, however, the maximum degree is much smaller so its degree distribution
is more uniform. This graph also has a much larger diameter (147), so its nodes
are not as tightly connected in comparison to the GitHub graph. These are
common properties of geometric graphs in which nodes are embedded in some
geometric space. Looking at the distribution of connected components, the
grid network has one large (we usually call it giant) component and several
(86) small ones, while the GitHub graph is connected. However, if we consider
the GitHub induced subgraphs, we observe many components, mainly due to
appearance of isolated nodes. Those are the result of 2,308 ml developers who
are only linked to web developers, and 285 web developers that are only linked
to ml developers.

In Figure 1.2, we illustrate some selected parts of the graphs under study.
When visualizing a graph, one needs to specify a layout, that is, the way nodes
are placed in 2 or 3 dimensional space. For the GitHub graph, we consider the
subgraph induced by machine learning developers and we use the force directed
layout, which is a type of graph embedding that will be discussed further in
Section 6.7. For the grid network, there is a natural layout provided by the
latitude and longitude of the power station associated with nodes. In both
cases, since the original graphs are large, we only display selected snapshots of
the graphs. For the Grid network, we selected values that correspond roughly

2zenodo.org/record/47317#.X1aWCCOZNhG
Swww. openstreetmap.org

Ezxperiments 19

TABLE 1.1

Basic descriptive statistics for the GitHub and the Grid graphs. The GitHub
subgraphs built with the two types of developers (ml and web) are also
included. dqyanto, refers to the 99" quantile for the degree distribution.

graph GitHub GitHub (ml) GitHub (web) Grid
nodes 37,700 9,739 27,961 13,871
edges 289,003 19,684 224,623 17,277
1) 1 0 0 0
(k) 15.332 4.042 16.067 2.491
median degree 6 2 6 2
dguantes 138 39 145 8
A 9,458 482 8,194 16
diameter 11 13 9 147
components 1 2,466 297 86
the largest component 37,700 7,083 27,653 13,478
isolates 0 2,308 285 27
Celob 0.012 0.034 0.014 0.100
Cloc 0.193 0.141 0.207 0.113

to the Iberian peninsula. On the other hand, for the GitHub graph, we selected
a region in the center of the layout of the giant component. Given the statistics
presented in Table 1.1, it is not surprising to see some dense regions in the
GitHub subgraph, with a mixture of nodes of high and low degrees, while
the Grid network shows much more regular patterns in terms of the degree
distribution.

Another way to look at the degree distribution is to plot the (empirical)
cumulative distribution function (CDF), as we do in Figure 1.3. In such plots,
one presents points (¢, d<y), where d<; is the fraction of nodes of degree at
most £. While the shapes of the corresponding curves look similar, we see
that the GitHub degree CDF extends to very large values for the degrees,
a phenomenon known as a “long tailed” distribution often present in social
graphs that we will study in later chapters.

In Figure 1.4, we look at the distribution of the number of shortest paths
of each length between nodes in each graph. An approximation of such distri-
butions is achieved by taking a random sample of 100 nodes and computing
the shortest path lengths (number of hops) to reach every other node in the
graph. Here again, we see striking differences between the two graphs. For the
GitHub graph, the shortest paths are all quite short, a phenomenon present in
many real-world networks that we will refer to as “small world” phenomenon.
On the other hand, in the grid networks some paths are very long. Indeed,
as one can imagine, linking distant locations likely requires passing through
numerous stations and joints. Such property is typical for many geometric
graphs, that is, graphs in which nodes are embedded in some space (in this
case, geographical location of power stations). This was already clear from

20 Graph Theory

RS S,) of R e
s S [:'- e S z . h “'? o » ~“. C Y see
': c.: :) ;. . ® ' - P S ..l.’l.' e -
.-. .o‘... '!..-' . » '.3....- o '. k- {‘: .G ?'}' -
. T A *0ee . X
‘e = .‘.:'i. o“' =2 :'.. ?'..2 {?{: ?;".Jh.. E] " ﬁ}
.$&.' e _es,e * '."" k‘ w.-. . [Y]
A \.- o L) ‘& . * s k‘ s s A’ s oo *
) e Yy [2aa iR VAN S -t
/ PR A LI -. . {‘ \ “ ~& . =.
.' (XY . " .. L c. W 2 7’
i S o e WY e U »
* o . .\ S . ce s ma ..-.?. “‘. ot =
30 . d v s tee & - >
e L4 [I) g
(a) GitHub (ml) subgraph (b) European Grid subgraph
FIGURE 1.2
Snapshots of the graphs under study.
10° 10t delgo:ee 10° 104 10° degree 10t
a) GitHub graph b) European Grid network
(a) grap P

FIGURE 1.3

Empirical cumulative degree distribution (CDF) for the two graphs under
study.

Practitioner’s Corner 21

GitHub graph (ml and web developers) Power Grid Network
25000
108
o)
S 10 20000
a

8 £

b 10t 2 15000
-
s o
§ 10° E

5 £ 10000
o E]
gw c

g o 5000

0

2 4 6 8 0 20 40 60 80 100 120 140
path length path length
(a) GitHub graph (b) European Grid network
FIGURE 1.4

Number of shortest paths of various length for the two graphs under study.

Table 1.1 where we compared the diameters of the two graphs.

For our last experiment, we experimentally verify the observation that
C(d), the average local clustering coefficient for nodes of degree d, is often
proportional to d=¥ for some ¢ > 0. We consider the GitHub developers
graph. In Figure 1.5, we plot the values of C(d) in the range 10 < d < 1,000
using a log-log scale. We see that the expected linear relation is clear, in
particular, for higher degree nodes. We also show the line we obtained via
linear regression which had a slope of —0.716.

1.13 Practitioner’s Corner

When tackling some problems using graph mining tools, it may be the case
that the graph is explicitly available to be used (such as the Grid network)
while in the other case some pre-processing needs to be done to build the
graph. Such pre-processing step needed to be done for the GitHub graph,
where nodes correspond to a subset of developers that starred at least 10
repositories and edges were created between developers that follow at least
one common repository.

While the entire small graphs can be easily visualized, it is often not the
case for larger graphs. In that case, the usual first step in data exploration—
known as EDA (exploratory data analysis)—is performed by looking at some
basic statistics of the graph. As we saw in this chapter, simple statistics such
as the degree distribution, the distribution of path lengths and connected
components already give a good sense of a general topology of the graph at
hand.

22 Graph Theory

‘@
o
(8]
o 107t
[%2]
>
©
©
v
o
C
@©
]
£
8107
100 102 10°
log (degree)
FIGURE 1.5

Comparing the mean local clustering coefficients for each degree d as a function
of d for the GitHub graph. We also show the line obtained via linear regression
in black.

1.14 Problems

In this section, we present a collection of potential practical problems for the
reader to attempt.

1. Perform a similar type of EDA as in Section 1.12 (in particular,
regenerate Table 1.1) on the 1,000 node ABCD graph. (ABCD
is a synthetic random graph model with communities that we will
often use in this book—see Section 5.3.) Data (the edge list) can be
found in the additional material from the book’s web site.

2. The link* to the Grid network (Europe) also has data for North
America. Perform a similar type of EDA as in Section 1.12 (in
particular, replicate Table 1.1) for that graph, including getting
and preparing the data (which is usually the most time consuming
part of the process). The raw downloaded files can be also found
in Datasets/GridNorthAmerica in the additional material from
the book’s website. You may have a look at the raw files and the
processed data in Datasets/GridEurope and do the same for North
America.

4zenodo.org/record/47317#.X1aWCCOZNhG

Problems

3. Consider the GitHub (ml) graph on 9,739 nodes.

a. Find the number of walks of length 5.

b. Find the number of cycles of length 4 (induced, that is, without
chords).

4. Consider the airport graph® found in the additional material
from the book’s web site under Datasets/Airport/. The file
connections.csv contains 3 fields per line, namely: the origin air-
port, the destination airport and the number of passengers. Air-
ports are represented by their TATA 3 letter codes. This graph is
weighted and directed; the weight of a directed edge uv corresponds
to the number of passengers travelling from airport u to airport v.
The other file airports_loc.csv contains metadata for each air-
port namely its longitude, latitude, state and city.

a. Plot the cumulative degree distribution (points (¢, n>,), where
n>¢ is the number of nodes of degree at least (¢ > 1) in the
log-log plot. Find the slope of the line obtained via linear re-
gression.

b. Find the busiest airport. In other words, find the node with
the maximum total degree (deg”(v) + deg®*(v)).

c. Find the number of strongly connected components.

d. Find the subgraph induced by all airports from California.
Find the number of isolated nodes in this subgraph.

5. Take 100 random pairs of nodes in the giant component of the Fu-
ropean Grid network. For each pair of nodes plot a point (z,y),
where x is the graph distance between the two nodes and y is the
corresponding geographical distance (in kilometres). Is there a cor-
relation between the two distances?

In order to compute the geographical distances (y’s) you may, for ex-
ample, use function geodesic from geopy package or implement it
from scratch using the haversine formula that determines the great-
circle distance between two points on a sphere given their longitudes
and latitudes. To compute the graph distances (z’s) you may inde-
pendently test two variants: treat the network as unweighted graph
(that is, the distance is simply the number of hops from one node
to the other) or as weighted one.

6. For a given n, we generate a graph on the set of nodes [n] as follows.
We randomly pick a set S C [n] of size [n/10]. We put an edge
between u and v with probability 1/2, provided that at least one
of the nodes is outside of S; otherwise, there is no edge between u

5built from www.kaggle.com/flashgordon/usa-airport-dataset

24 Graph Theory

and v. As a result, we get a graph with an independent set of size
at least n/10. Finding it for large n is challenging!

In order to find independent sets, you can try to use a standard func-
tion in igraph. Alternatively, you may write a short piece of code
and greedily generate one independent set. Start with an empty set
T and consider nodes in some order. Add node v to T if it is not
adjacent to any node already in T

a. Implement an algorithm generating the random graph we in-
troduced above (on n nodes and independent set of size at
least n/10). For comparison purposes, we provided a piece of
code at the end of the notebook for Chapter 2.

b. Implement the greedy algorithm for finding an independent
set (not necessarily one of the largest size) that we introduced
above.

c. Create 11 random networks on n € {100,200, ...,100 x 2* for
0 < k < 10} nodes.

d. Try to run the standard function from igraph on the networks
generated in part c. (It might take too long for large graphs
so give up once you get bored waiting.) Report the size of the
independent set found and the running time.

e. Run the greedy algorithm on the networks generated in part c.
Report the size of the independent set found and the running
time.

7. Recall that there are two variants of the average local clustering
coefficient (one of them ignores nodes of degree 0 or 1; the other
one assigns c¢(v) = 0 to these nodes). Both variants are available
in igraph. Find both values for the graphs presented in Table 1.1.
(The default variant is already reported there.)

1.15 Recommended Supplementary Reading

There are many books on graph theory, mostly focusing on theoretical aspects.
We will introduce all necessary definitions and results we need for our purpose
but the reader interested in theory is encouraged to look at the following
books.

e D.B. West, Introduction to Graph Theory, 2nd Edition, Pearson, Upper Sad-
dle River: Prentice hall, 2000.

Recommended Supplementary Reading 25

e R. Diestel, Graph Theory, 5th Edition, Springer, Springer-Verlag Berlin Hei-
delberg, 2017.

e B. Bollobas, Modern Graph Theory, 2nd Edition, Springer, Springer Science
& Business Media, 2002.

There are many textbooks that one can use to review the principles of
probability theory, including the following one.

e J.K. Blitzstein, J. Hwang, Introduction to Probability, Second Edition, Chap-
man and Hall/CRC, 2019.

If needed, in order to refresh basic knowledge in linear algebra, we rec-
ommend to look at one of the many textbooks on the topic including the
following two positions.

e G. Strang, Introduction to Linear Algebra, 5th Edition, Wellesley-Cambridge
Press, Wellesley, MA, 2016.

e S. Boyd, L. Vandenberghe, Introduction to Applied Linear Algebra, Cam-
bridge University Press, 2018.

It might be good to look at the documentation of the libraries used in the
accompanying notebooks.

e igraph library, API Documentation®.

e Graphs. j1 library, used in the Julia examples’.

We introduced three datasets in this chapter. Here are the references for,
respectively, the GitHub developers network dataset and the SNAP repository
where it is hosted, the Grid dataset and the Kaggle repository for the US
Airport dataset.

e B. Rozemberczki, C. Allen, and R. Sarkar, Multi-scale Attributed Node Em-
bedding, arXiv (2019). https://arxiv.org/abs/1909.13021.

e J. Leskovec and A. Krevl, SNAP Datasets: Stanford Large Network Dataset
Collection, http://snap.stanford.edu/data, 2014.

e B. Wiegmans, GridKit: European and North-American extracts, 2016, Zen-
odo. http://doi.org/10.5281 /zenodo.47317

e Kaggle Public Datasets: https://www.kaggle.com/datasets

Finally, as promised in the preface, we list a few books that also include
topics related to mining networks.

6igraph.org/python
"https://github.com/JuliaGraphs/Graphs.j1

26 Graph Theory

e F. Menczer, S. Fortunato, C.A. Davis, A First Course in Network Science,
Cambridge University Press, 2020.

A. Barabasi, Network Science, Cambridge University Press, 2016.
e M. Newman, Networks, Oxford University Press, 2nd Edition, 2018.

e V. Latora, V. Nicosia, G. Russo, Complex Networks: Principles, Methods
and Applications, Cambridge University Press, 2017.

e K. Avrachenkov, M. Dreveton, Statistical Analysis of Networks, Boston-
Delft: now publishers, 2022.

2
Random Graph Models

2.1 Introduction

The theory of random graphs lies at the intersection between graph theory—
which is part of the larger field of combinatorics—and probability theory.
“Random graph” is a very general term that refers to probability distribu-
tions over some family of graphs. Random graphs may be described simply
by providing an explicit probability distribution or by some random process
which generates them.

There are many reasons why researchers and practitioners are interested
in random graphs. They typically include the following four reasons (which
are interrelated):

(i) They are interesting and surprising mathematical objects that can be used
to answer questions about the properties of typical graphs. They are often
used to support conjectures but may sometimes serve as counterexamples.
Many models incorporate additional aspects such as geometry. This is a very
active theoretical research field with many open questions still waiting to be
answered.

(ii) They can be used to model real-world complex networks which, in turn,
provide us with a better understanding of the underlying mechanisms that
create them. A famous example of this research direction is the Barabéasi—
Albert (BA) model (also known as the preferential attachment model),
which generates a power-law network using the so-called “rich get richer”
mechanism. It does not create a network that mimics real-world networks
too closely, but it is a very important model as it shows that growth and
preferential attachment mechanism are the main reasons why power-law
graphs appear in many natural scenarios.

(iii) They can be used to create synthetic networks that closely resemble the real-
world graphs that they attempt to model. Clearly, the process of generating
synthetic graphs is easier than the process of cleaning and preparing a real-
world network for experiments. Moreover, because of their flexibility, they
provide a good tool for testing various scenarios. For example, one might
need to understand how a certain algorithm running on, say, the Facebook

27

28 Random Graph Models

graph is going to perform if the number of users doubles or the average
number of friends triples. A few such synthetic benchmarks are discussed in
Section 5.3.

(iv) They can be used to benchmark the outcome of some algorithm of interest.

For example, we might want to know whether some group of Facebook users
form a community by analyzing the number of connections between them.
If the number of friendships captured within that group is larger than what
one would normally expect, then the answer is yes. But what should one
expect? Random graphs provide an answer to that question. We discuss this
particular application of random graphs in Section 5.4 but there are many
other situations where random graphs are used. We will see them quite often
in this book.

Since the material is selected with practitioners that are more interested in
mining networks rather than modelling them in mind, we concentrate on (iii)
and (iv). We present some basic models that try to preserve the average degree
or the degree distribution. More advanced models will be introduced later in
this book. However, this is not to say that (i) and (ii) are not interesting nor
important.

This chapter is structured as follows: we first introduce the asymptotic
notation that will be used in this chapter (Section 2.2). Next, we introduce
the binomial random graph model and closely related models (Section 2.3).
Unfortunately, many real-world networks exhibit different degree distributions
than the one produced by these models (Section 2.4) so one needs to generalize
them to allow for more flexibility. The Chung-Lu model provides such flexibil-
ity (Section 2.5). However, this model generates a random graph with only the
expected degree distribution matching the desired one. The next two models
generate random graphs whose degree distribution is an ezact match for what
we prescribe. We start with random d-regular graphs (Section 2.6) and then
generalize the model to any degree distribution (Section 2.7). The last family
of random graphs that we discuss has nodes embedded into some geometric
space (Section 2.8). This family is particularly important in applications as
many complex networks include some additional information associated with
nodes. As usual, we finish the chapter with experiments (Section 2.9) and
provide some tips for practitioners (Section 2.10).

This book concentrates on presenting the definitions and selected proper-
ties of random graphs. Readers interested in learning more about these topics
(in particular, to see the proofs of the discussed properties) can find more infor-
mation in the following books: Bollobds (2011), Janson, Luczak and Ruciriski
(2000), Frieze and Karonski (2015), Chung and Lu (2006), van der Hofstad
(2017), Penrose (2003).

Asymptotic Notation 29

2.2 Asymptotic Notation

Before we define various models of random graphs, let us stress the fact that
none of these graphs are deterministic but are generated by some random
process. In particular, as will be shown in the next section, the empty graph
on n nodes can occur as G(n,1/2) with exactly the same probability as the
complete graph. However, both situations are extremely rare, provided that
n is large enough. Hence, we will pay attention to properties that are typical
for a given random model assuming that n is large. Formally, we say that
an event in a given probability space holds asymptotically almost surely
(a.a.s.), if its probability tends to one as n goes to infinity. For example, a.a.s.
G(n,1/2) is not the complete graph K,, nor the empty graph K,,.

We will use the following asymptotic notation. Given two functions
f = f(n) and g = g(n), we will write f(n) = O(g(n)) if there exists an
absolute constant ¢ > 0 such that |f(n)| < c|g(n)| for all n € N, f = Q(g)
if g = O(f), f(n) = O(g(n) if f(n) = O(g(n)) and f(n) = g(n)), and we
write f(n) = o(g(n)) or f(n) < g(n) if the limit lim,_,o f(n)/g(n) = 0. In
addition, we write f(n) = w(g(n)) or f(n) > g(n) if g(n) = o(f(n)), and
unless otherwise specified, w = w(n) will denote an arbitrary function that is
w(1), and typically it is assumed to grow slowly as n — co. We will also write
f(n) ~gn)if f(n) = (14 0(1))g(n), that is, when lim,_,~ f(n)/g(n) = 1.

In order to investigate the asymptotic behaviour of random graphs, we will
use some standard inequalities and approximations. Let us summarize them
below. The Taylor series for the exponential function e* at a =0

2 3
x x
e””:1+x+§+§+...:1+x+0(z2),

implies that 1 + 2 = exp(x + O(2?)). For the factorial function n!, we have

that for any n € N,
n n n n
(7) <nl<en <7) .
e e
For the asymptotic behaviour one can use the well-known Stirling’s formula
n n
n! ~v2mn (7) .
e

For the binomial coefficient, we have that for any integers ¢, n such that 0 <

£ <n,
n* n eny*t
(7) =(:) = (F)
l L 14
Through this chapter—as is typical in the field of random graphs—
expressions that clearly have to be an integer will be rounded up or down.

We do not specify the way we do it as this choice does not affect the argu-
ment.

30 Random Graph Models

2.3 Binomial Random Graphs

Let us start with definitions of three models that are commonly used. Note
that we typically use V for the set of nodes but for random graph models we
make an exception and use [n] instead. The reason for this is two-fold: first of
all, we want to stress the fact that we work with labelled graphs and labelling
nodes with consecutive natural numbers seems natural. The second reason is
that most results are asymptotic in nature, that is, when the number of nodes
n grows. As a result, the model actually introduces an infinite family of graphs
(the sequence), not just a single graph on nodes from a fixed set V.

The binomial random graph G(n, p) can be generated by starting with
the empty graph on the set of nodes [n] = {1,2,...,n}. For each pair of
nodes 4, j such that 1 < ¢ < j < n, we independently introduce an edge
17 in G with probability p.

Note that p = p(n) may (and usually does) tend to zero as n tends to
infinity. Let us also note that we formally defined the probability distribution
over a family of labelled graphs on n nodes. There are (") labelled graphs on
n nodes and m edges, where N = (3) is the number of pairs of nodes. For a
given labelled graph G on n nodes and m edges, we obtain this graph with
probability

P(G) =p™ (1 —p)N .

Hence, indeed, the probability is well-defined as

N

> ()=,

m=0

by the binomial theorem.

Let us mention that p = 1/2 plays a special role in this model as in this
case P(G) = 2% for any graph G on n nodes, regardless of how many edges G
has. As a result, the corresponding probability space is the uniform probability
space over the family of all graphs on n nodes.

The second model we would like to mention is the uniform random graph
G(n,m). The two models, G(n,p) and G(n,m), are in many cases asymptot-
ically equivalent, provided (g')p, the expected number of edges in G(n,p), is
close to m. In fact, if one conditions on G(n,p) to have m edges, its edges are
distributed as in the G(n,m) model. As a result, to generate G(n,p) we may
first sample the number of edges m from Bin((}), p) and then simply generate
G(n,m). This observation has important computational implications that we
discuss at the end of this subsection.

Binomial Random Graphs 31

Let Q be the family of all labelled graphs on the set of nodes [n] and
exactly m edges, where 0 < m < N, N = (g) The uniform random
graph G(n,m) assigns to every graph G € () the same probability, that

) o=t = (%)

m

Alternatively, the uniform random graph G(n,m) can be generated using
the following random process:

The Erdés-Rényi random graph process is a stochastic process that
starts with n labelled nodes and no edges, and at each step adds one new
edge chosen uniformly at random from the set of missing edges. Formally,
let N = (3) and let e1,ez,...,ey be a random permutation of the edges
of the complete graph K,. The graph process consists of the sequence
of random graphs (G(n,m))N_,, where G(n,m) = ([n], E,,) and E,, =
{e1,e2,...,em}. It is clear that G(n,m) is a graph taken uniformly at

random from the set of all graphs on n nodes and m edges.

Let us now present a few results from the theory of random graphs. This is
a very active field so we can only scratch the surface. Perhaps the most studied
phenomenon in the field of random graphs is the behaviour of the binomial
random graph when its average degree (k) is near 1. Though we will distinguish
3 phases in its evolutionary process, the big picture is actually more complex
and interesting. The sub-critical phase happens when (k) < 1 — ¢ for some
€ > 0. During that phase, a.a.s. G(n,p) consists of small trees and unicyclic
components, and thus its structure is rather easy to study. The size of the
largest component is of order Inn = o(n) and so it is of negligible size. A giant
component (that is, a connected component of linear size) is formed from
smaller ones during the so-called critical phase when (k) ~ 1. During that
phase, the size of the largest component keeps growing, reaching @(nz/ 3) nodes
at precisely (k) = 1 a.a.s. After that, a.a.s. G(n,p) consists of one complex
component (that is, a connected component with more edges than nodes)
of growing size and some number of small trees and unicyclic components.
However, the size of the largest component and the number of edges in this
component are still o(n), provided that (k) ~ 1. Moreover, the size of the
second-largest component keeps decreasing. Finally, when (k) > 1 + € for
some € > 0, a.a.s. the size of the giant component is (1 + o(1))8n, where
B = B((k)) is the positive real number satisfying

Btef) =1,

32 Random Graph Models

The giant component is unique and the second-largest component is acyclic
or unicyclic and has the size of order In n. This phase is called the very super-
critical phase.

These theoretical and asymptotic formulas are compared with simulation
results for small graphs in Figure 2.1. We performed 1,000 independent runs
over a range of values for the average degree. The 90% confidence interval is
presented as the shaded area. The experiments for small graphs on n = 100
nodes show some variability but the results are quite close to the corresponding
expected values. For larger graphs on n = 10,000 nodes, the empirical results
agree almost perfectly with the theoretical predictions.

10000

-
S
3

8000

©
3

6000

o
3

4000

I
8
giant component size

giant component size

N

S
N
3
3
3

o
o

average degree average degree

(a) n = 100 (b) n = 10,000

FIGURE 2.1

The order of the giant component: theoretical predictions and empirical results
based on 1,000 independent runs for small graphs on (a) n = 100 nodes and
larger graphs on (b) n = 10,000 nodes.

Another important phenomenon is the threshold for connectivity. Suppose

that
B Inn+c Inn

p=p(n) = n ~ o
for some constant ¢ € R. Note that the expected number of isolated nodes is
equal to
1 1 2 n—1
n(1—p)"! = nexp (_W 40 << nn)))
n n

= nexp (—(Inn+c)+ 0(1)) ~e ¢ (2.1)

If ¢ is negative and large in magnitude (that is, |c| is large and ¢ < 0), then
we expect to see a lot of isolated nodes. On the other hand, if ¢ is positive
and large, then we expect the opposite. Clearly, if there are isolated nodes,
then the graph is disconnected though there are many disconnected graphs
without any isolated nodes. However, it is possible to show that this trivial

Binomial Random Graphs 33

necessary condition for connectivity is in fact the main obstacle for G(n, p) to
be connected. Once isolated nodes disappear, the binomial random graph is
connected a.a.s. The following property holds:

0 if c =+ —o0
P(g(n,p) is connected) ~Se " ifceR (2.2)
1 if ¢ = oo.

In particular, we get the following corollary of this much stronger result. If
pn < (1 —€)lnn for some € > 0, then a.a.s. G(n,p) is disconnected. On the
other hand, if pn > (1+¢€)Inn for some € > 0, then a.a.s. G(n,p) is connected.
As before, in Figure 2.2, the asymptotic probability that the random graph
G(n,p) with np = Inn+-c is connected (that is, f(c) = e~¢) is compared with
simulation results for graphs of order n = 100 and n = 10,000. The shaded
areas correspond to the 90% confidence intervals for the estimates obtained
with 1,000 runs, and the black lines correspond to the theoretical values f(c).
Despite some variability, the results are quite close to the expected values.

° ° =
> & 5
° -
@ s

°
o

N
=

P(graph is connected)

°
P(graph is connected)

°
N

o
°

0.0

-4 -2 0 2 a 6 8 10 -100 -75 -50 -25 00 25 50 75 100
constant ¢ constant ¢

(a) n =100 (b) m = 10,000

FIGURE 2.2

The probability that G(n,p) with np = lnn + ¢ is connected: theoretical pre-
dictions and empirical estimations based on 1,000 independent runs for small
graphs on (a) n = 100 nodes and larger graphs on (b) n = 10,000 nodes.

One important local property of networks are so-called network motifs,
which are defined as small subgraphs of a large network. Depending on the
application at hand, it is sometimes natural to insist that these small sub-
graphs are induced (see Section 1.9 for the definition). For random graphs,
non-edges do not cause any problems, unless p is close to 1 but this is usually
not an interesting case anyway. Hence, in order to keep things as simple as
possible, we will concentrate on subgraphs, not necessarily induced.

Before we state the main observation, let us consider the following illus-
trative example. We would like to understand if the graph G presented in

34 Random Graph Models

Figure 2.3 appears in G(n,p) with p = p(n) = n=91! as a subgraph or not.
Note that the expected number of copies of G in G(n, p) is equal to

!
(Z) %p6 = 0(n°p%) = 0(n*/M) = .

(a) Graph G (b) Subgraph H of G

FIGURE 2.3
Graph G of density 6/5 = 1.2 (a) and its subgraph H of density 5/4 = 1.25
(b) that yields the maximum subgraph density.

Indeed, there are (2) choices for the 5 nodes of G, 5!/2 possible ways to embed
G on those 5 nodes, and after that edges appear at the selected places with
probability p®. Hence, one might think that there should be at least one copy
of G present in the random graph. However, we get the opposite intuition if we
consider a subgraph H of G. The expected number of copies of H in G(n,p)

is equal to

4/ 4

Since the probability that H is present in the random graph is less than or
equal to the expected number of its occurrences in the graph, we get that
a.a.s. there is no H in the random graph. This is an immediate consequence
of the fact that for every non-negative, integer valued, random variable X,

!
(n) §p5 =0(n*p®) = O(n~ Y1) = 0.

E[X] ii.ﬂm(xo ZiP(Xi) = P(X > 1).

1=0

But if there is no H in G(n, p), then there is clearly no G! How can one explain
this paradox? Note that if we see a single copy of H, then we expect to see
2(n — 4)p = O(n*/1) copies of G built around the copy of H. So we expect
to see it ©(n'/'') more times than we expect to see G unconditionally. In
summary, the probability that there is at least one copy of G (and so also at
least one copy of H) in G(n,p) tends to 0 as n — oo, but conditioning on the
fact that there is at least one copy of G in the random graph, the expected
number of copies of G tends very fast to infinity as n — co. In general, one
can show that the maximum subgraph density of G plays a more important
role than the density of G in this context.

Binomial Random Graphs 35

Let us formalize these observations. For a given motif G = (V, E), let
d(G) = |E|/|V| be the density of G, and let the maximum subgraph
density of G be defined as follows:

m(G) = max{d(H) : H C G},

where the maximum is taken over all subgraphs H of G. Coming back to the
graph G presented in Figure 2.3, d(G) = 6/5 = 1.2 and it is easy to see that
m(G) = d(H) = 5/4 = 1.25. If pn*/"™E) — 0, then a.a.s. G(n,p) does not
contain G as a subgraph. On the other hand, if pn'/™&) — oo, then a.a.s.
G(n,p) contains G as a subgraph. The function p = n="/™&) is called the
threshold subgraph probability for the property that G(n,p) contains G
as a subgraph.

Recall that the diameter of a connected graph G = (V, F) is defined as
follows: diam(D) = max, ,ev dist(u,v), where dist(u,v) is the distance be-
tween nodes u and v. Since the number of nodes at distance ¢ from any node
v is expected to be around min{(k)¢,n}, we expect the diameter of the giant
component of G(n,p) to be close to Inn/In(k). This is true provided that the
average degree is large enough but might be slightly off for sparse graphs. In
particular, the following property holds. Suppose that (k) = (n —1) p>Inn
and

(k)'/n —2Inn — oo and (k)'/n —2Inn — —oo.

Then, the diameter of G(n,p) is equal to i a.a.s.

Similar observations can be made for the average distance between two
nodes from the giant component of G(n,p). We present the results of one
experiment with binomial random graphs with expected degree 5 in Figure 2.4.

Finally, let us turn our attention to algorithmic aspects. In order to gen-
erate a sparse uniform random graph G(n,m), one typically starts from an
empty graph G = ([n],) with E = (). Next, we repeatedly sample nodes u
and v from [n] independently and uniformly and if v # v, then we add an
edge uv to E. Note that uv might already be present in FE in which case uv
is discarded, that is, F is not changed. The process ends when |E| = m. For
dense graphs (that is, when m > (Z) /2), a standard procedure is to sample
the graph G(n, (g) —m) and then take its complement, which has the same
distribution as G(n,m).

Now, we briefly analyze how long this process takes, provided that m <
(72’) /2. Assuming that m’ edges are already present, the expected number of
samples that we need to perform to generate a new edge is equal to

() aa-1) a1

(5)—m' n(n—1)=2m" = n(n—1)—2m ~

So in total, we only need (1 + o(1))m samples, provided that m = o(n?) and
at most 2m for dense graphs. Hence, the generation process is very fast, one
can do it in linear time as a function of m.

36 Random Graph Models

64 nodes 128 nodes 256 nodes

0.4 - 1 1

0.3 1 1

0.2 1 e i

proportion

0.0 — T T T T T T T T T T T
512 nodes 1024 nodes 2048 nodes

0.2 1 e i

proportion

0.1 1 E i

0.0 —== T T T T T T T T T T T
1 3 5 7 1 3 5 7 1 3 5 7

path length path length path length

FIGURE 2.4

Distribution of shortest path lengths for the giant component of binomial
random graphs with expected degree 5 and varying number of nodes. The
extreme value for each boxplot corresponds to the diameter. We see a slow
increase in the diameter as we double the number of nodes between each
boxplot.

In order to generate a binomial random graph G(n,p), we first sample
the number of edges m from Bin((}), p) distribution and next use the G(n, m)
sampler described above. The efficiency of a method to sample from Bin((g) ,D)
is dependent upon how large the value of its expectation is. It is implemented
in this form in Python, Julia, and most other computing environments.

2.4 Power-Law Degree Distribution

Binomial random graphs are the most important and well-studied random
graph models. They certainly provide us with a better understanding of the
formation and behaviour of networks but can they be successfully applied as
models of real networks? Since many real-world networks are sparse and large,
we might want to consider G(n,p) with p = p(n) = ¢/n for some constant
¢ € Ry and large n. Despite the fact that all nodes are expected to have

Power-Law Degree Distribution 37

exactly the same number of neighbours (namely, p - (n — 1) ~ ¢), there will
still be nodes of different degrees. After all, this is not a c-regular graph.
Indeed, for any node v € [n] and £ € NU {0},

(n; 1>p€(1 —p)
_ (m=1)(n-2) (E)eexp (7% o (n,g))n—l—f

/! n
nt ¢ .
~ Eﬁexp(—c—i—o(l))wﬁe .

]P’(deg(v) = f)

Moreover, the corresponding events are asymptotically independent. For any
two nodes, u,v, and £1,f2 € NU {0},

P(deg(v) =/ ANdeg(u) = Kg) ~]P’(deg(v) = él)]P’(deg(u) = 62).

Hence, in the limit, the degree distribution of sparse G(n,p) can be approxi-
mated by the Poisson distribution, that is,

¢

C —C

de ~ E e

where ¢ is the asymptotic expected average degree. (Recall that dy is the
fraction of nodes of degree £.) We illustrate this in Figure 2.5 for two random
graphs with n = 100 and n = 10,000 nodes, and np = 10. In particular, it
follows that the number of nodes of degree ¢ decreases very fast as £ increases.
As a result, the maximum degree is relatively small. Indeed,

(1)< (52 oo ()

exp (—l(Int — ln(ec))) =o(1/n),

P (deg(v) > ¢)

IN

IN

provided that, say, £ = 2lnn/Inlnn and n is large enough. It follows that
a.a.s. the maximum degree is O(Inn/Inlnn).

Unfortunately, this means that binomial random graphs do not accurately
reflect the degree distribution of most real-world networks. For example, Cris-
tiano Ronaldo, Lionel Messi, and Selena Gomez are considered to be the most
popular users on Instagram (January 2024) because of a large number of
followers: 618M+, 497TM+, and 430M+ respectively. Hence, there are large
degree nodes in such networks, something that is extremely unlikely to see
in G(n,p). After a number of experiments on real-world graphs, it was found
that their degree distribution produced an approximately straight line on a
log-log scale. This implies that the degree distribution is well approximated
by the following equation:

dz ~c- 077 (23)

38

frequency/pmf

frequency/pmf

Random Graph Models

o
N}

o
S

o
o
3

o
o
3

4 6 8 10 12 14 16 18 0 5 10 15 20 25
degree degree

(a) n = 100 (b) n = 10,000

FIGURE 2.5

Degree distribution of G(n, p) with n = 100 (a) and n = 10,000 (b), and with
np = 10. The dashed line is the corresponding Poisson distribution with the
expected value of ¢ = 10.

for some parameter v > 0 and normalizing constant ¢ > 0. Indeed, after taking
a logarithm of both sides we get

Indy =~ —yInf+Inc,

which yields a straight line with the slope —y. Equation (2.3) is called a
power-law distribution and the exponent + is its degree exponent. The
frequency of the natural occurrence of this distribution in practice was first
observed by Vilfredo Pareto, a 19th-century economist, who observed that a
few wealthy individuals posses the majority of world wealth. Finally, let us
mention that the same observations apply to directed networks. For example,
for the web graph, both in-degree and out-degree distributions follow the
power-law distribution but with different degree exponents, namely, v;, ~
2.1 and 7,y =~ 2.45, which are approximations of the corresponding degree
exponents that are typically reported.

Dealing with power-law distributions of discrete variables brings some tech-
nical challenges. Suppose that we want to generate a degree distribution with
degree exponent v > 1 and minimum degree § > 1. To keep things a little bit
simpler, assume that

{41
dy :c/ z Vdx ~c- 077,
4

Note that
C 57("/71)

[e’e} _Sl—~
1:ng:c/6 z*de:C((s): ,

=3 1—7 v—1

Power-Law Degree Distribution 39

provided that v > 1. Hence, the normalizing constant ¢ can be computed and
dem (y—1) 871, (2.4)

The average degree of a graph with this distribution is equal to

A 00
(k) = Y tdim(y-1) 57*1/ 'V da
(=6 g

—52= -1
— _a-l

= —1) 6771 =1
(v—1) b

(2.5)
provided that v > 2. In a few places in this book, we will also need the second
moment, which, provided that v > 3, is equal to

A oo
0 = S Edim(y—1) 5 / 22y
=5 4

_ 53— _
e P by

= — 2.
3 53 (2.6)

Let us again stress that the average degree (k) is finite and well defined
only for v > 2 and the second moment (k?) only for v > 3; otherwise, they
tend to infinity as n — oco. Indeed, assuming that A > ¢, it follows from (2.5)
that

() ~ % S AT for v € (1,2)
~ (y—=1) 6" 1In(A/5) for vy =2.

Similarly, from (2.6) we get that
(52) ~ gf_i 5L A3 for v € (2,3)
(y=1) 6" 1In(A/5) fory=3.

Since many real-world networks exhibit power-law degree distribution with
exponent v € (2,3), the average degree (k) in such graphs is finite and well
defined whereas the second moment (k?) and the maximum degree A grow
together with n. It is possible to estimate how A depends on n by investigating
the following condition

1= nz de=n(y-1) (57*1/ x Vdr ~n (5/A) 71,
>A A

provided ~ > 1. This condition simply assumes that the number of nodes of
degree at least A is close to 1. We get that

A =3 n/07D) (2.7)

which is often referred to as the natural cut-off of the graph.

40 Random Graph Models

Finally, let us mention that there is another upper bound for the maximum
degree in power-law graphs, namely, the so-called structural cut-off. The
reason for cutting the high degree nodes is that one expects a large number
of edges between high degree nodes that are present in power-law graphs.
However, as we deal with simple graphs, there is simply not enough room
for such edges which creates a problem. Indeed, it can be shown that not all
distributions d; can be achieved if one is restricted to a family of simple graphs.
Recall that a sequence of numbers is said to be a graphic sequence if one
can construct a graph having the sequence as its degree sequence. Assuming
that the sum of degrees of all nodes present in the graph is even, the following
condition is both sufficient and necessary for the degree sequence to be graphic:
for all r € [n — 1],

T n

> deg(v;) <r(r—1)+ > min{r,deg(v;)}, (2.8)

i=1 i=r+1
where v; is a permutation of nodes from V that makes the sequence non-
increasing, that is, deg(v;) > deg(v;y1) for all ¢ € [n — 1]. So, indeed, we see
that the degree distribution dy cannot allow for a few nodes with very large
degree and a large number of nodes with small degrees. We discuss this issue
in more detail for special graph classes in Section 4.4.

2.5 Chung-Lu Model

As mentioned in the previous section, binomial random graphs are not flexible
enough to mimic degree distributions of most real-world networks. In order
to overcome this problem, one can use the Chung-Lu model which produces
random graphs with an expected degree sequence following a given sequence
w, provided that we accept the generated graph to be non-simple (that is,
it may contain self-loops or multiple edges). This model can be viewed as a
special case of a larger family of inhomogeneous random graphs.

Let w = (wy,ws,...,w,) be any vector of n positive real numbers, and
let W = Y7 | w;. Similarly as for binomial random graphs, we define
G(w) = ([n], E) to be the probability distribution of graphs (including
non-simple graphs) on the set of nodes [n]. In the Chung-Lu model,
each pair of nodes 7, 7 such that 1 < i < 5 < n is independently sampled
as an edge (or loop if i = j) with probability given by:

e, L7
piJ:{(LV)Q

W L=

£
£

Chung-Lu Model 41

Let us mention one technical assumption. In theory, it might happen that
p;,; defined above is greater than one. Since the theoretical model allows for
parallel edges, if p; ; > 1, then it should really be regarded as the expected
number of edges between ¢ and j. For example, for p; ; > 1 one may introduce
a Poisson-distributed number of edges with mean p; ; between each pair of
nodes 4, j. Another natural approach would be to generate |p; ;| edges between
1 and j, where for any € N and y € [0, 1), random variable |z + y] is defined
as follows

byl = [x+y] =2+ 1 with probability y
L=)4yl == otherwise.

(Note that E[|z + y|] = z + y, as desired.)

However, in practice the maximum weight, max;c,) w;, typically satisfies
(max;e[y w;)? < W, which is the property that is closely related to the prob-
lem of the degree sequence being graphic and the structural cut-off mentioned
in the previous section. With this assumption we get that for any ¢,j € [n]
pi,; < 1 and so, in practice, we rarely face a problem with parallel edges.
Hence, in applications we may assume that edges are created with probability
min{p; ;, 1} and restrict ourselves to simple graphs, after ignoring loops that
are rare but might be present in the original theoretical model, as p;; > 0.
Note that, as a result, it slightly biases the expected degree of nodes, especially
when w; is large (that is, it slightly decreases the expectation).

Of course, if w = (pn,pn,...,pn) and self-loops are ignored, then G(w)
is simply G(n,p), and so it can be viewed as a generalization of the binomial
random graph. One desired property of this random model is that it yields a
distribution that preserves the expected degree for each node (exactly for the
theoretical non-simple model; or approximately, in practice, for the empirical
variant involving simple graphs), namely, for any ¢ € [n],

AU)2 .
E[deg(i)]:Zpi,jz Z wg/UJ—FQ-(;UI;Z :%ij:wi.

j€ln] Jen\{i} j€ln]

Not surprisingly, G(w) is more challenging to analyze than G(n, p). However, it
is also well-studied and many of its interesting properties are known. In order
to see another level of complexity, we only mention a few results investigating
the appearance of the giant component. For convenience, we assume that
(max;e(n) w;)? < W and use the theoretical model with loops as they do not
affect the distribution of connected components.

In this model, it is more natural to call a connected component volume-
based giant if its volume is a positive fraction of the total volume of the
graph (see Section 1.8 for a standard definition in which the number of nodes is
considered in a connected component instead of its volume as we do here). For
example, the graph consisting of the binomial random graph G(y/n,1/2) and
n — y/n isolated nodes has a.a.s. a component consisting of a positive fraction

42 Random Graph Models

of all edges (and so it is volume-based giant) but the fraction of nodes in this
component is trivially at most y/n/n = 1/y/n and so it vanishes as n — oo
(so it is not giant according to the standard definition from Section 1.8).

Based on experience with binomial random graphs, it is natural to con-
jecture that there is no giant component if the expected value of the av-
erage degree (k) is less than 1. However, surprisingly, the answer is neg-
ative. For example, assuming that n is even to simplify the notation, if
w; = 3/2 for i € [n/2] and otherwise w; = 0, then G(w) is simply a union of
G(n',(3/2)2/(3n/4)) = G(n',(3/2)/n’) and n' isolated nodes where n’ = n/2.
Since the expected degree in G(n', (3/2)/n’) is 3/2 > 1, a.a.s. G(n',(3/2)/n’)
has a giant component so the same applies to G(w), despite the fact that the
expected value of the average degree is W/n = 3/4 < 1. On the other hand,
if the expected value of (k) is larger than one, then a.a.s. there is a giant
component.

So what is going on? Maybe one should look at the second order average
degree (k?)/(k) > (k)? Perhaps if the expected value of (k?)/(k) is larger
than one, then it is enough to conclude that a.a.s. there is a giant component?
Again, the answer is negative. For example, if for some € > 0, w; = 1 — € for
i € [n —Inn] and otherwise w; = (1 + €)/n, then G(w) a.a.s. satisfies

n—Inn Inn

<k‘)%T(1—e)+T(1+6)\/ﬁ~1—e<1,

and

(k?) 1 n—Inn 5 Inn 9 (1+¢€)?
= — (1 - — (1 ~—1 1.
(k) 1—ce¢ n (1= + n (1+€)n 1 nn >

The graph induced by the set of nodes [n—1Inn] is simply the binomial random
graph with expected degree less than one. As a result, a.a.s. all of its compo-
nents are of size O(Inn). On the other hand, a.a.s. the max degree is at most,
say, 2¢/n. So a.a.s. the number of edges in the largest component is at most
O(yv/n (Inn)?) = o(n). Since the volume of the original graph is ©(n) a.a.s.,
there is no giant component in G(w) a.a.s. On the other hand, if (k?)/(k) is
less than one, then a.a.s. G(w) has no giant component.

Hence, the behaviour of Chung-Lu model is indeed more complex to ana-
lyze, as one may expect from such a general and flexible model. As mentioned
above, it can be shown that if (k) < (k?)/(k) < 1—e¢ for some € > 0, then a.a.s.
G(w) has no giant component. On the other hand, if (k?)/(k) > (k) > 1+ ¢
for some € > 0, then a.a.s. there is one.

Let us now discuss how one can use the Chung-Lu model to generate
power-law graphs. In order to generate the expected degree distribution fol-
lowing power-law with degree exponent 7, one may consider

w; = c- (i+ig — 1)*1/(%1)

for i € [n]. Here, ¢ = ¢(n) depends on the minimum (or average) degree
0 > 1 and ip = ig(n) depends on the maximum degree A. It follows that

Chung-Lu Model 43

c=06n"0=Y and ig = n/(A/§)7! so

wi =0 (z Ty n7(A/6)7—1 > o (29)

It is slightly technical (and so we omit it) but it is possible to show that the
expected number of nodes of degree k is proportional to

Nk—~v+1)/T(k+1)=Ek7,

where I'(z) = fooo z*"le ®dzx is the gamma function. A similar property
holds for the number of nodes with the expected degree between k and k + 1.
(Alternatively, to generate the desired sequence (w;);e[n) We could have used
the general formulas we derived in Section 2.4; in particular, see (2.4). Both
approaches generate sequences asymptotically following power-law with the
desired exponent.)

In order to illustrate how the model works in practice, we generated G(w)
on n = 10,000 nodes using the set of weights prescribed by (2.9) with v = 2.5,
§d =1, and A = y/n = 100. The obtained degree distribution is presented in
Figure 2.6; in particular, the minimum and the maximum degree of G(w) were
6" =0 and A’ = 113, respectively. Then, in order to estimate the exponent of
the power-law degree distribution present in G(w) we try to find a pair of 7/
and tail cut-off level ¢’ that minimize the divergence from the tail of power-law
distribution. The divergence measure we use is known in the literature as the
Kolmogorov—Smirnov statistic that is a nonparametric test that can be
used to test whether a sample came from a given reference probability distri-
bution. Since we are mostly interested in the properties of degree distribution
of large degree nodes, the procedure works as follows. For a given cutoff for
small degrees £ € [max{d, 1}, A], the degree exponent is estimated as follows:

{7 : deg(j) > £}
de . b)
2 jideg(j)>e I (f—gl(/j;)

and the divergence of the distribution from the theoretical distribution can be
computed as follows:

Ye=1+

{j: deg(j) > K} Jo o da
[deg() = 0} [T da

In the above formula, we used a continuous theoretical distribution to preserve
the exposition’s consistency; alternatively, one can use a discrete theoretical
distribution, an approach that was used in our computational example. The
value of 7, that minimizes Dy (over all £ € [max{d, 1}, A]) is used to estimate
~" of the power-law exponent. Intuitively, we select such a tail cut-off level ¢/
and 7/ that minimize the maximum distance between the cumulative distribu-
tion function of the power-law distributed tail and the empirical distribution
observed in the data.

Dy = max
kele,A]

44 Random Graph Models

In practice, to fit power-law curves, one can use the powerlaw package!
(Clauset, Shalizi and Newman, 2009; Klaus, Yu and Plenz, 2011; Alstott,
Bullmore and Plenz, 2014).

100 4

-
S
L

inverse cdf
-
o
S

1073 4
1074 1 T T T
100 10! 102
degree
FIGURE 2.6

The inverse cumulative degree distribution (on a log-log scale) of the Chung-
Lu graph with n = 10,000 nodes and v = 2.5. The fitted line has slope of
roughly —1.89 (v ~ 2.89), which was obtained with the Kolmogorov—Smirnov
test with ¢/ = 7.

Finally, let us briefly discuss complexity issues. Similarly to G(n,p), in
order to generate sparse G(w), one does not need to perform N = (g) +n
independent experiments but rather introduce edges one by one and connect
two nodes with appropriately selected probabilities. The number of edges to
sample is usually well approximated by Bin(N, W/(2N)) or one may simply
fix the number of edges to be equal to |W/2] ~ W/2, the expected number of
edges. In order to generate these random edges, one needs to be able to select
nodes randomly but with a non-uniform probability distribution. This step can
be done efficiently, as most of the work required for weighted sampling can be
done once and then cached, and this part is implemented in Python/Julia and
most other computing environments. As we discussed above, this process is
only an approximation of a theoretical model if one wants to generate simple
graphs. The degrees of nodes with large weights are slightly biased downwards
whereas nodes with small weights are biased upwards.

Lpypi.org/project/powerlaw/

Random d-regular Graphs 45

2.6 Random d-regular Graphs

In this section, we consider the uniform probability space of random d-regular
graphs with d € NU{0} fixed. Different mathematical tools are required when
d = d(n) grows together with n. We will deal with such random graphs in the
next section, as they can be viewed as a special case of the family of random
graphs with a given degree sequence. Since the total volume of any graph is
even, n has to be even if d is odd. Hence, for odd values of d one needs to
consider a sequence of graphs on n nodes with n — oo restricted to even
numbers.

Fix d € NU{0} and n € N such that dn is even. Let Q be the family of all
labelled graphs on the set of nodes [n] that are d-regular. The random
d-regular graph, denoted by G, 4, assigns to every graph G € 2 the
same probability, that is P(G) = 1/|)|.

Let us first discuss how one can generate these graphs, as this will have
some important implications from a theoretical point of view. The cases d = 0
and d = 1 are trivial. Clearly, O-regular graphs are simply empty graphs
whereas 1-regular graphs are the same as perfect matchings. The random
graph G, 1 is obtained by randomly choosing one of the

n!

M(n) = ¢ ayigars

(2.10)

partitions of the set of nodes into n/2 pairs. Hence, from now on we will
assume that d is a fixed integer that is at least 2.

The uniform probability space is very easy to define but is not so easy to
work with. After all, nobody is able to generate the family of labelled d-regular
graphs on n nodes (even if n is as small as, say, 20) and then select one of
them uniformly at random. Hence, instead of working directly in the uniform
probability space, we will use the pairing model of random regular graphs
that is also known as the configuration model.

Suppose that dn is even, as in the case of random d-regular graphs, and
consider dn points partitioned into n labelled buckets vy, vs, ..., v, of
d points each. A pairing of these points is a perfect matching into dn/2
pairs. Given a random pairing P, we may construct a multigraph P, 4 =
P(P), with loops and parallel edges allowed, as follows. The nodes are the
buckets v1,v,...,v,, and a pair {z,y} in P corresponds to an edge v;v;
in Py q if and y are contained in the buckets v; and v;, respectively.

46 Random Graph Models

There are M (dn) different configurations and a pairing must be selected
uniformly at random. This can be done in many different ways, some of which
turn out to be very convenient. In particular, the points in the pairs can be
chosen sequentially. At any stage of the process, the first point in the next
random pair chosen can be selected using any rule whatsoever, as long as the
second point in that pair is chosen uniformly at random from the remaining
points. For example, when one wants to find nodes at distance ¢ from some
given node, a good strategy is to reveal the graph using the breadth-first-
search (BFS) algorithm starting at that node. On the other hand, if the goal
is to investigate the size of the connected component containing a given node,
then one can utilize the depth-first-search (DFS) algorithm. We will use
this approach in our example below.

It is easy to see that the probability that a random pairing corresponds to
a given simple graph G is independent of the graph, hence the restriction of
Pn.a to simple graphs is precisely G,, 4. Indeed, let G; and Gy be any simple
graphs on n nodes that are d-regular. Since each simple graph corresponds to
precisely (d!)™ pairings, we get immediately that

GO
M(dn)’

P(Pmd = Gl) = P(Pn,d = Gg) =

where M (dn) is defined in (2.10). It follows that a regular graph can be chosen
uniformly at random by choosing a pairing uniformly at random and rejecting
the result if it has loops or multiple edges. However, non-simple graphs are not
produced uniformly at random since for each loop the number of corresponding
pairings is divided by 2, and for each k-tuple edge it is divided by k!.

Moreover, it is known that a random pairing generates a simple graph with
probability asymptotic to e~ (@-1)/4 depending on d but not on n. We illus-
trate this empirically in Figure 2.7. Since in this section we restrict ourselves
to graphs with constant degree, this is a desired property as it shows that
one needs only a few independent samples to generate a pure instance of G, 4.
The expected number of attempts is e(@-1)/ 4. which is large for large d but
reasonable for relatively small values. Implications of this observation are far
more important for theoreticians that aim to prove results that hold a.a.s. in
Gn,d- Any event holding a.a.s. over the probability space of random pairings
Pn.q also holds a.a.s. over the corresponding space G,, 4. Indeed, suppose that
the property P holds a.a.s. for P, 4. Then, we get that

P(G € G, q4 does not have P)
=P(G € Pp,q does not have P | G € P, 4 is simple)
P(G € Py, q does not have P and is simple)
- P(G € Py, q is simple)
P(G € Py q does not have P)
- P(G € Py, q is simple)

— 0,

Random d-regular Graphs 47

as n — o0o. For this reason, asymptotic results over random pairings immedi-
ately transfer to G, 4. The converse does not hold, as the trivial example of
not containing a loop shows.

05{ o 05{ o
0.4 0.4
o) @
[=3 [=8
Eos3 Eos3
@ @
o o
S 0.2 H Q0.2 B
© B © L
E) ; 5
a L3 o o,
0.1 0.1
., ...
00 . 00 .
2 3 4 5 6 7 8 9 10 2 3 4 5 6 7 8 9 10
degree degree
(a) n = 100 (b) n = 10,000
FIGURE 2.7

In order to estimate the probability of G, 4 to be simple, we generated 100
random d-regular graphs with n = 100 (a) and n = 10,000 (b) nodes respec-
tively, and for each value of d such that 2 < d < 10. We plot the proportion
of simple graphs obtained for each d. The dashed line is the corresponding
theoretical prediction.

It is known that a random d-regular graph is a.a.s. connected for any d > 3.
The proof of this fact is involved so we do not present it here. On the other
hand, any 2-regular graph consists of a number of disjoint cycles and it is not
difficult to see that a random 2-regular graph is a.a.s. disconnected. In fact,
we expect the graph to be a relatively large family of cycles. We will show that
the total number of cycles Y,, in G,, o is sharply concentrated near (1/2)Inn.
It is not difficult to see this by generating the random graph sequentially using
the pairing model.

Indeed, let us select any node and select any of the two points pq,ps in
it, say, p1. We will generate a random matching in P, 2, edge by edge, using
the depth-first search algorithm. Now, we expose the other point associated
with p; which is chosen uniformly at random from the remaining points. The
probability we create a loop during this very first step is equal to 1/(2n — 1)
as there are 2n — 1 points that wait to be matched but only one of them
creates a loop. If the loop is created, then we move to another node (any
node, arbitrarily chosen) and select any point in it. Otherwise (that is if no
loop is created), an edge is discovered and the initial point is matched with
a point in some other node; we concentrate on the other point and continue
the process from there. Regardless of whether a loop is created or not, the
probability that we close another cycle in the second step is 1/(2n — 3) as
there are 2n — 3 points left and only one of them yields a new cycle. We may

48 Random Graph Models

repeat this argument until the end of the process so the probability of forming
a cycle in step i is exactly 1/(2n — 2i + 1).

By linearity of expectation, it follows that the expected number of cycles
is equal to

n

2n n
1 1 1
EVo] =Y ————— =Y =Y — =Hy, — (1/2)H,,
Yol z;2n—2i+1 ;j ;23' 2 = (1/2)Hn

where H,, is the n-th harmonic number. Since H, = lnn + O(1), we get
that the above is equal to

In(2n) — (1/2)Inn+ O(1) =Inn — (1/2)Inn+ O(1) = (1/2) Inn + O(1).

The variance Var[Y;,] can be calculated in a similar way. Alternatively, the
probability that we form a cycle in step ¢ is independent of the history of
the process and so some concentration inequalities, such as Chernoff’s bound,
can be used. In any case, the conclusion is the same: a.a.s. the number of
components in P, o is asymptotic to (1/2)Inn so the same property holds for

gn,2~

2.7 Random Graphs with a Given Degree Sequence

In this section, we generalize random d-regular graphs to random graphs on
the set of nodes [n] with a given desired degree sequence

d = (deg(1),deg(2),...,deg(n)) = (di,da,...,dy). (2.11)

Without loss of generality, we may assume that the degree sequence is non-
decreasing, that is, dy < ds < ... < d,. Recall that a degree sequence d is
called graphic (or feasible) if a graph with the degree sequence d exists.

Let d = (dy,ds,...,d,) be any graphic sequence. Let § be the family of
all labelled graphs on the set of nodes [n] with the degree sequence d. The
random graph with degree sequence d, denoted by G, 4, assigns to
every graph G €) the same probability, that is,

P(G) = g

As in the case of random d-regular graphs, we may consider the corre-
sponding pairing model.

Random Graphs with a Given Degree Sequence 49

Let d = (di,ds,...,d,) be any graphic sequence; in particular, D =
>i, d; is even. Consider D points partitioned into n labelled buckets
V1,Va, ..., Un; for each i € [n], bucket v; consists of d; points. A pairing of
these points is a perfect matching into D/2 pairs. Given a pairing P, we
may construct a multigraph P, 4 = P(P), with loops and parallel edges
allowed, as follows. The nodes are the buckets vi,vs,...,v,, and a pair
{z,y} in P corresponds to an edge v;v; in P, q if x and y are contained
in the buckets v; and v;, respectively.

Generating P,, g can be done efficiently but the resulting graph might
not be simple. However, in some applications, the random multigraph may
be at least as good as the simple one. If this is the case, then one should
simply use P, q which is implemented in Python’s iGraph. Moreover, with
such assumption in mind, there is no need to make sure that d is a graphic

. . . n
sequence since, in fact, any sequence with even value of D = 3" | d; works.

On the other hand, if simple graphs are desired, then one has a number of
potential solutions available that we will discuss next. The easiest approach is
to remove all potential loops and replace any set of parallel edges with a single
edge. This clearly creates a simple random graph but its degree sequence is
typically not exactly the given sequence d. Nevertheless, for some applications,
this erased configuration model may be as useful as more sophisticated
solutions.

Suppose now that one insists on generating a random graph with the de-
gree distribution following ezactly the sequence d. As in the case of random
d-regular graphs, the restriction of P, 4 to simple graphs is precisely G, q.
Hence, one can apply the resampling algorithm that keeps generating inde-
pendent copies of P,, g until a simple graph is generated. Such graph is pre-
cisely Gy.qa. This observation is useful from a theoretical point of view but,
since the probability that P, q is simple is typically very small, this method is
rarely of practical importance. A variant of this method that is implemented
in Python’s iGraph simply restarts the generation process each time the algo-
rithm gets stuck in a configuration where it is not possible to insert more edges
without creating loops or multiple edges. It will succeed eventually, provided
that the input degree sequence is graphical. This algorithm is faster than the
rejection algorithm mentioned earlier but could still be very slow for some
degree distributions. The trade-off is that the outcome of this algorithm is a
graph that is not generated uniformly at random from the family of simple
graphs with the desired degree distribution d. For most applications, this is
not a problem.

Another common approach is to start with P,, 4 and adjust it to make it
simple using the following switching algorithm. In each step, we choose one
loop or multiple edges and another random edge, and switch the endpoint of
these two edges, thus replacing them with another pair of edges. This algo-

50 Random Graph Models

rithm clearly preserves the degree distribution. More importantly, it is known
that if both >/ d; and > ;- d? are not very far from n, the order of the
graph, then this method typically gives a simple graph after a single pass
through the bad edges. In fact, in some precise sense (by investigating the to-
tal variation distance that is a distance measure for probability distributions),
the resulting graph is asymptotically equivalent to G,, 4. One may additionally
insist on the resulting graph being connected which also can be obtained by
a sequence of edge switchings. Such a Monte-Carlo algorithm is also provided
in Python’s iGraph and uses the original implementation of Viger? (Viger
and Latapy, 2016).

Let us now switch gears and discuss the appearance of the giant compo-
nent in G, 4. In order to get an intuition about this problem, let us try to
provide a heuristic argument that attempts to explain the behaviour of the
breadth-first-search (BFS) process starting from a given node i. The pro-
cess discovers the connected component containing node i. We will use the
corresponding pairing model P,, g and uncover pairs of points, one by one
(note that we use Pp.q not G, q as it is an easier model to work with and
our goal is only to present an intuitive argument). As in the case of random
d-regular graphs, the first point can be selected using any rule whatsoever
as long as the second point is chosen uniformly at random from the remain-
ing points. Hence, in particular, we may explore the graph using the BFS
procedure.

We initiate the BFS algorithm by exposing d; points associated with node
1 and putting neighbours of ¢ into the queue Q. Since loops are rare, we expect
(14 0(1))d; nodes to be present in Q). Assuming that the queue is not empty,
the probability that the first node in the queue is node j # ¢ is asymptotic
to d;/D, where D = >""" | d;. In the next step of the process, we remove
node j from the queue and put all neighbours of j that are not discovered
yet into the queue. As triangles are rare, we expect (1 + o(1))(d; — 1) new
nodes joining the queue. Hence, the expected change in the size of the queue
is (14 0(1))(d; —2). Note that this can be negative if d; = 1, or asymptotic to
zero if d; = 2; in fact, nodes of degree 2 play an important role and we need
to pay attention to them. In any case, the expected change in the number of
nodes in @ is asymptotic to

o di(dy — 2 odi(dy — 2
o b =2 Tpe b=

Thus, it is positive essentially if and only if the sum of the squares of the
degrees exceeds twice the sum of the degrees. These calculations only apply
to the very first step of the algorithm but the intuition suggests that if only
o(1) fraction of nodes is discovered it should be a good prediction for the
number of nodes in the queue. Molloy and Reed proved that this intuition
captures the behaviour well, subject to certain technical conditions. If £ > ¢

2www-complexnetworks.lip6.fr/Iatapy/FV/generation.html

Random Geometric Graphs 51

for some € > 0, then a.a.s. G, 4 has a giant component. On the other hand, if
& < —e¢ for some € > 0, then a.a.s. G, q has no giant component.

The imposed technical conditions are quite sophisticated and rarely men-
tioned in the network science community but they are actually quite im-
portant. It might happen that the expected increase may change drastically
during the exploration process. Consider, for example, graph on n = k? nodes
for some odd integer k£ with the degree distribution dy =dy = ... =d,—1 =1
and d,, = 2k. Clearly, the only graph that occurs is the disjoint union of a star
K o1, and (n—2k—1)/2 isolated edges, hence (deterministically) the giant com-
ponent has order 2k+1 = o(n). On the other hand, D = (n—1)+2k ~n = k?
and
_ —(n—1)+(2k)(2k — 2) 3k2 _ 5

&= D T
so the Molloy-Reed approach would suggest that the giant component exists
a.a.s. This shows that, indeed, the technical condition cannot be neglected
and should be taken into account.

In order to state the criterion for the existence of the giant component, we
need to introduce the following definitions:

Jjd = min ({]je [TL} and Zdz(dz_Q) >O}U{TL}>,

1=1
Rq = Zdi’ and
i=Ja
Mg = Z d;.
i€[n]:d; #2

The existence of a giant component essentially depends on whether Ry is of
the same order as My or not. However, things break down if almost all nodes
have degree 2 so we assume that My tends to infinity together with n. Now,
we are ready to present the state-of-the-art result. If Rq = o(Mgq), then a.a.s.
Gn.a has no giant component. On the other hand, if Rq = Q(Mjy), then a.a.s.
Gn,q has a giant component.

Coming back to our example with the star and isolated edges, note that
for that particular degree distribution we have jq = n = k?, Rq = 2k, and
Mg = D ~ k2. Tt follows that Rq = 0o(Mgq), and the result implies that a.a.s.
there is no giant component.

2.8 Random Geometric Graphs

In this section, we introduce one simple example of a random spatial network
in which nodes are assigned vectors from some d dimensional space. In gen-

52 Random Graph Models

eral, a family of geometric graphs (both random as well as deterministic) is
an important class of graphs from a practical point of view. Indeed, we al-
ready investigated one real-world example of a geometric graph, namely, the
Grid network we discussed in Chapter 1. In this network, nodes are assigned
vectors explicitly. In the next example, the situation is more subtle but very
interesting. Comnsider any social network in which users interact with each
other, forming a graph that can be mined. Such a graph preserves useful in-
formation but interactions captured this way do not tell the entire story. The
content generated by the users (such as their comments, messages, likes) as
well as their metadata (such as their geographical location, age, gender) can
be easily represented as high-dimensional vectors and then used for various
machine learning tools such as recommender systems or anomalies detection
algorithms. We will use geometric graphs in designing more sophisticated tools
such as the framework for evaluating node embeddings that we discuss in Sec-
tion 6.5.

For simplicity, we will use the metric space [0, 1]¢ with the Euclidean dis-
tance. That is, for any pair of points x,y € [0,1]%, the distance between them
is defined as follows

Metric spaces with boundaries are often inconvenient; for example, the ex-
pected degree of a node that lands close to the boundary is smaller than the
one of a typical node. Hence, another popular choice for a metric space would
be “wrap around” toroidal space. Both of them are implemented in the igraph
library. Selecting the right distance measure is an important task, especially
when nodes are placed in high dimensional space, and highly depends on the
down-stream application in mind.

Now, we are ready to define our example of a spatial random graph.

Let » € Ry U {0}. The random geometric graph RGG(n,r) can be
generated by starting with the empty graph on n nodes, vy, vs, . .., vy, that
are randomly sampled from the uniform distribution of the underlying
space [0, 1]%. Each pair of nodes v;, v; such that 1 <4 < j < nis connected
by an edge if and only if d(v;,v;) <.

Clearly, RGG(n, 0) is the empty graph whereas RGG(n, v/d) is the complete
graph. Three instances of RRG(100,r) for different values of r are depicted
in Figure 2.8 (in 2-dimensions).

Investigating asymptotic behaviour of RGG(n,r) is highly nontrivial. For
example, it is known what the threshold for connectivity is but understand-
ing the threshold for the appearance of the giant component is far of being

Random Geometric Graphs 53

FIGURE 2.8
Instances of RGG(100,r) for r € {0.1,0.15,0.2} on the unit square (d = 2).

complete. Note that the expected degree of a given node in RGG(n,r) is
(n — 1) - mr?, provided that it lands not too close to the boundary, that is, is
at distance at least r from it.

Suppose that
\/ln n+c Inn
r=r(n)= ~ =
™ ™

for some constant ¢ € R. Since almost all nodes are not close to the boundary,
similar calculation to the one for the G(n,p) model, see equation (2.1), show
that the expected number of isolated nodes in RGG(n,r) is asymptotic to

2 n—1
nexp (_lnn—i—c Lo ((lnz) >>
n n

= nexp (—(lnn+c)+ 0(1)) ~e ‘.

n (1 —mr?)"t

As in the G(n,p) model, it is possible to show that the property of having
no isolated nodes, a trivial necessary condition for connectivity, is in fact the
main obstacle for RGG(n,r) to be connected. Once isolated nodes disappear,
the random geometric graph is connected a.a.s. The following property, the
counterpart of equation (2.2), holds:

0 if c = —o0
P(Rgg(n,p) is connected) ~{e " ifceR
1 if ¢ = oo.

In particular, we get the following corollary of this much stronger result. If
nmr? < (1 —€)Inn for some € > 0, then a.a.s. RGG(n,r) is disconnected. On
the other hand, if n7r? > (1 + ¢)Inn for some € > 0, then a.a.s. RGG(n,r)
is connected. The above results hold a.a.s. regardless of whether the distance
measure is defined on a square or on a torus.

54 Random Graph Models

In Figure 2.9, the asymptotic probability that the random graph RGG(n, r)
with nwr? = Inn + ¢ is connected (that is, f(c) = e=¢) is compared with
simulation results for graphs of order n = 100 and n = 10,000. The shaded
areas correspond to the 90% confidence intervals for the estimates obtained
with 1,000 runs, and the black lines correspond to the theoretical values f(c).
Despite some variability, the results are quite close to the expected values.
Note, however, that there is a visible difference between results for a distance
measure defined on a square and on a torus. The reason for a lower probability
of being connected when a distance measure is defined on a square is that for
small values of n, the fraction of nodes that are close to a boundary is non-
negligible and such nodes have a larger probability of being isolated.

1.0 1.0
08 508
] L
5 5
g g
<€ 06 S o6
o o
S S
o .w
c o4 c 04
Q Q
e o
= o
& o2 & o2

0.0 0.0

4 2 o 2 4 6) 4 2 o 2 3 6 s 10
constant ¢ constant ¢
(a) n =100, square (b) n = 100, torus

1.0 1.0
508 So8
o] o]
5 5
g g
c 0.6 c 0.6
o o
8 8
@ o
< 04 < 04
Q Q
e o
= =
a 0.2 a 0.2

0.0 0.0

—4 -2 0 2 4 6 8 10 -4 -2 0 2 4 6 8 10
constant ¢ constant ¢
(¢) n = 10,000, square (d) n = 10,000, torus
FIGURE 2.9

The probability that RGG(n,r) with nar? = Inn + ¢ is connected: theoretical
predictions (black line) and empirical estimations (shaded grey area) based
on 1,000 independent runs for small graphs on (a) n = 100 nodes and larger
graphs on (b) n = 10,000 nodes.

Let us now move to a much more challenging questions around the giant
component. It is known that a.a.s. there is no giant component in RGG(n,r)
if nmr? < 2.18 whereas a.a.s. there is one if n7r? > 10.59. Simulations sug-

Ezxperiments 55

gest that the threshold is around 4.52 but narrowing the gap seems to be a
challenging open problem.

We present simulation results for for graphs of order n = 100 and n =
10,000 in Figure 2.10 (the distance measure is defined on a square). For each
value of d for the desired average degree of nodes that are not too close to the
boundary, we compute the parameter r using the relation d = (n —1)-7r? (as
a result, the generated graphs have average degree slightly smaller than d due
to boundary effects) and we generate 1,000 instances of RGG(n,r). The 90%
confidence interval is presented as the shaded area. We see a sharp transition
to a graph with the giant component consisting of almost all nodes for average
degree around 6, in particular with n = 10,000.

1001 10000 OSSO ——
8000
6000

4000

giant component size
giant component size

N

S
N
3
3
3

o

0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14

Average degree (approximate) Average degree (approximate)
(a) n = 100 (b) n = 10,000
FIGURE 2.10

The order of the giant component: empirical results based on 1,000 indepen-
dent runs for small graphs on (a) n = 100 nodes and larger graphs on (b)
n = 10,000 nodes (the distance measure is defined on a square). The dashed
line is the average over 1,000 runs while the shaded area is the 90% confidence
interval.

2.9 Experiments

We revisit one of the graphs we experimented with in Chapter 1, namely, the
GitHub developers graph. We consider the giant component of the machine
learning (ml) developers subgraph, which consists of 7,083 nodes and 19,491
edges. Based on this base graph, we generate a few random graphs using
different models we introduced in this chapter, namely:

e the binomial random graph model G(n,m) which only preserves the av-
erage degree (Section 2.3),

56 Random Graph Models

e the Chung-Lu model G(w) which preserves the expected degree for each
node (Section 2.5), and

e the configuration model in which the degree distribution is preserved
(Section 2.7).

For the configuration model, we consider the default implementation in iGraph
which may introduce multi-edges, loops, or create a disconnected graph (our
Pr.a) as well as the version implemented by Viger where a connected sim-
ple graph is generated. We summarize some basic statistics in Table 2.11. As
expected, advanced models preserve more statistics of the original graph. We
concentrate on that are preserved increases. In particular, the configuration
model of Viger almost perfectly matches the basic statistics of the original
graph with the only difference being the diameter and the clustering coeffi-
cients.

TABLE 2.11
Comparison of a few descriptive statistics for the base graph (a subgraph of
the GitHub graph) with 4 random graph models.

Graph Base Binomial Chung-Lu Config. Config.(V)
nodes 7083 7,083 7,083 7,083 7,083
edges 10,491 19,491 19,491 10,491 19,491
6 = dmin 1 0 0 1 1
dmean 5.504 5.504 5.504 5.504 5.504
dmedian 2 5 3 2 2

A =dpaz 482 17 426 482 482
diameter 13 10 9 10 11
components 1 29 1,074 68 1
largest 7083 7,054 5,990 6,942 7,083
isolates 0 27 1,053 0 0
Clob 0.0338 0.0004 0.0196 0.0188 0.0170
Cloc 0.1411 0.0007 0.0261 0.0235 0.0273

In Figure 2.12, we compare the shortest path lengths distribution of the
base graph with the 4 random graphs we experimented with earlier. We gener-
ated those distributions by computing the shortest path length between every
pair of nodes. We see a reasonably high similarity for all graphs, with the bi-
nomial random graph having slightly longer path lengths due to the absence
of high degree (hub) nodes in that model.

2.10 Practitioner’s Corner

Random graph models are of theoretical interest and this is an extremely
active research field that attracts not only mathematicians but also physicists

Practitioner’s Corner 57

Base (GitHub ml) Binomial Chung-Lu
0.5
mean: 4.51 mean: 5.39 mean: 3.88
0.4 e i
5
5 0.3 b b
2
© 0.2 1 b 1
o
0.1 A e i
0.0 T T T T T T T T T T T T T T T
2 4 6 8 10 2 4 6 8 10 2 4 6 8 10
Config. Config.(V)
0.5 0.5
mean: 4.1 mean: 4.04
0.4 0.4
c
£ 0.3 1 0.3 1
2
© 0.2 1 0.2 1
o
0.1 A 0.1
0.0 T T T T T 0.0 T T T T T
2 4 6 8 10 2 4 6 8 10
path length path length
FIGURE 2.12

Comparison of the distribution of shortest path lengths for the giant compo-
nent of the base graph with the graphs generated from 4 random models.

and computer scientists. They are also often used in practice to generate
synthetic graphs that are similar to real-world graphs and so can be used to
test various hypotheses or algorithms. This is particularly useful when real-
world graphs are scarce.

Depending on the type of application, it may be enough to generate graphs
with a given number of nodes and edges (and so also a given average degree),
in which case the binomial random graph model may be used. If one wants
more realistic graphs, for example, with a mix of high and low degree nodes,
then models such as Chung-Lu and the configuration model may be used.
Chung-Lu may yield isolated nodes, and only the expected degrees are pre-
served. On the other hand, with the configuration model, one may preserve
the degree sequence exactly. Moreover, if one uses the Viger’s generator for
this model to produce a connected graph, then not only will the degree distri-
bution be preserved but the distribution of orders of connected components
will be maintained as well. Indeed, in order to generate such a graph, one may
independently generate connected graphs that match the degree distribution
of all connected components of the original graph and then take their union.

58 Random Graph Models

Of course, the models we introduced in this chapter only match some
basic properties of the base graph. Depending on the application at hand, one
may introduce more sophisticated models that preserve more properties and
so mimic the structure of the base graph to a higher degree. We introduce
examples of such models in the following chapters.

Finally, let us make a comment about the degree distributions observed
in real-world networks. It is quite common that these networks have degree
distributions following the power-law. That is why in Section 2.5 we discussed
how one can model such distributions, given the degree exponent v and the
average degree (k). However, not all real-world networks follow such distri-
butions. Indeed, let us apply the same procedure of finding the exponent of
power-law distributions for other graphs introduced in Chapter 1. For the
GitHub (ml) graph studied here, we found the exponent of v = 2.74 and for
the GitHub (web) v = 2.54. Such values agree with power-law distributions
observed in social networks. However, for the Grid graph, we found v = 5.86
and plotting the results we observe that the degree distribution for this graph
does not follow a clear power-law.

2.11 Problems

In this section, we present a collection of potential practical problems for the
reader to attempt.

1. Implement an algorithm that checks whether a given degree se-
quence is graphic.

2. Generate a degree sequence following the power law distribution
(try different degree exponents, maximum, minimum degrees, etc.).
Compare the expected number of edges in the Chung-Lu model
with parallel edges and loops and the corresponding expected value
for the variant in which we replace each parallel edge with a single
edge and remove loops.

Recall that for p;; > 1 one typically introduces a Poisson-
distributed number of edges with mean p; ; between each pair of
nodes %, j. So one may simply compute

Z max{p;; — 1,0} + Z Dii
1<i<j<n 1<i<n
to see how many edges are expected to be removed. Alternatively,
one may actually do an experiment and check it.

3. Suppose that
B (n)ilnn—i—lnlnn—i-c
p=r N 2n

Problems 59

for some constant ¢ € R. The expected number of isolated edges in
G(n,p) (an edge wv is isolated if u is the only neighbour of v and
vice versa) is asymptotically equal to e~¢/4.

Compare the above theoretical prediction for the expected number
of isolated edges with empirical results based on 1,000 independent
runs for small graphs on n = 100 nodes and larger graphs on n =
10,000 nodes. Make a figure similar to Figure 2.2 with, for example,
ce[-3,3].

4. We showed that the expected number of cycles in P, o is asymptotic
to (1/2)Inn. Compare this theoretical prediction with empirical
results based on 1,000 independent runs for small graphs on n = 100
nodes and larger graphs on n = 10,000 nodes.

5. We showed that a.a.s. G, 3 is connected. Compare this theoretical
prediction with empirical results based on 1,000 independent runs
for small graphs on n = 100 nodes and larger graphs on n = 10,000
nodes.

6. Generate two independent copies of G(n, p) model with n = 10,000
and p = 1/4, graphs Gy and G5. Then take a union of these two
graphs, G1 U G2 (edge uv is present in G; UGy if it is present in at
least one of the two involved graphs). Check the density of G; UGS,
that is, the ratio between the number of edges in G; U G2 and (g)
Is it close to p + p = 1/27 If not, can you explain why?

7. The Watts—Strogatz model generates networks that have a small
diameter and a large clustering coefficient. It starts with a grid
network where all nodes have the same number of “close” neigh-
bours. Each node is then independently “rewired” with probability
p € [0,1]. If an edge is rewired, one of its endpoints is preserved and
the other one is replaced by a node selected uniformly at random
from the set of all nodes. This typically creates a “long” edge.

This model is implemented in igraph (Watts_Strogatz). Perform
an experiment with dim = 2 (dimension of the lattice), size = 100
(the size of the lattice along each dimension), nei = 8 (the average
degree). Plot the global clustering coefficient and the average local
clustering coefficient as a function of p € (0,1). You may want to
do a few repetitions for each value of p to smooth the graph.

8. The Preferential Attachment model uses the “rich get richer”
principle to generate graphs with a power-law degree distribution.
This model is implemented in igraph (Barabasi). Perform an ex-
periment with n = 10,000 (the number of nodes) and m = 5 (the
number of directed edges created in each step). Plot the inverse cu-
mulative in-degree distribution. Use the Kolmogorov—Smirnov test
to estimate the degree exponent.

60 Random Graph Models

9. For any d € {1,2,...,15} and n = 1,000, generate G(n,p) and
RGG(n,r) of comparable average degree; that is, p and r are such
that

(n—1p=(n—-1rr*=d.

(a) Compare (global) clustering coefficients of the corresponding
models. Show confidence intervals based on 100 independent
runs. Which model produces larger ones? Any intuition why?

For d = 10 and n = 10,000, do the following additional experiments
on G(n,p) and RGG(n,r).

(b) Consider giant components, if any of the two graphs are discon-
nected. Compare diameters of the two corresponding models.
Which model produces larger ones? Any intuition why?

(c¢) Compare the degree distribution of the corresponding models.
Any visible difference?

(d) Consider the giant component of RGG(n,r), if the graph is
disconnected. Sample 1,000 pairs of nodes from RGG(n, r). For
each pair, plot (z,y) where z is the Euclidean distance between
the two nodes and y is the corresponding graph distance. Any
visible correlation? Any intuition why?

2.12 Recommended Supplementary Reading

The field of random graphs is an active area of research with thousands of
papers written on the topic. Here is a list of a few books:

e B. Bollobéds, Random Graphs, Cambridge University Press, 2nd Edition,
2011.

e S. Janson, T. Luczak, A. Ruciniski, Random Graphs, Wiley-Interscience,
2000.

A. Frieze, M. Karonski, Introduction to Random Graphs, Cambridge Uni-
versity Press, 2015.

F. Chung, L. Lu, Complex Graphs and Networks, American Mathematical
Society, 2006.

R. van der Hofstad, Random Graphs and Complex Networks. Volume 1,
Cambridge Series in Statistical and Probabilistic Mathematics, 2017.

e M. Penrose, Random Geometric Graphs, Oxford University Press, 2003.

Recommended Supplementary Reading 61

In order to fit power-law curves, we used the powerlaw package® based on
the following papers:

e A. Clauset, C.R. Shalizi, and M.E.J. Newman, Power-law distributions in
empirical data, STAM Review 51(4), 661-703, 2009.

e A. Klaus, S. Yu and D. Plenz, Statistical Analyses Support Power Law Dis-
tributions Found in Neuronal Avalanches, PLoS ONE 6(5), 19779, 2011.

e J. Alstott, E. Bullmore and D. Plenz, powerlaw: A Python Package for Anal-
ysis of Heavy-Tailed Distributions, PLoS ONE 9(4), e95816, 2014.

Viger’s algorithm is described in:

e F. Viger and M. Latapy, Efficient and simple generation of random simple
connected graphs with prescribed degree sequence, J. of Complex Networks
4(1), 2016.

3pypi.org/project/powerlaw/

3

Centrality Measures

3.1 Introduction

In this chapter, our goal is to identify the most important nodes within a
graph, an important task from applications’ perspective. Potential applica-
tions include finding the most influential users in a social network, the busiest
intersections in a large city such as Toronto, key infrastructure nodes in the
energy network, and ranking web pages returned by a search engine.

There are clearly many ways to measure how central a given node is by
comparing it with other nodes that are present in the graph. We will propose
a few natural ways to do it and perform a number of experiments. Each node
v will, depending on the chosen approach, receive a numeric “score” c¢(v),
called a centrality of this node. It is sometimes enough to rank the nodes
with respect to their scores. However, in order to be able to compare vari-
ous measures, the scores should be normalized so that they are real numbers
between zero and one. Additionally, for some centrality measures, it might
be convenient to assume that) ., c¢(v) = 1. We sometimes explicitly do it
but this additional property can always be enforced, if needed. We will try to
follow the normalization implemented in the igraph Python package.

Having flexible scores assigned to all nodes is useful and informative but, in
practice, we often face a problem of identifying the most central node or, say,
a set of top 10 most central nodes. For example, we might need to find the top
researchers within the collaboration network to be invited to the conference
we organize, or our goal might be to identify top 10 most influential bloggers
and send our new product to them for their on-line review. As a result, we
often need to rank all the nodes based on a given centrality measure.

This chapter is structured as follows. We first discuss centrality measures
that use algebraic properties of the adjacency matrix associated with the graph
(Section 3.2). The next family of measures we investigate are based on paths
between pairs of nodes (Section 3.3). Then, since there are many different
centrality measures to choose from, we provide a few ways to compare them
(Section 3.4). It is often the case that identifying the most central nodes is
difficult. On the other hand, there are many nodes that are clearly not central.
We show how to prune them using the notion of k-cores (Section 3.5). After
that we discuss how to identify a central group of nodes and how to measure

63

64 Centrality Measures

the distribution of centrality within the graph (Section 3.6). As usual, we
finish the chapter with experiments (Section 3.7) and provide some tips for
practitioners (Section 3.8). For additional material on centrality measures, we
refer the refer to Langville and Meyer (2011). Additionally, in Boldi and Vigna
(2014) an approach to axiomatization of centrality measures is proposed.

3.2 Matrix Based Measures
Degree Centrality

The first centrality measure is very simple and tries to capture the fact that a
node with many neighbours can be seen as more central since it simply has a
direct access to more nodes. Depending on the application, it might indicate
better access to information or resources, being more popular, influential, or
prestigious, etc. We start with a definition for undirected graphs.

Let G = (V, E) be any undirected graph on n nodes. The degree cen-
trality of a node v € V is defined as follows:

ca(v) = (ileg_(vl) = ni - Z a(v,u).
ueV

Since the degree of each node is always a non-negative real number (or, in
fact, an integer in the case of unweighted graphs) that is at most n — 1, the
degree centrality is properly normalized such that it is always between zero
and one.

For sparse and unweighted graphs, instead of using the degree of v as a
measure of its centrality, one can use the number of nodes at distance at most
k for some fixed parameter k£ € N. In other words, c(v) = [N<x(v)|/(n — 1),
where N<i(v) = {u € V : dist(v,u) < k} is the set of nodes at distance at
most k from v.

Generalizing this centrality measure to directed graphs is straightforward.
Depending on the application in mind, one might care more about in-, out-,
or total degree.

Matriz Based Measures 65

Let D = (V, E) be any directed graph on n nodes. The degree central-
ities of a node v € V are defined as follows:

) 1 1
cl(v) = o Z a(u,v) = o a(u,v)
u€N" (v) ueV
1 1
¢ _ —
¢ (w) = p— Z a(v,u) = p— Z a(v,u)
ueNO°vt(v) ueV

c'(v) = 5 (W) + ().

N | =

Eigenvector Centrality

Let us now consider the following question. Suppose that one node has rela-
tively high degree but its neighbours are not significant within the network.
On the other hand, some other node has relatively small degree but its neigh-
bours are highly connected and influential. Which of the two should be ranked
higher? In the extreme case, suppose that Robert had only one friend but his
friend happened to be Isaac Newton, which made Robert quite important and
influential. Indeed, connections to high-scoring nodes should contribute more
to the score of the node in question than a similar number of connections to
low-scoring nodes.

As before, let us start with undirected graphs. Keeping our previous dis-
cussion in mind, the goal of the next centrality measure is to assign a score
¢(v) to a node v that is proportional to the sum of the centralities of its
neighbours, that is,

c(v) :§ Z c(u) (3.1)

u€N (v)

for some constant A\ € R,. Equation (3.1) is equivalent to Ac(v) =
> wey a(v,u) c(u), where A = (a(u,v))yvev is the adjacency matrix of G.
Moreover, it can be written in matrix form as follows: A\c = Ac or

(A — M)c =0, (3.2)

where ¢ = (c¢(v1),...,¢(vy)) is the unknown vector of centrality measures.
This is a familiar problem from linear algebra: if constant A\ and vector ¢
exist, then we call them an eigenvalue and, respectively, an eigenvector of
matrix A.

Note that the system of equations in (3.2) is a homogeneous system of
linear equations. Hence, in particular, ¢ = 0 = (0,...,0) is a trivial solution
that we are clearly not interested in. Indeed, our goal is to find a positive
eigenvalue A € R, and the associated eigenvector ¢ with all entries being

66 Centrality Measures

positive real numbers. In order to get a non-trivial solution, we need to select
A such that
p(A) :=det(A — AI) = 0;

p(A) is called the characteristic polynomial of matrix A. In other words,
the eigenvalues of A are simply the roots of the characteristic polynomial
p(A). Since p(A) is a polynomial of degree n, the Fundamental Theorem
of Algebra implies that there are exactly n roots that are complex numbers
(counting multiplicities appropriately). Moreover, since A is real and sym-
metric (recall that G is undirected), all eigenvalues are real. We say that an
eigenvalue is a leading eigenvalue if it is positive and greater than or equal
to (in absolute value) all other eigenvalues.

We have many choices for A but what about the additional requirement
that all the entries in the eigenvector be non-negative? Fortunately, the fa-
mous Perron—Frobenius Theorem implies that the leading eigenvalue is
unique and is the only eigenvalue that yields the desired centrality measure,
provided that graph G is connected (which is equivalent to matrix A being
irreducible—we omit the definition as it is not important for further discus-
sion).

Finally, let us mention that the eigenvectors are only defined up to a com-
mon multiplicative factor, so only the ratios of the centralities of the nodes
are well defined. In order to define an absolute score and make sure all scores
are in the interval [0, 1], one needs to normalize them so that the largest score
is equal to one. This leads us to the following definition.

Let G = (V, E) be any connected undirected graph on n nodes. Let A be
the leading eigenvalue of the adjacency matrix A of graph G, and let ¢
be the associated non-negative eigenvector; in particular, Ac = Ac. The
eigenvector centrality of a node v € V is defined as follows:

Let us now move to directed graphs and try to adjust the above definition
for them. It can be done but it creates a number of issues that we will discuss
next. Because of that, the eigenvector centrality is often used for undirected
graphs and less often for directed ones. Nevertheless, it will be useful to iden-
tify and discuss the issues in order to better understand the next centrality
measures and the reasons that they are defined the way that they are.

Let us first note that a directed graph has, in general, an asymmetric adja-
cency matrix. As a result, it has two sets of eigenvectors: the left eigenvectors
and the right eigenvectors. A right eigenvector is a column vector satisfy-
ing Ac = Ac for some A. On the other hand, a left eigenvector is a row
vector satisfying cA = Ac for some . Note that a left eigenvector of A is the

Matriz Based Measures 67

same as the transpose of a right eigenvector of AT, with the same eigenvalue.
Moreover, since the characteristic polynomials of A and AT are the same, the
eigenvalues of the left eigenvectors of A are the same as the eigenvalues of the
right eigenvectors of A™.

Coming back to our discussion, for directed graphs we now have two lead-
ing eigenvectors associated with the leading eigenvalue to choose from, one
right and one left. Which one should we use to define the centrality measure?
It might depend on the application at hand but typically the reason for a node
to be central is that many other central nodes point towards it rather than
it pointing to many central nodes. For example, Cristiano Ronaldo (618M+
followers), Lionel Messi (497M+ followers), and Selena Gomez (430M+ fol-
lowers) are considered to be the most popular users on Instagram (January
2024) because of a large number of followers, regardless of whether they fol-
low many other users or not. Similar arguments can be applied to many other
directed networks. Hence, the most natural choice is to use the right leading
eigenvector.

The second issue is with nodes of in-degree zero. Clearly, such nodes have
centralities equal to zero. This, arguably, is acceptable but, unfortunately, it
propagates throughout the graph. Such nodes of in-degree zero could have
many out-neighbours which, in turn, should increase their own centralities.
However, only nodes that are in a strongly connected components consisting
of at least two nodes, or nodes in the out-component of one of such strongly
connected components, can have non-zero centrality. This motivates the next
definition and also solves the problem of uniqueness of a leading eigenvalue
as it implies that the adjacency matrix is irreducible (again, we omit details
as they are not important for our purpose). However, as already mentioned,
for directed graphs it is recommended to use either the Katz centrality or
PageRank centrality measures that we will discuss next. Indeed, many directed
networks are mot strongly connected. For example, the web consists of the
strongly connected component (GSCC), the IN set of nodes that can reach
GSCC but which cannot be reached from GSCC, the OUT set of nodes that
can be reached from GSCC but which cannot reach GSCC and “tendrils” that
are reachable from some nodes in the IN set or that can reach some nodes of
the OUT set, without passing through GSCC. Based on the very first study
done in 2000, these four sets consist of roughly 25% nodes of the network.
However, it is worth pointing out that these proportions strongly depend on
the crawling process and other values have been reported since then. Finally,
“tubes” consist of nodes that pass from some part of the IN set to some part
of the OUT set without touching GSCC.

68 Centrality Measures

Let D = (V, E) be any strongly connected, directed graph on n nodes. Let
A be the leading eigenvalue of the adjacency matrix A of graph D, and let
¢ and c°“ be the non-negative eigenvectors associated with the leading
eigenvalue of matrix A; in particular, A = Ac™ and Ac®t = AT cout,
The eigenvector centralities of a node v € V are defined as follows:
Cin (U)

ny) = ———2—— and 2 (v) =
= U (0

Cout (U)

maxyecy ot (u)’

Katz Centrality

In order to solve the issue we discussed above with nodes of in-degree zero,
we may simply assign a small amount of centrality to each node “for free,”
regardless of the structure of the graph and position of this node within the
graph. That is,

cv) =« Z c(uw)a(u,v) + 3 (3.3)

ueV

for some positive constants « and . As a result, each node v will have ¢(v) > 8
and so any node that is pointed to by many other nodes will have a high
score, even if it does not belong to a strongly connected component or out-
component. Since we do not care about the absolute value of ¢(v) (it will be
eventually normalized anyway), we may assume that § = 1. Equation (3.3)
can be re-written using matrix form as follows:

c=(I-aA") 1,

where 1 = (1,...,1) is the uniform vector.

This centrality measure is a function of the parameter o and so it is also
often called a-centrality. This parameter guides the relative importance of
the graph structure. Indeed, in the extreme case when o = 0 it produces
equal scores for all nodes, regardless of the structure of the graph. On the
other hand, large values of « imply that the structure is crucial. There is a
technical upper bound for a to make sure that the matrix I—aA” is invertible,
namely, a < 1/|\|, where X is the leading eigenvalue of A. However, the
connection to the attenuation factor, which we will discuss soon, justifies the
usual convention to additionally require that oo < 1.

The Katz centrality measure can be applied to both undirected and di-
rected graphs.

Matriz Based Measures 69

Let D = (V,E) be any directed graph on n nodes. Alternatively, let
G = (V,E) be any graph on n nodes. Fix any a such that 0 < a <
min{1,1/|A|}, where A is the leading eigenvalue of A. The Katz central-
ity of nodes in the graph is defined as follows:

co = (I—aAT) 1.

As promised earlier, we will now make a connection to the attenuation
factor which gives us another natural interpretation of the Katz centrality
measure. This point of view will, in addition, provide a justification for not
rescaling Katz centrality as we do with the other centrality measures we have
discussed so far. We will show that

ca(v) = Z Z o A* (u,v). (3.4)

k=0ucV

However, before we do so, let us interpret it. First, note that for unweighted
graphs, AF, the matrix product of k copies of A, has an interesting and
important interpretation: the element (u,v) of A* is equal to the number of
(directed or undirected) walks of length k from node u to node v. It follows that
the Katz centrality computes the relative influence of a node within a network
by considering walks of any length. Connections made with distant neighbours
are, however, penalized by the attenuation factor « applied to each edge
of the walk. As a result, indeed, a natural assumption is that a < 1 since
we want to penalize longer walks, not make them more attractive. In other
words, suppose that each node of a graph has a token (think of it as a piece
of information). In each step of the process, each token occupying some node
of the graph is replicated and sent to all neighbouring nodes with probability
«; otherwise, it is simply destroyed. This process is repeated recursively. The
Katz centrality of a node is then equal to the expected number of all visits
to this node by all tokens in any step of this process (including the very first
deterministic visit when an initial placement of tokens is made).

Now, let us show that equation (3.4) holds. In order to see this, observe
that it can be rewritten as follows:

cl = ZaleAk =17 Z(aA)k =171 - aA)™!
k=0 k=0

and, after transposition, we get precisely the definition of the Katz centrality.
The key point to highlight here is that

o0

(I-0aA)) (aA)F =) (aA)F =) (aA)F =T

k=0 k=0 k=1

70 Centrality Measures

which clearly holds if the above series is convergent. This property is ensured
since parameter « is assumed to be less than the inverse of the absolute value
of the leading eigenvalue of A.

In Bonacich and Lloyd (2001), one can find additional discussion of
eigenvector-like measures of centrality in directed graphs.

PageRank Centrality

One potentially undesirable property of the Katz centrality measure is that a
high-centrality node pointing to many other nodes immediately gives them a
high score. One could argue that this is not always an appropriate feature. The
fact that, for example, amazon.com webpage puts a hyperlink to my web page
does not mean much as they have an enormous number of outgoing links. On
the other hand, if Cristiano Ronaldo follows me on Instagram, then this fact
alone should affect my own centrality as he currently (January 2024) follows
only 580 users.

An approach to solve this issue is proposed by PageRank centrality mea-
sure (Brin and Page, 1998). Indeed, arguably, it makes more sense for a node
in a graph to pass only a small fraction of its own centrality score to each of
its neighbours, inversely proportional to its out-degree. That is,

c(v) =« Z c(w)a(u,v) + B, (3.5)

ueV

for some positive constants «, 8, and matrix A = (a(u,v))y,vev defined as
follows:

d out fd out 0

i(u,0) {aw,v)/ eg™"(u) if deg™ (u) > 56)

1/n otherwise.

The definition of @ implies that if some node has out-degree zero, then it
transfers its weights equally among all nodes (including itself). This way, in
particular, we make sure that we avoid dividing by zero.

Arguing as before, we may assume that 8 = 1 and so, after rearranging
equality (3.5) and using matrix form, we get that:

c= I—aAT _11.
(1-ad")

Note that ||c|| = n/(1 — «). As with the Katz centrality measure, there is a
positive parameter « which has to be tuned. Arguing as before, we get that the
value of « has to be less than the inverse of the largest eigenvalue of A which
is equal to one as this is a stochastic matrix, that is, a real square matrix,
with each row summing to one. For example, the Google search engine used
a = 0.85 for their initial algorithm but it is not clear if there is any rigorous
theory behind this choice.

Matriz Based Measures 71

Let D = (V,E) be any directed graph on n nodes. Alternatively, let
G = (V, E) be any graph on n nodes. Fix any 0 < « < 1. The PageRank
centrality of nodes in the graph is defined as follows:

1— o, =11
€y = na(I—OzAT) 1,

where matrix A is defined in (3.6).

There is another interpretation and theory behind PageRank. Suppose that
an imaginary web surfer is randomly clicking on hyperlinks but eventually gets
bored by the current website and surfs to a new random site. At any step, the
probability that the person continues browsing is a damping factor «; that
is, with probability 1 — « the person selects a new site uniformly at random
from the set of all sites. This process can be understood using a theory of
Markov chains in which the states are web pages and the transitions are the
hyperlinks between pages, all of which are equally probable. The PageRank
centrality measure of a web page reflects the probability that the random surfer
will visit that page at some time in the future, after sufficiently many steps.
Formally, this is defined as the stationary distribution of the corresponding
Markov chain. Informally, the websites are ranked by how many times they
were visited during this process. The intuition is that websites are visited more
often if they are linked by many other sites, which should be a good measure
of how important a website is.

Hubs and Authorities

As argued above, the reason for a node to be considered central is usually
that many other important nodes send a link towards it. However, there might
be some applications where this is not the case. Consider, for example, the
citation graph where nodes correspond to scientific papers and directed edges
correspond to references between them. Clearly, papers that are often cited
should be considered central but there are other papers (for example, surveys
or reviews) that are not cited too often but they by themselves cite a large
number of other important papers. Such papers might contain relatively little
new content on the subject but they are certainly great resources to learn
where the desired information can be found. As a result, they are useful and
important nodes within the citation graph.

The scenario discussed above suggests that there are really two types of
important nodes: authorities and hubs. Authorities are nodes that contain
important information on a topic of interests. On the other hand, hubs are
nodes that reveal where the best authorities are. Of course, some nodes could
be good authorities as well as good hubs. Moreover, let us point out that this
distinction can only be made for directed graphs and that this concept does

72 Centrality Measures

not apply to undirected graphs.

The HITS algorithm (Hyperlink-Induced Topic Search), see Klein-
berg (1999), assigns to each node v € V of a directed graph D = (V, E) two
different centrality measures: the authority centrality z(v) and the hub
centrality y(v). The authority centrality of a node v should be affected by
the hub centralities of the nodes that point to it, that is,

z(v) = « Z y(u)a(u, v)

ueV

for some positive constant «. Similarly, the hub centrality should be a function
of the authority centralities of the nodes that it points to, that is,

y(0) =83 av,wa()

ueV

for some positive constant 5. These equations can be rewritten in matrix form
as follows:

x = aAly
y = p[Ax. (3.7)

After combining the two we get

x = ATAx (3.8)
Ay = AATy, (3.9)

where A = 1/(af). It follows that x and y are eigenvectors of AT A and,
respectively, AAT.

Let us first point out that, in general, these equations could have multiple
solutions. For instance, consider the following adjacency matrix

0 05
A=l)

for which we have

T, |1 0 r 1025 0
A°A= {O 0.25} and AA —[0 1}.

Both ATA and AAT have the same eigenvalues, namely, A; = 0.25 and
A2 = 1. (We will show below that this is not a coincidence.) For A\; = 0.25,
after normalizing the vectors, we get the following solution: x = (0,1) and
y = (1,0). On the other hand, for Ay = 1, after normalizing the vectors we
get: x = (1,0) and y = (0,1). Both solutions yield non-negative scores and so
could be used for our purpose.

Another issue is that AT A might not have a unique leading eigenvalue;
for example, consider a directed graph on two nodes, u and v, with a(u,v) =

Matriz Based Measures 73

a(v,u) = 1. However, this condition is usually met in practice so we will
assume it in what follows; when the assumption does not hold, then there
is no unique solution in non-negative normalized vectors to the given set of
the equations. For instance, in our example of a directed graph with two
nodes linked by an edge, any vectors such that x = y = (sin(t), cos(t)), where
t € [0,7/2], are non-negative and normalized solutions to the given set of
equations.

As in the case of earlier centrality measures, we will consider the non-
negative eigenvector that corresponds to the associated unique leading eigen-
value. (As ATA is symmetric, this eigenvector can be made non-negative.)
However, for this approach to work, we need AAT and AT A to have exactly
the same leading eigenvalue A. Fortunately, it is the case and, in fact, all eigen-
values are the same. Indeed, suppose that \ is an eigenvalue of AAT, that is,
AATy = \y. Then, after multiplying both sides by AT, we get that

ATA(ATy) =ATy),

which means that \ is also an eigenvalue of ATA. Finally, let us mention
that in practice we do not need to find x and y independently, using (3.8)
and (3.9). Once y is computed, then x can be obtained from (3.7) after fixing
B =1 as these scores need to be normalized anyway.

Combining all observations together, we are ready to define our next cen-
trality measure. They are normalized so that the maximum centrality is equal
to one.

Let D = (V, E) be any directed graph on n nodes. Let A be the unique
leading eigenvalue of AA”, where A is the adjacency matrix of graph
G, and let y be the associated non-negative eigenvector; in particular,
Ay = AATy. Let x = ATy. The authority centrality c¢,(v) and the
hub centrality c;(v) of a node v € V are defined as follows:

y(v)

d = .
an cn(v) S— o

Computational Aspects

The eigenvector centrality measure requires finding a positive eigenvector that
is associated with the leading eigenvalue of some matrix. Let us briefly dis-
cuss the most basic method for finding this eigenvector which is called power
iteration. Suppose that our goal is to find the positive eigenvector associ-
ated with the leading eigenvalue of matrix A (from the discussion above we
know that it exists). Let A\; be the leading eigenvalue of A and let Ay be the
eigenvalue that has the second largest absolute value. Then, let us take any

74 Centrality Measures

positive vector ¢(®) and apply the following iteration:

Ac)
(k+1) _ f k
c = or an e NU{0}.
A yRERUO)
It is clear that ¢(®) has norm equal to one and all positive entries. Moreover, it
can be shown that the sequence converges geometrically in the rate of [A2/Aq].
Let us also point out that in practice large graphs are usually sparse so the
update can be done efficiently.

For Katz centrality, our goal is to find a solution ¢, to the following linear
equation:
(I-aAT)c, =1.
Again, in practice, since large graphs are typically sparse, it is not efficient to
find the inverse of I — A7 so some matrix-free iterative solver is used instead.
The simplest approach is to iteratively calculate c**1) = 0 ATcF) + 1.

For PageRank we start with the formula

1 o —1
cp = a (I — aAT) 1
n

and rewrite it as follows:

. 1—
(I—aAT) cp = .
n

Now, we see that 1 = Ec,, where E is a square matrix containing 1 every-
where, since entries of ¢, are normalized so that they add up to one. It follows

that)
1~cp:<aAT+ _aE)cp.
n

. . . AT _ .
Moreover, since the leading eigenvalue of A + 1TO‘ E is equal to one, we can

use the power iteration method to find c,. We take cl(yo) = 1/n as a starting

value and use the recurrence

) = (oA 12) g
n

Note that this time we do not need to normalize cl(,k) as its norm is guaranteed

to be 1. As usual, since A is assumed to be sparse for large n, the update in
each iteration can be computed very fast.

Finally, for the HITS centrality measure, we initialize the algorithm with
vectors x(") = y(1) = (1,1,...,1). Then, during the (k + 1)th step of the
algorithm (k € N), we first perform the authority update rule:

x(k+1) — ATy(k)/”ATy(k)Hooa
immediately followed by the hub update rule:
yFHD = Ax(k“)/HATx(k“)Hoo.

The values obtained from this process will eventually converge.

Distance Based Measures 75

3.3 Distance Based Measures
Closeness Centrality

The first centrality measure we introduce in this section assumes that a node is
central if it is close, on average, to the remaining nodes, as it can quickly inter-
act with a typical or a random node (Freeman, 1979). Potential applications
include finding influential users on LinkedIn or identifying good intersections
to build a hospital near by, but there are many similar scenarios where quick
access to other nodes is crucial.

Since smaller average distance is more desirable, it makes sense to define
the score of a node v as the reciprocal of the average distance from v to the re-
maining nodes, namely, >, dist(v, u)/(n—1). For simplicity, we will assume
in the definition below that graphs are unweighted but it is straightforward to
generalize it to weighted graphs. We will come back to this afterwards. Recall
that for undirected graphs, dist(v, u) is simply the number of edges in a short-
est path between v and u. For directed graphs, depending on the application
at hand, it might be more natural to measure the average distance from node
v (if nodes are central if they have an easy access to the rest of the graph)
or the average distance to v (if the fact that the nodes have easy access to v
make v central). We use the former variant below but it is trivial to adjust it
to the latter.

Let D = (V, E) be any strongly connected and unweighted directed graph
on n nodes. Alternatively, let G = (V,E) be any connected and un-
weighted graph on n nodes. The closeness centrality of a node v € V'
is defined as follows:

n—1

ce(v) = 5

wey dist(v,u)’

Let us first note that this measure is properly normalized for unweighted
graphs. Indeed, trivially, dist(v,v) = 0 and dist(v,u) > 1 for u # v. So, in
the extreme case,), . dist(v,u) = n — 1 and it holds for all nodes in the
complete graph K, or, for example, the center of the star K; ,,. For weighted
graphs, dist(v, u) is defined to be the minimum sum of weights taken over all
paths from v to u (see (1.4)). As a result, we may stay with the same definition
of closeness centrality for weighted graphs. However, the normalizing factor
has to be adjusted in order to make sure that the centrality measure is always
between zero and one.

Let us also mention that we need to assume that a graph is connected
(or strongly connected in the case of directed graphs); otherwise, dist(v,u)

76 Centrality Measures

is not well defined if v and u belong to two different connected components.
In order to generalize the closeness centrality to disconnected graphs, one
may assume that dist(v,u) = n whenever the two nodes belong to different
components, the value just slightly larger than n — 1, the maximum distance
two nodes can be apart from each other. This is true for both unweighted and
weighted graphs; recall that it is assumed that the edge weights are always
n (0,1]. Another way to deal with this issue is to compute the closeness
centrality separately for each connected component (strongly connected one
in the case of directed graphs). This is the default behaviour in some graph
packages including igraph and, as we will discuss in Section 3.7, it can yield
misleading results. The next centrality measure aims to fix this limitation.

Harmonic Centrality

Similarly to the closeness centrality, the harmonic centrality (Marchiori and
Latora, 2000) measures the “average” distance of a node to the other nodes
in the network. However, this new measure inverts the sum and reciprocal
operations in the definition of closeness centrality: it is defined as the sum of
the inverse lengths. This approach conveniently avoids problematic cases in
which a presence of a few nodes that are far away from v affects the score of
v, a known limitation of the closeness centrality. In the extreme case, such ap-
proach allows this centrality to deal with infinite values, disconnected graphs.
We will discuss it more in Section 3.7

Let D = (V, E) be any unweighted directed graph on n nodes. Alterna-
tively, let G = (V, E) be any unweighted graph on n nodes. The harmonic
centrality of a node v € V is defined as follows:

1 1
cn(v) = n—1 uEVZ\{v} dist(v,u)

Note that, with slight abuse of notation, the formula in the above definition
cleanly handles the infinite values (a case when we would define dist(v,u) =
oo if v and w are not connected) for disconnected graphs. Alternatively, one
can take a sum over all nodes that can be reached from v. Note also that
the harmonic centrality is appropriately normalized for unweighted graphs:
cu(v) €]0,1]. For weighted graphs, one needs to normalize it appropriately
but it can be easily done.

Eccentricity Centrality

Another centrality measure, similar to the closeness centrality and the har-
monic one, is the eccentricity centrality (Buckley and Harary, 1990). In con-

Distance Based Measures it

trast to the other two measures, it pays attention to the maximum distance
between the node and all other nodes. An important disadvantage of eccen-
tricity is that it is sensitive to the diameter of the network. In particular,
adding or removing a node and/or an edge may change the eccentricity score
of many nodes. Another disadvantage is that it requires the network to be con-
nected. However, it might be suitable for some specific applications in which
it is important that a node is close to all other nodes within the network.

Let D = (V, E) be any strongly connected and unweighted directed graph
on n nodes. Alternatively, let G = (V,E) be any connected and un-
weighted graph on n nodes. The eccentricity centrality of a nodev € V'
is defined as follows:

1
max, ey dist(v,u)’

cp(v) =

As before, adjusting the eccentricity centrality to weighted graphs is
straightforward and only requires appropriate normalization.

Betweenness Centrality

The next centrality measure tries to capture the idea that a node that lies
between many pairs of nodes has certain strategic and topological advantages
and, as a result, is more influential compared to other nodes (Freeman, 1977).
Indeed, consider a network of roads in a large city such as Toronto. Our goal
might be to model the behaviour of commuters; we know where they live
and where they work. In order to identify the busiest intersection within the
city, one might want to check which intersection lies on the largest number
of shortest paths between commuters and their work places. Another natural
application includes identifying the most crucial routers in a computer network
but there are many other similar scenarios. We define this centrality measure
for connected graphs, but one can generalize it to disconnected graphs.

Let D = (V, E) be any strongly connected and unweighted directed graph
on n nodes. Alternatively, let G = (V,E) be any connected and un-
weighted graph on n nodes. For three distinct nodes 4, j,v € V, let £(i, j)
be the number of shortest paths from 4 to j, and let £(4, j,v) be the number
of shortest paths from ¢ to j that include v. The betweenness centrality
of a node v € V is defined as follows:

I 4.j,v)
0= G A B)

ieV\{v} jeV\{v,i}

78 Centrality Measures

Note that the measure is properly normalized as there are (n — 1)(n — 2)
terms involved and each of them, ¢(i,7,v)/¢(i,7), is at most one. In or-
der to generalize it to disconnected graphs, we may simply assume that
0(i,4,v)/L(3,7) = 0 if there is no path from 4 to j (that is, £(i,5) = 0).

Note also that for weighted graphs, that often have highly heterogeneous
edge weights, one should expect that £(i,j) = 1 for most of the pairs (4, 7).
Therefore, in practice, the above definition is slightly modified. One typical
approach is to transform a graph into an unweighted counterpart in which an
edge between two nodes is introduced if the weight of the edge linking them is
greater than some universal threshold value. Another approach is to consider
k-shortest paths between each pair of nodes (i, 7). In the latter case, Yen’s
algorithm is a popular method to find the set of k paths of interest.

Efficiency and Delta Centrality

Let us start from the definition of graph efficiency (Latora and Marchiori,
2007). For simplicity, we define it for unweighted graphs but generalization to
weighted graphs will be straightforward.

Let D = (V, E) be any unweighted directed graph on n nodes. Alterna-
tively, let G = (V, E) be any unweighted graph on n nodes. For i,j € V,
the efficiency in the communication between node ¢ and node j is defined
as follows:

86, 5) — 1/dist(¢,7) if there is a path from i to j
9= 0 otherwise.

The graph efficiency is defined as follows:

F=F(G) = ﬁz > 60,9,

i€V jev\{i}

Note that §(i,5) € [0,1] for any two distinct nodes ¢ and j. As a result,
since the graph efficiency is simply the average value of §(i, j) over all ordered
pairs of nodes i,j with ¢ # j, it is normalized so that F(G) € [0,1]. For
weighted graphs, we simply replace the definition of dist(7, j) with (1.4) and
properly normalize the graph efficiency.

Clearly, this graph parameter can be seen as a measure of the performance
of the graph; the larger the value of F/(G), the more interconnected the nodes of
graph G are. More importantly, once we have such a measure, we could use it to
benchmark which nodes in the graph are central or important. Indeed, if after
disconnecting node v from the graph, the efficiency goes down significantly

Distance Based Measures 79

compared to the same operation on other nodes, then it is a strong indication
that v plays an important role within graph G.

Let us formalize these observations. For a given graph G = (V, F) and a
node v € V, let G, = (V, E,) be a subgraph of G with the edge set E, C F
obtained from F by removing the edges incident with v. Informally, we may say
that G, is a graph G with node v deactivated. According to the centrality
measure we are about to define, the most central node is the node which
minimizes F(G,), the efficiency of G,.

Let D = (V, E) be any unweighted directed graph on n nodes. Alterna-
tively, let G = (V, E) be any unweighted graph on n nodes. The Delta
centrality (with respect to the graph efficiency) of a node v € V' is
defined as follows:

Let us note that there are many ways to define the performance of a
network and choosing which one to use should depend on the application at
hand. In a very general setting, we say that P(G) is a quantity measuring the
performance of a graph G = (V, E) if the following two properties hold:

a) P(G) € RY (provided that |E| > 1), and
b) for any v € V' we have that P(G,) < P(G).

(A similar definition can be introduced for directed graphs.) Once the appro-
priate quantity measuring the performance is introduced, one can adjust the
Delta centrality measure by simply replacing F(G) with P(G).

It is important to highlight that there are two possible scenarios that can
take place. In both of them, we use exactly the same formula but the jus-
tification for it is quite different. Note that the goal could be to maximize
P(G) (when it measures some positive effect) in which case the nodes that
correspond to large values of ca are the ones that we should try to avoid
deactivating as it results in drastic decrease of the graph performance. Alter-
natively, the goal could be to minimize P(G) (when it measures some negative
effect). This time the nodes of large values of ca are the ones that we should
try to deactivate. We will show one example of such customized quantity in
Section 3.7.

It is straightforward to see that the graph efficiency F'(G) defined above is
a quantity measuring the performance of G. In particular, it implies that the
definition of the corresponding centrality measure above is a specification of
this more general framework. Indeed, we already mentioned that it satisfies
the first required property, namely, that F(G) € R* (unless graph G has no
edges). To see that the second property is satisfied, note that after removing
an edge from a graph, the distance between any pair of nodes can only increase
and so the efficiency cannot increase.

80 Centrality Measures

3.4 Analyzing Centrality Measures

As already mentioned in the introduction, having centrality measures assigned
to all nodes gives us flexibility and could be very useful. However, often our
task is to identify a small set of central nodes of a given size, regardless of
how far the next candidate that did not make into the set is. Hence, we often
need to rank all the nodes based on a given centrality measure c(v).

If all scores are unique, then there is a unique ranking. The most central
node will be ranked one and the least central node will have rank n. If some
nodes have exactly the same ranking, then we may use an ordinal ranking
approach, that is, break ties using some additional rule. Alternatively, one may
simply assign the same ranking to these nodes which can be done in several
ways. The most popular among those are standard competition ranking,
modified competition ranking, dense ranking, and fractional ranking.

Let us fix any graph G = (V, E) or any directed graph D = (V, E). Given a
centrality measure c: V' — [0, 1] that assigns a score ¢(v) to all nodes v in
a graph, the ordinal ranking of nodes is a permutation r,: V' — [n] such
that ¢(v) > e(w) whenever 7,(v) < ro(w). If ¢(v) # ¢(w) for v # w, then
the ranking is unique; otherwise, one may choose the ranking arbitrarily
from the functions that satisfy a given criteria.

Out of the rankings that assign the same ranking to all the nodes that
have the same score, one of the most common practice is to use the fractional
ranking. Suppose that some nodes have exactly the same centrality measure.
Then, all of them receive the same ranking that is equal to their average
position. The benefit of this approach is that it preserves the average ranking
of the corresponding ordinal ranking.

Let us fix any graph G = (V, E) or any directed graph D = (V, E). Given a
centrality measure ¢: V' — [0, 1] that assigns a score ¢(v) to all nodes v in a
graph, the fractional ranking of nodes is a function r;: V — [1, n] such
that rg(u) =3, cg(u To(v)/1S(w)], where S(u) = {v € V' : ¢(v) = c(u)}.

Note that in the definition of the factional ranking r¢ we use the ordinal
ranking r,. Despite the fact that, in case of duplicate values of ¢(v), the ordinal
ranking r, is not defined uniquely, the fractional ranking r, is unique.

Another common situation when rankings become useful is when we calcu-
late several different centrality measures. In such cases, it is often important to
identify nodes that have a high ranking with respect to several measures. Sim-
ilarly, knowing that some node is ranked high with respect to one centrality

Analyzing Centrality Measures 81

measure while having low ranking under some other centrality measure might
lead us to interesting and important insights regarding its role and position
within the network.

Analysis of several centrality measures, at the same time, naturally lead
to a question of how similar two centrality measures are for a given graph.
Three most popular measures of correlation used in practice are Pearson’s
p, Spearman’s 75, and Kendall’s 7. All of these measures are appropriately
normalized such that they give a value in the [—1, 1] interval, where 1 indi-
cates a perfect association between the two centrality measures, 0 indicates
no association, and —1 indicates that they are perfectly inverted.

The difference in interpretation of the three measures is the following. Pear-
son’s p gives us information about linear relationship between data. Spear-
man’s ry measures the extent of presence of monotone relationships between
data (or, equivalently, the presence of a linear relationship between ranks com-
puted using original data). Finally, Kendall’s 7 can be roughly interpreted as
follows: (1 + 7)/2 is the probability that two observations taken randomly
from both data sets have the same ordering of ranking. We will come back to
this and provide more details once all coefficients are defined. Most statistical
packages provide implementations of all three correlation measures.

Consider any two centrality measures, ¢;: V — [0,1] and ¢3: V — [0, 1].
The Pearson’s correlation coefficient p of ¢; and co is defined as

follows:
_ Y vev(c1(v) —é1)(ca(v) — C2)
Viev (@@) —a@)2 oy (ea(v) — 22)%

where ¢; = - 3 1, ¢;(v), i € {1,2}, are the averages over all nodes.

p

Consider any two rankings, r1: V' — [1,n] and ro: V' — [1, n]. The Spear-
man’s rank correlation coefficient r, of r; and rs is defined as follows:

_ Y vev (r1(v) = 71)(r2(v) — 72)
\/ZUEV(Tl (v) —71)2 ZUeV(T‘Q(U) — 72)2’

where 7; = L 3", ri(v), i € {1,2}, are the averages over all nodes.

Ts

Before we define Kendall’s 7 coefficient, we need to introduce a few auxil-
iary definitions. Consider any two rankings, 71 : V — [1,n] and ro : V — [1,n].
For any pair u,v of nodes, we say that this pair is concordant if the ranks
for both nodes agree, that is, if both ri(u) > r1(v) and ra(u) > ro(v); or if
both r1(u) < ri1(v) and ro(u) < r2(v). On the other hand, the pair is said
to be discordant if ri(u) > r1(v) and ra(u) < ro(v); or if r(u) < ri(v)
and ro(u) > r2(v). If ri(u) = r1(v) or ra(u) = r2(v), then the pair is neither
concordant nor discordant.

82 Centrality Measures

Consider any two rankings, r: V. — [1,n] and ro: V. — [1,n]. The
Kendall’s rank correlation coefficient 7 of r; and 75 is defined as

follows:
Ne — Ng

V(@ =m)(@) -)

where n. is the number of concordant pairs and mng is the number of
discordant pairs. The terms n; and ns account for the presence of rank
degeneracies in ranking 7 and, respectively, ro. If ranking r; (5 € {1,2})
partitions V' into ¢; groups, group i € [¢;] consists of nodes of the same
rank and has k; nodes, then n; = Zfi1 (’;’)

r=

Finally, as promised, let us make a connection to probability theory and the
Pearson’s correlation coefficient introduced in (1.2). Let X be a random
variable uniformly distributed over the set of nodes V', that is, P(X = v) = 1/n
for any v € V. Then, simply

P = pCl(X),CQ(X)
rs = prl(X),rg(X)-

To see the connection to Kendall’s rank correlation coefficient, let (X,Y") be
a pair of random variables describing a uniform sample from the set {(x,y) :
x,y € V,x # y}. Then,

T = Psgn(ci(X)—c1(Y)),sgn(ca(X)—c2(Y))>

where sgn(x) is the signum function of a real number x defined as follows:

-1 ifxz <0,
sgn(z) =40 if =0,
1 ifx>0.

So, indeed, all correlation coefficients can be reduced to the Pearson’s cor-
relation coefficient over different random variables.

For a more detailed discussion of correlation measures, we direct the read-
ers to a textbook on mathematical statistics such as Wackerly, Mendenhall,
and Scheaffer (2008).

3.5 Pruning Unimportant Nodes, k-cores

Before we define k-cores (Seidman, 1983), we need to recall the definition of
a subgraph. Let G = (V, E) and G’ = (V',E’) be any two undirected and

Pruning Unimportant Nodes, k-cores 83

unweighted graphs. A graph G’ is a subgraph of G if V/ C V and E’ C E.
We say that a graph property P is monotone if for any subgraph G’ of G we
have the following: if G’ has property P, then G also has property P. In other
words, if a graph G’ satisfies P, then every graph G on the same set of nodes,
which contains G’ as a subgraph satisfies P as well. There are many natural
monotone properties such as: a) the graph has minimum degree at least k,
b) the graph is connected, ¢) the graph has diameter at most k. Moreover, we
say that a graph G’ is a maximal subgraph of G satisfying some monotone
property P if there is no graph G” = (V" E”) with the same property P such
that G’ is a subgraph of G”, G” is a subgraph of G, and G” # G'. Informally
speaking, we may say that there is no graph G” “sandwiched” between G’
and G which has property P.

Extensions of k-cores to weighted, non-simple, or directed graphs are also
developed but let us first concentrate on unweighted, undirected, and simple
graphs.

Fix k € NU {0}. Let G = (V, E) be any unweighted graph on n nodes.
A k-core of a graph G is a maximal subgraph of G in which all nodes
have degree at least k. It is easy to see that the k-core of G is unique and
can be obtained by starting with G and repeatedly deleting all nodes of
degree less than k.

Let us first note that k-cores are well defined, that is, there exists a unique
graph that satisfies this definition. Indeed, if both G; = (V4, E;) and Gy =
(Va, Es) are graphs with minimum degree at least k, then the same is true for
Giue = (V1 U Vs, By U Ey). Hence, there is a unique maximal subgraph with
this property.

Let us also note that the k-core of some graph G could be empty. For
example, for any graph G, (A + 1)-core is clearly empty, where A = A(G) is
the maximum degree of GG. Moreover, all trees have empty 2-core, regardless
of how large their maximum degree is. More importantly, for any &y > ko and
any graph G, the kj-core of G is a subgraph of the ko-core of G (however, not
necessarily a proper subgraph, since it is possible that they are equal). This
justifies the following definition.

Let G = (V, E) be any unweighted graph on n nodes. The coreness of a
node v € V is equal to k € NU {0} if v belongs to the k-core but not to
the (k + 1)-core.

The k-core decomposition identifies progressively internal cores and de-
composes the graph layer by layer, revealing the structure of different “shells”
from the outmost one to the most internal one. As a result, the coreness can

84 Centrality Measures

then be used as a simple centrality measure. Note that each node has the
coreness properly assigned as a natural number. This implies that the k-core
decomposition yields a partition of V', the set of nodes.

However, the main problem here is that it is quite common that even the
last non-empty core is still quite large. Indeed, for example, it is known that
for any integer k > 3, a.a.s. the binomial random graph G(n, p) (see Section 2.3
for a definition and more) has either the empty core or it has linearly many
nodes. Of course, these are asymptotic results but experiments confirm that
similar conclusions can be derived even for small random graphs on, say, 1,000
nodes. Indeed, Figure 3.1 presents the fraction of nodes that are part of the
k-core (k € [10]) of G(n,p) with n = 10,000 nodes and varying p. Moreover,
many real-world networks exhibit similar behaviour. As a result, there are
typically many nodes with the highest score and so it is impossible to distin-
guish them and use the notion of coreness to identify the most central nodes.
Having said that, k-cores may often be successfully used as a semi-supervised,
preprocessing step to remove nodes that are not central. For example, “trim-
ming” the graph to its 2-core is a very common first step in data analysis but
larger values of k might also be considered. However, since it is not guaranteed
that some important nodes are not removed during this procedure, it should
be done with caution. Finally, let us state the obvious: this preprocessing step
clearly provides a substantial improvement on the algorithmic complexity and
so is, at least, worth considering.

1.0 1

0.8 A

o
o
L

e
IS
L

fraction of nodes

0.2 1

0.0 1

0 2 4 6 8 10 12 14 16
average degree

FIGURE 3.1

The faction of nodes that belong to the k-cores of G(n,p) with n = 10,000
nodes as a function of its (expected) average degree. All plots start at the
point when the k-core becomes non-empty.

Group Centrality and Graph Centralization 85

Let us briefly mention how one may generalize the notion of the k-core to
weighted, non-simple, or directed graphs. The easiest thing to do is to simply
ignore possible weights and directions of the edges and remove paralel edges
and loops before finding the k-core. However, if a given application at hand
requires paying attention to this additional information, then we suggest to
use the following generalization instead.

Recall that for weighted graphs the degree of a node v is defined as
deg(v) = > ,cy a(v,u). This value can be used for the definition of the k-
core, and so the generalization to these graphs is rather straightforward. The
only difference to point out is that now the k-core may be defined for any
k € R4, which is not necessarily a natural number. For non-simple graphs, all
parallel edges and loops incident to node v contribute to deg(v) (with loops
typically contributing twice as much). Finally, for directed graphs, we may fix
kin, kour € N and define a k-core as a maximal subgraph in which all nodes
have in-degree at least k;, and out-degree at least k,,:. Alternatively, we may
stay with only one parameter k£ € N and insist on all nodes having total degree
at least k.

3.6 Group Centrality and Graph Centralization

So far we were concerned with identifying central nodes, the nodes that play
a key role within the graph. Let us finish the theoretical part of this chap-
ter with a discussion of two closely related concepts: group centrality and
graph centralization. The first one tries to compare two groups of nodes and
then decides which one is more central as a group. The other one focuses on
evaluating the overall organization of the network.

Suppose that we identified two groups of users of Reddit (social news
aggregation and discussion website) who like Apple and, respectively, Samsung
cellphones. Our goal is to judge which of the two groups is more influential
and, as a result, might affect another group.

Our task is to assign some kind of group centrality (Everett and Bor-
gatti, 1999) measure to a group of nodes S C V. Most of the centrality mea-
sures we introduced in this chapter can be easily adjusted to quantify the
centrality of group S. Unfortunately, there are many natural ways it can be
done and the choice might be highly affected by a given application in mind.
We briefly summarize some generalizations below, highlighting only required
adjustments to the original definitions (see the corresponding shaded boxes
for a particular setting).

e The degree centrality of set S:

_INS)
=S

86 Centrality Measures

where N(S)={ueV\S:uv e E for some v € S}.

e Each of the remaining matrix based measures (Eigenvector, Katz,
PageRank, HITS) of set S:

e(S) = Z c(v).

e The closeness centrality of set S:

n— |9S]
> uey dist(S, u)’

where dist(S,u) = min,ecg dist(v,u) is the distance from u to the closest
node in S.

ce(S) =

e The harmonic centrality of set .S:

e (v) :n—|S| Z dlbt

ueV\S

e The eccentricity centrality of set S:

1
maxyey dist(S,u)’

CE(S) =

e The betweenness centrality of set S:

. 46,4, 9)
) = T . iy

zEV\S]EV\(SU{z)

where £(i, 7) is the number of shortest paths from 4 to j (this part has not
changed) and £(i,j,S) is the number of shortest paths from ¢ to j that
include at least one node from S.

e In order to generalize the Delta centrality from individual nodes to groups
of nodes, we simply replace G, with Gg, where Gg = (V, E,) is a subgraph
of G with the edge set Eg C FE obtained from E by removing all edges
incident with some node in S.

Finally, let us point out that these generalizations can be easily used when
we already have a number of groups identified and all we need to do is to rank
them. But what if we do not have candidates in mind and our goal is to find
a group of nodes that is maximally central? This is clearly an important task
but much harder than the one we discussed above. There are (Z) groups of
nodes of size k& which is too large to investigate even for small values of k.
As a result, some heuristic search algorithms have to be applied which do not

Group Centrality and Graph Centralization 87

guarantee to find the best group but aim for a reasonable outcome instead.
These problems are out of scope of this book. Another important and related
problem that is too challenging to be included here is concerned with the
question of how to change the structure of a given graph in order to increase
a centrality of a given group of nodes.

Let us now move to the second problem. Our goal now is to try to under-
stand how centrality is distributed over the nodes of the graph. For example,
we would like to distinguish graphs in which all nodes play similar role with
no clear influencers from graphs which consist of some small group of nodes
with large centrality. The graph centralization (Wasserman and Faust, 1994)
is a graph parameter that, for a given centrality measure cg: V — [0, 1], tries
to investigate how that measure is distributed among nodes in the graph by
associating a single number to a given graph G = (V, E). Large values should
imply that the measure is concentrated on a small set of central nodes; on the
other hand, small values should indicate that the measure is almost uniformly
distributed among the nodes of the graph.

One natural option for this graph parameter is to see how far a score of a
typical node is from the score of the top ranked node, that is, to consider

(@) = 1 Z (maxcG(u) — Cg(’l))> = maxcg(u) — % Z ca(v).

2% eV
veV “ v veV

Note that the formula for ¢(G) is simplified in some special cases. For ex-
ample, if a centrality measure is standardized so that the sum of all cen-
tralities is equal to 1 (as in the case of PageRank), then we get that
¢(G) = maxyey cg(u) — 1/n; so we are effectively concentrating on the max-
imum value. Another popular standardization is to make the largest value of
centrality equal to 1 (as in the case of eigenvector centrality), in which case
we have ¢(G) = 1—)_ .y ca(v)/n; this time, we are effectively looking at the
negation of the average centrality.

If the centrality measure is normalized, that is, cg(v) € [0,1], then we
clearly also have that ¢(G) € [0, 1]. However, it is always the case that ¢(G) <
maxyey ¢g(u) and so ¢(G) < 1, provided that the measure is normalized.
Indeed, if the maximum is equal to one, then the average cannot be equal
to zero. Hence, ¢(G) is typically scaled so that it is equal to one for some
extremal graph G’ on the same set of nodes. As a result, we get the following
definition.

For a given centrality measure, let c¢g: V — [0, 1] be the measure applied
to a graph G = (V, E). The centralization of graph G, with respect to
the selected centrality measure, is defined as follows:

maxyecy cq(u) — ZUEV cg(v)/n

maxer_(v.p) (maxuev e () = 3 ey ccr (v) /n)

C(G) =

88 Centrality Measures

where the maximum in the denominator is taken over all graphs on the
same set of nodes. The centralization of a directed graph D = (V, E) is
defined analogously.

Let us note that the denominator in the definition of C(G) might be chal-
lenging to find. However, this is usually not a problem as in a typical scenario
we have a few graphs to compare and so one may simply compare the ratios
between the corresponding centralizations and the denominator is irrelevant,
provided that the orders of the two graphs are comparable. Finally, despite the
fact that this graph parameter could be useful as it provides a single number
that can be assigned to a graph, many important properties are clearly lost.
Hence, it is often recommended to consider a histogram of the distribution
of the centrality measure we are interested in as it provides more detailed
picture.

3.7 Experiments

The examples in this section are based on the USA Airport dataset from
the Kaggle website!. From this dataset, we extracted a directed, weighted
graph consisting of all flights in 2008 between US airports; the edge weights
correspond to the total number of passengers transported between the two
nodes. The graph is directed as we can distinguish flights from A to B and
from B to A.

The graph consists of 464 nodes and 12,000 directed, weighted edges. For
the nodes, we used the airport IATA codes as their labels. The data is imported
from two files. First, we read a file that contains all the edges—see Table 3.2.
The second file contains some properties of the nodes (the airports)—see Ta-
ble 3.3.

TABLE 3.2
Weighted edges for the US Airport dataset.

orig_airport dest_airport total passengers

SFO LAX 1442105
LAX SFO 1438639
MCO ATL 1436625
ATL MCO 1424069
LAX JFK 1277731

Tyrw. kaggle.com/flashgordon/usa-airport-dataset

Ezxperiments 89

TABLE 3.3
Node features for the US Airport dataset.

airport lon lat state city
ABE —75.441 40.652 PA Allentown
ABI —99.682 32.411 TX Abilene
ABQ —106.609 35.040 NM Albuquerque
ABR —98.422 45.449 SD Aberdeen

ABY —84.195 31.535 GA Albany

For the purpose of having a more compact visualization, we consider a
subgraph obtained from the US Airport dataset consisting only of nodes and
edges within the state of California. Details on how to build the dataset as well
as the analysis done in this section can be found in the notebooks available
on-line.

In Figure 3.4, we present the whole subgraph using the latitude and lon-
gitude of each node. From those plots, it is already visually clear that some
nodes are more “central” than others, with a large number of edges coming in
and out of them. In Figure 3.4(a), we highlight (in black) the three airports
with the largest centrality values with respect to most of the measures we
considered earlier. Not surprisingly, those central nodes represent LAX (Los
Angeles), SFO (San Francisco), and SAN (San Diego). In Figure 3.4(b), we
highlight the airports that have the largest (in black) and the smallest (in
light grey) coreness numbers.

In Table 3.5, we show the top ranked nodes, sorted with respect to their
degree centrality. For all matrix-based centrality measures, we used the edge
weights counting the number of passengers between the corresponding air-
ports, and keeping the edge directions. For all distance-based measures, we
consider the undirected graph with distance being the number of hops (that is,
we ignore the number of passengers), as this is a natural notion of a distance
between airports.

One clear observation is that the centrality measures seem to be highly
correlated, showing a clear hierarchy for the investigated airports. For be-
tweenness, however, we see an enormous dominance of LAX and SFO, which
indicates that for most connecting flights, one would need to go through one
of those airports. Harmonic centrality is large for all airports, which is an
indication of a tightly connected graph in which it is possible to go between
most airports in just a few hops (we investigate the centralization of this graph
against other states later in this section). In Table 3.6, we show the airports
with the lowest degree centrality. In general, the corresponding values are all
very low (except the harmonic centrality, as discussed earlier); however, there
are two airports, namely, VIS (Visalia) and MCE (Merced) that have excep-
tionally small values. What could possibly explain that difference? We will
come back to this shortly.

90 Centrality Measures

@ @
(&) @
@ (&)
@ @
°* ° o ©
'Q ‘Q ‘. 8 o
] L J
(O] o
o ° o °
] L
(C] o
o, o
o @ o °
(a) Most central nodes. (b) High and low coreness nodes.
FIGURE 3.4

The California subgraph using geographical layout. In (a), the top 3 most
central nodes are highlighted. In (b), nodes with large (black) and small (light
grey) coreness are presented.

TABLE 3.5
Top ranked nodes sorted with respect to degree centrality.

airport degree pagerank authority hub between harmonic

LAX 0.117 0.215 1.000 1.000 0.507 0.833

SFO 0.090 0.173 0.970 0.907 0.362 0.833

SAN 0.079 0.124 0.689 0.726 0.014 0.690

OAK 0.047 0.073 0.474 0.441 0.030 0.667

SJC 0.042 0.067 0.416 0.390 0.047 0.738
TABLE 3.6

Bottom ranked nodes sorted with respect to degree centrality.

airport degree pagerank authority hub between harmonic

CEC 4.0le4 0.008 0.005 0.005 0.001 0.556
IPL 2.82e-4 0.007 0.004 0.004 0.000 0.452
VIS 3.09e-5 0.045 0.000 0.000 0.000 0.048
MCE 3.09e-5 0.045 0.000 0.000 0.000 0.048
NZY 8.92e-7 0.007 0.000 0.000 0.000 0.452

In this chapter, we saw several definitions of correlation between measured

Ezxperiments 91

TABLE 3.7
Kendall’s correlation coefficients between various centrality measures
for the California airports graph.

degree pagerank authority hub between harmonic

degree 1.000 0.774 0.987 0.974 0.708 0.797
pagerank 0.774 1.000 0.760 0.748 0.578 0.575
authority 0.987 0.760 1.000 0.996 0.702 0.800

hub 0.974 0.748 0.996 1.000 0.699 0.805
between 0.708 0.578 0.702 0.699 1.000 0.867
harmonic 0.797 0.575 0.800 0.805 0.867 1.000

quantities. In Table 3.7, we show the Kendall’s correlation coefficient for the
measures presented earlier. While the correlation values are generally high,
we see slightly lower values for betweenness in comparison to other pairs of
centrality measures. We already saw that betweenness is influenced by the
dominance of two major airports.

We now consider the coreness (or the core number) for each airport. In this
experiment, we treat the graph as unweighted but directed. The highest core
value for this graph is 13, with 9 airports present in the last non-empty core,
namely, SFO, LAX, SAN, OAK, SNA, SJC, SMF, FAT, and SBA. There are
5 airports with the core number 2 or less, including MCE and VIS, and the
remaining 8 airports have the core number between 4 and 11. In Figure 3.8(a),
we display the nodes that belong to the 13-core in black, and the low core
airports in light grey, as we did in Figure 3.4(b). However this time, rather
than using geographical layout, we use a force-directed layout (see Section 6.7
for more details on that). It is now clear that the nodes that belong to the
13-core are the most central. We also see that two airports are not part of
the main connected component; not surprisingly, those are the MCE and VIS
airports we already noticed. In Figure 3.8(b), we show the same plot but
this time additionally with the harmonic centrality values. There is a clear
pattern: larger values for the central nodes, slightly lower for the non-central
nodes that are still part of the main connected component, and low values for
the disconnected pair.

In Figure 3.9, we plot the median centrality measures grouped by coreness
values. We see a clear dominance of the high-core nodes for all measures except
closeness centrality for which the values are more similar to each other.

As we already saw, distance-based centrality measures are often based on
the number of hops (shortest path length) between nodes, so it is important
to know how disconnected graphs are handled. For measures such as close-
ness centrality and eccentricity, the default behaviour implemented in some
software packages is to break up the graph into connected components and

92 Centrality Measures

(@]
o ® e 06> 05156
o .67
A% ® NS 045
o L g9 0.45 0.83 083074
o ® o o ° 0.55 074 09 064 045
g (] o 064 67 06
o
& 0.05 0.05
(a) High (black) and low (light grey) undi- (b) Harmonic centrality values.

rected coreness nodes.

FIGURE 3.8
The California airport graph shown with a force directed layout. The dense
region and an isolated pair now appear more clearly.

compute the values independently for each component. We show that this can
be misleading, if one is not aware of this fact.

In Table 3.10, we compare the values for harmonic centrality with closeness
centrality (using distance equal to the number of nodes for disconnected pairs,
or computed independently for each component). We also show the eccentric-
ity values (computed per connected component). We compare the values for
the three major airports, as well as the two disconnected ones (MCE and VIS).
For those two airports, computing centralities per connected component yield
maximal value of 1 for the closeness, with eccentricity of 1 (maximal shortest
path). Without careful analysis, this could be mistakenly interpreted as those
two airports being very central!

In our next example we discuss delta centrality using a non-standard ef-
ficiency measure where we consider a simple pandemic spread model. Let us
assume that the pandemic starts at exactly one airport selected uniformly
at random from all the airports. Then, the following rules for spreading are
applied: (i) in a given airport pandemic lasts only for one round and (ii) in
the next round, with probability a, the pandemic spreads independently along
the flight routes to the destination airports for all connections starting from
this airport. Airports can interact with the pandemic many times, and the
process either goes on forever or the pandemic eventually dies out. Our goal
is to find the expected number of times some airport interacted with the pan-
demic, which amounts to the sum over all airports of the expected number
of times this airport has the pandemic. This is directly related to attenuation
factor we discussed above and can be calculated as follows:

P(G) =171 - aA") 1 /n,

where A is the adjacency matrix, n is the number of nodes and we fix a = 0.1.

Ezxperiments

score

0.7 4

0.6

0.51

0.4

0.3 4

0.2 4

0.14

0.0 <

FIGURE 3.9
Median centrality measures for nodes grouped by their coreness: high (core-

ness=13), low (coreness < 2) and mid-values.

Emm high coreness
mid coreness
low coreness

degree pagerank authonty hub

TABLE 3.10

A comparison of a few distance-based measures for five airports in the
California graph (the 3 major ones and the two isolated ones) showing
that one needs to be careful when dealing with disconnected graphs.

measure

between harmonic

airport harmonic closeness closeness eccentricity
(entire graph) (per component)
LAX 0.833 0.318 0.864 2
SFO 0.833 0.318 0.864 2
SAN 0.690 0.292 0.679 2
MCE 0.048 0.048 1.000 1
VIS 0.048 0.048 1.000 1

93

(A careful reader might realize that the presented formula is not completely
correct. It is possible that at some stage of the pandemic process an airport
gets infected two or more times in the same round, and we are double counting
such cases. However, the probability of such a situation is small so we ignore
it to keep formulas simple. An implementation of a simulation that correctly
handles these situations is left as a programming exercise to the reader.) We
use the above measure to compute delta centrality for each airport. Let us
note that it has a simple but important interpretation: it simply computes
by what percent the expected pandemic exposure is reduced when a selected

94 Centrality Measures

airport is closed.

We computed that in the California graph P(G) = 6.94, so we expect that
a pandemic will be present in some airport almost 7 times when o« = 0.1. The
results for delta centrality are shown in Figure 3.11, where we use the same
shades of grey as with the coreness. We see that SFO and LAX stand out as
having the highest positive impact when removed.

0.6 1

I o
Y w
L

Delta Centrality
o
w

0.2

0.1

0.0 -
O><U—22I—¥<(<(d>gn.ugmgccé>—l.u£
5350355856828 g0R0858¢85

FIGURE 3.11

Delta centrality for a simple pandemic spread model.

In order to illustrate group centrality and centralization, we now consider
the entire US airport graph. For group centrality, we compare delta centrality
(using standard efficiency) when removing all edges from each state in turn.
In Table 3.12, we show the highest and the lowest scoring states while in
neighbouring Table 3.13, we show the states with the largest and the smallest
un-normalized centralization using the PageRank centrality measure. We only
considered states with more than 5 airports for the latter, in order to clearly
illustrate the structure of graphs with high or low centralization. The state
with largest centralization (MI) has one central hub airport, namely Detroit
(DTW), while the state with smallest centralization (ND) does not have any.
We plot those two subgraphs in Figure 3.14. We also note that California
is not amongst the states with highest centralization, which agrees with our
previous observation that harmonic centrality is quite uniform due to high
connectivity between (most) airports in that state.

Practitioner’s Corner 95

TABLE 3.12 TABLE 3.13
States with the largest and the States with the largest and the
smallest group delta centrality in smallest Pagerank centralization
the US Airport graph. in the US Airport graph.
State Delta centrality State Centralization

X 0.159 MI 0.373

CA 0.134 GA 0.361

FL 0.113 NC 0.358

DE 0.008 NE 0.077

RI 0.006 AR 0.067

NH 0.005 ND 0.061

3.8 Practitioner’s Corner

While all matrix-based centrality measures we discussed above are often
highly correlated, PageRank is typically recommended (instead of, for ex-
ample, eigenvector centrality or Katz centrality) for very large weighted and
directed graphs, as it is the most robust method from a computational point
of view. Clearly, in cases where the distinction between hubs and authorities
is to be made, the HITS algorithm is a good choice. After all, it is designed
for that purpose. If a tailor-made notion of an efficiency of a graph can be
naturally defined, then delta-centrality provides a nice and flexible way to
rank the nodes.

For weighted graphs, it is particularly important to pay attention to the
type of edge weights. For matrix-based centrality measures, such weights
should amount to some notion of similarity between the nodes. On the other
hand, for betweenness they should map to some notion of a distance. In exam-
ples such as the airport graph that we have discussed above, it is often simpler
to ignore the weights for betweenness measure and use hop counts as the dis-
tance between nodes instead. As mentioned earlier, one needs to be really
careful when interpreting distance-based centrality measures for disconnected
graphs.

Finally, pruning a graph by keeping the k-core is often useful in many
applications as it allows the data scientist to concentrate on a smaller graph
consisting of the most interesting nodes anyway. In particular, restricting to
the 2-core will remove “dangling” trees that are typically uninteresting.

96 Centrality Measures

(&) (&)
@ (5}
(©] (9]
° @
* o
(5]
(5}
(&)
(&)
@ °
(&)
(&)
(&) (&)
(a) MI: high centralization (b) ND: low centralization
FIGURE 3.14

States with more than 5 airports with the largest (a) and the smallest (b)
Pagerank centralization.

3.9 Problems

In this section we present a collection of potential practical problems for the
reader to attempt.

1. Find the top 5 ranked airports (with respect to the degree central-
ity) in the state of New York. Present results in the same form as
what was done for the state of California—Table 3.5.

2. Generate Chung-Lu graph G(w) on n = 10,000 nodes and power-
law degree distribution using the set of weights prescribed by (2.9)
with v = 2.5, 6§ = 1, and A = /n = 100. (We experimented with
this model in Section 2.5.) For each centrality measure (degree,
PageRank, authority, hub, between, closeness) compute f(k), the
average centrality measure over all nodes of degree k. Plot f(k)
as a function of k. Is there any visible correlation between a given
centrality measure and the degree of a node?

3. The original airport dataset (464 nodes, 12,000 directed weighted
edges) is not strongly connected but it is almost weakly connected.
There are two weak components: the giant one consisting of all but
two airports, and the small one with two airports that only link to
each other. Remove the two nodes to make the graph weakly con-
nected. For each centrality measure (degree, PageRank, authority,
hub, between, harmonic) perform the following experiment: sort all
nodes with respect to a given centrality measure. How many nodes
with the largest score do we need to remove so that the graph is no

Recommended Supplementary Reading 97

longer weakly connected? Compare this with the number of nodes
with the smallest score that need to be removed.

4. Generate a family of binomial random graphs G(n,p) with n €
{1250, 2500, 5000, 10000, 20000} and with expected degree pn from
the set {1, 2,4, 8,16}. In order to make these graphs connected, form
a giant component by removing small components. For each central-
ity measure (degree, PageRank, authority, hub, between, harmonic)
estimate the time required to compute it. What can you say about
the scalability of the algorithms under the implementation you have
used? Try to estimate the complexity of the algorithms used.

5. From the airport graph, generate a state-to-state graph by collaps-
ing every node in a state to a single node, adding the edge weights
and removing loops (edges between airports in the same state). In
igraph, the function contract_vertices() can be used to do this.
Let G be this new graph with 51 nodes (the 50 states plus DC).

(a) Is G weakly connected? Strongly connected?

(b) Which state has the most incoming passengers? The most de-
parting passengers?

(¢) Which pair of two states, x and y, have the most passengers
travelling from z to y (directed weight)?

(d) Recreate Table 3.5 for graph G. Which states have the highest
degree centrality? Betweenness centrality?

6. Compute the harmonic centrality and the eccentricity centrality
for the CA subgraph with options mode=’in’ and mode=’out’ in
igraph (which, respectively, consider only incoming and outgoing
paths), and compare with the default setting. What do you notice?

3.10 Recommended Supplementary Reading

There is a vast literature on centrality measures in networks. For a compre-
hensive overview we refer the reader to the following book and the survey:

e A.N. Langville, C.D. Meyer. Google’s PageRank and beyond: The science of
search engine rankings. Princeton University Press, 2011.

e P. Boldi, S. Vigna. Azioms for centrality. Internet Mathematics 10 (2014),
222-262.

98 Centrality Measures
Here is a list of papers on specific measures:

e P. Bonacich, P. Lloyd. Figenvector-like measures of centrality for asymmetric
relations. Soc. Networks 23 (2001), 191-201. (Eigenvector Centrality and
Katz Centrality)

e S. Brin and L. Page. The anatomy of a large-scale hypertextual Web search
engine. Comput. Networks ISDN Systems 30(1-7) (1998), 107-117. (PageR-
ank Centrality)

e J.M. Kleinberg. Authoritative sources in a hyperlinked environment. J. ACM
46 (1999), 604-632. (HITS)

e L. Freeman. Centrality in social networks: conceptual clarification. Soc. Net-
works 1 (1979), 215-239. (Closeness Centrality)

e M. Marchiori, V. Latora. Harmony in the small-world. Physica A: Statis-
tical Mechanics and its Applications 285.3-4 (2000), 539-546. (Harmonic
Centrality)

e F. Buckley, F. Harary. Distance in graphs (Vol. 2). Addison-Wesley (1990).
(Eccentricity Centrality)

e L. Freeman. A set of measures of centrality based on betweenness. Sociometry
(1977). (Betweenness Centrality)

e V. Latora, M. Marchiori. A measure of centrality based on network efficiency.
New J. Phys. 9 (2007), 188. (Delta Centrality)

e S.B. Seidman. Network structure and minimum degree, Social Networks, 5
(1983), 269-287. (k-cores)

o M.G. Everett, S.P. Borgatti. The centrality of groups and classes. J. Math.
Sociol. 23 (1999), 181-201. (Group Centrality)

e S. Wasserman, K. Faust. Social Network Analysis: Methods and Applica-
tions. Vol. 8. Cambridge University Press, 1994. (Graph Centralization)

Below is a textbook on mathematical statistics that discusses, in particular,
different correlation measures in data:

o D. Wackerly, W. Mendenhall, R. Scheaffer. Mathematical Statistics with Ap-
plications, 7th Edition, Thomson Brooks/Cole, 2008.

4

Degree Correlations

4.1 Introduction

Consider a scientific collaboration network in which nodes are, say, mathe-
maticians and edges are co-authorships. In other words, a mathematician v
is adjacent to mathematician u in this graph if they published at least one
research paper together. It is an undirected, scale-free network with a degree
distribution following a power-law with an exponential cutoff. Most mathe-
maticians are sparsely connected, while a few of them are highly connected.
This network has an interesting property that we aim to investigate in this
chapter, namely, hubs tend to be adjacent to other hubs and low-degree nodes
tend to interact with another low-degree nodes. It is perhaps not too surpris-
ing. After all, it is more likely that two Fields medalists or Abel Prize winners
would find a project of common interest rather than them collaborating with
a first-year Ph.D. student entering the world of mathematics. This is not to
say that it is impossible. Indeed, the mathematical community seems to be
quite open with the famous example of Paul Erdés who used to work with
everyone who had “their brain open.” However, on average, there are fewer
interactions of such type between members of this community.

On the other hand, the web graph, a network in which nodes correspond
to web pages and directed edges correspond to hyperlinks between them, ex-
hibits the opposite property. In this network, high-degree nodes tend to be
adjacent to low-degree nodes. Readers that are interested in a more in-depth
discussion of the Internet topology are directed to Pastor-Satorras, Vazquez,
and Vespignani (2001). Similar behaviour can be found in the protein inter-
action network of yeast. This time, each node corresponds to a protein and
two proteins are linked if there is experimental evidence that they can bind
to each other in the cell.

This chapter is structured as follows. We first give an intuition behind two
possible types of correlations one might expect in networks: assortativity and
disassortativity (Section 4.2). Then, we provide formal tools to distinguish the
two (Section 4.3). The following two sections discuss some natural ways for
correlations to appear (Section 4.4) and ways to generalize these concepts to
directed graphs (Section 4.5). Geometric graphs naturally create degree cor-
relations; we illustrate this phenomenon by looking at spatial random graphs

99

100 Degree Correlations

(Section 4.6). Next, we discuss some important practical implications of as-
sortativity (Section 4.7). As usual, we finish the chapter with experiments
(Section 4.8) and provide some tips for practitioners (Section 4.9).

4.2 Assortativity and Disassortativity

For simplicity, let us assume that G = (V, E) is any unweighted graph on n
nodes. We will explain how to deal with directed graphs later on, in Section 4.5.
However, it seems that there is no natural generalization of these concepts to
weighted graphs. Recall that the degree distribution d; of a graph is defined
to be the fraction of nodes with degree ¢, that is, d; = ny/n, where ny is the
number of nodes of degree ¢ (see Section 1.8 for more details).

The goal of this section is to introduce the notation and basic definitions
that will be used to describe the properties of correlated graphs. The most
general way to do that is to randomly select one edge and then investigate
the properties of the two associated endpoints. That leads us to the following
definitions.

Let G = (V, E) be any unweighted graph on n nodes and m > 1 edges,
and let ¢1,05 € N. Let e € E be an edge selected uniformly at random
from E. Then, a fair coin is tossed to identify the first end of e, node wu;
the other end is node v.

® ¢y, is the probability that u has degree ¢;.

e p(¢1,¥¢5) is the joint probability that u has degree ¢; and v has degree
L.

e Assuming that gy, # 0 (which is equivalent to dg, # 0), p(¢2]¢1) is the
conditional probability that v has degree {5, given that v has degree
ly.

Let us first note that in some references ¢s, and, consequently all other
variables, are defined in terms of the remaining degree of a given node, that
is, its degree minus one (the degree after removing the edge that was used to
get to node of degree £1).

Let us also note that the conditional probability p(¢2|¢1) is well defined only
if nodes of degree ¢; are present in the graph, that is, when d,, # 0. Hence,
every time we use p(¢2|¢1) and we do not explicitly mention this assumption,
it is implicitly assumed anyway. However, for convenience let us define D =
{¢ € N:dy > 0}, that is, D is the set of all positive node degrees in G. Clearly,

Assortativity and Disassortativity 101

maxD = A, where A is the maximum degree of a graph G. Note also that

0, = £1~ng1 :El-nel :€1~n41/n:€1~dg1
Y Y ep o 2m 2m/n (k)
where (k) = 2m/n is the average degree in G. Indeed, there are ¢; - ng,

“half-edges” associated with nodes of degree ¢; and 2m “half-edges” in total.
Moreover, both joint and conditional probabilities completely characterize the
way degrees are correlated. Indeed, we will show that the two probabilities
contain the same information but there are some important differences. For
example, note that p(¢1,#3) is symmetric whereas p(¢2|¢1) does not have to
be. Using the following formula from probability theory

P(ANB)
P(AIB) = Z5

we immediately get that for ¢; € D

ly,0

efer) = M)

qe,

or, alternatively, that
p(l1, 62) = qe, - p(Lallr). (4.1)

Because of this relationship, we may restrict ourselves to one of them. We will
mostly concentrate on the degree correlation matrix

P = (p(€17f2))£1,£2€[ﬁ]

consisting of joint probabilities. Note that matrix P is an A x A matrix, where
A is the maximum degree. In simple graphs, trivially A < n—1 but very often
it is much smaller than that.

Let us highlight some basic properties of this matrix. Observe first that
p(l1,l2) = p(Ls, £1) and ZeleD,beD p(l1,le) = 1. If £ # {5, then 2m-p(£y, £2)
is the number of edges (recall that the graph is undirected) between nodes of
degree /1 and nodes of degree £5. On the other hand, the interpretation of the
entries on the diagonal of matrix P is slightly different since the number of
edges between nodes that both have degree £ is m - p(¢,).

Using (4.1) we get that for ¢; € D

Y pllla) =qe - Y pllally) = a,-

lo€[A] lo€[A]

If ¢1 ¢ D, then clearly Zezem]p(&,ég) = q¢, = 0. Hence, ¢, is the marginal
probability associated with the joint probability p(¢1,¢2). The last property
we want to mention is known as the detailed balance condition:

p(ly,£2) p(ly, L)

Uy -p(lally) - doy = bi——"—dy, =1y

qe, 0 de SR de, = p(ly, 4s) - (k),

102 Degree Correlations

which implies that
61 '}?(fg'él) . d@l = fz 'p(€1|52) . dzz. (42)

This equality has a natural interpretation. After multiplying both sides by n,
the left-hand side counts the number of edges from nodes of degree £1 to nodes
of degree {5 (we may think of these edges as being oriented). The right-hand
side does the same but counts these edges the other way (the edges change
their orientations).

Now, we are ready to give a formal definition of correlated and uncorrelated
networks.

Let G = (V, E) be any unweighted graph on n nodes and m > 1 edges. We
say that G is uncorrelated (or has no degree-degree correlation) if the
conditional probability p(¢2|¢1) does not depend on ¢; € D. Otherwise,
we say that G is correlated.

In order to find an explicit formula for the conditional probability in the
case of uncorrelated graphs, let us fix ¢; € D and use (4.1) to observe that

=" p(t;|6:) = ptilt;) - i, /e,

L;€D L;€D

so as p(¢;]¢;) is assumed to be constant (independent of j) in an uncorrelated
graph we get:

1=p(til6;) Y ae, /0.

L;€D

A final note is that }_, cpqy; = 1 and thus p((;]¢;) = g¢,. Combining this
with (4.1) we get the following simple but important observation. It enables
us to benchmark graphs and recognize positive and negative correlations. For
that reason we will use p as a benchmark for uncorrelated probabilities whereas
we keep p for a specific graph to test.

If G is an uncorrelated graph, then the conditional and joint proba-
bilities reduce to the following expressions:

p(laltr) = qu, and Pl1,02) = qe, - qu,-

Now, we are ready to define three types of degree-degree correlations (New-
man, 2002). The definition below is not precise but, hopefully, it provides a
good intuition behind these concepts. In the next section, we will provide
much better tools to distinguish these types of degree-degree correlations.

Measures of Degree Correlations 103

A network is neutral if it looks like one would wire edges at random,
regardless of what degrees the corresponding end nodes have. For such graphs,
p(l1,02) =~ p(l1,02) = qe, - qu, for most values of ¢1,¢5 € D. In assortative
graphs, hubs tend to be adjacent to each other and avoid linking to small
degree nodes. On the other hand, in such graphs, small degree nodes tend to
be connected to other small degree nodes. Finally, if hubs tend to be adjacent
to small degree nodes, then such disassortative networks will exhibit a “hub-
and-spoke” character.

4.3 Measures of Degree Correlations

As pointed out in the previous section, the degree correlation matrix contains
complete information about the degree correlations present in a given graph.
Unfortunately, it is difficult to interpret it as the entries p(¢1, £2) in the matrix
are typically small and for empirical graphs often do not change monotonically
as one changes ¢1 or {5. Still, they typically exhibit some clear trend in the
way they change. As a result, it is much easier to understand the correlations
by looking at the average degree of the neighbours of all nodes of degree ¢, a
function that is much more stable and thus easier to interpret. This leads us
to the following definition.

Let G = (V, E) be any unweighted graph on n nodes and m > 1 edges,
and let ¢ € D (that is, d¢ # 0). The degree correlation function is

defined as follows:
knn(0) = > £ p(l|0),
Ue[A]

where p(¢'|¢) is the conditional probability that a node of degree £ has a
neighbour of degree ¢'.

Before we try to use the degree correlation function to distinguish assor-
tative networks from disassortative ones, let us understand its behaviour for
neutral networks. This understanding will be useful for benchmarking corre-
lated graphs. Since for uncorrelated graphs p(¢'|€) = p(¢'|€) = qu, we get that
for such graphs, the degree correlation function is equal to

Run(0) = 30 p(10) = lae =Y ﬂ’<',;§” “0))

)
L'eD L'eD L'eD <k>

where (k) and (k?) are the average degree and, respectively, the second mo-
ment. As a result, the degree correlation function does not depend on ¢ but
only on the global properties of the graph. Hence, for neutral networks one

104 Degree Correlations

expects k,,(£) to be close to a constant function, namely, to the constant
(k) / (k).

For instance, let us consider the binomial random graph G(n, p). Clearly, it
is designed to produce an uncorrelated network as p(¢2|¢1) should not depend
on {1 since edges between pairs of nodes are always independently generated
with probability p, and regardless of the degrees of their endpoints. Using
this observation, note that the degree of a given node is the binomial random
variable X € Bin(n —1,p). Hence, (k) ~ E[X] = (n—1)p and (k%) ~ E[X?] =
Var[X]+E[X]? = (n—1)p(1—p)+((n—1)p)? = (n—1)p(1+(n—2)p). Therefore,
we get that knn () = knn () = (k2)/(k) ~ 14 (n — 2)p. The obtained formula
has an intuitive explanation. Take any node v, expose edges adjacent to v,
and suppose that its degree is equal to £ > 1. Let us concentrate on a random
neighbour of v, node u. Node u has v as one of its neighbours and the expected
number of its other neighbours is (n — 2)p.

Note that in the above derivation, we have used an approximation in a
few places. Indeed, after we take a sample of G(n,p) we do not expect it to
be exactly uncorrelated but only approximately, due to the randomness in
the graph generation process. However, a sample of G(n,p) is asymptotically
almost surely uncorrelated.

Equation (4.3) reveals a peculiar property of real networks known as the
friendship paradox first observed by the sociologist Scott L. Feld (Feld,
1981). He noticed that most people have fewer friends than their friends have,
on average. The friendship paradox is an example of how network structure
can significantly distort a local observation from an individual node’s point
of view. This observation follows immediately from (4.3) which says that for
uncorrelated networks the degree correlation function is not equal to (k) as
one might guess but rather equal to (k2)/(k). Since (k?) = (k)2 + o2, where
o2 is the variance of the degrees in the graph, we get that

R <k2> 02

knn(f) = — = (k) + —
but it can significantly exceed this trivial lower bound for graphs with nodes
of varying degrees (as is typical for many real-world networks). Indeed, for
example, for graphs with power-law degree distribution with exponent v and
minimum degree ¢,

> (k)

k? —2 —2)?

(k) =2, (-2 ",

(k) y=3 (y=3)(r—-1)
provided v > 3 (see equations (2.5) and (2.6) in Section 2) and can be sub-
stantially larger than (k) if 7y is close to 3. Moreover, if v < 3, then (k?) grows
with the order of the graph and so the difference is even more pronounced.

In assortative networks, high-degree nodes tend to link to other high-degree
nodes and low-degree nodes are more often adjacent to low-degree nodes.

Measures of Degree Correlations 105

As a result, for such networks, k., (¢) increases with ¢. On the other hand,
in disassortative networks hubs prefer to connect to low-degree nodes and
vice versa implying that k., (¢) decreases as a function of £. There are a few
standard ways to proceed from there depending on the assumption on the
degree function ky,p ().

The first approach assumes that it depends linearly on ¢ and so the Pear-
son correlation coefficient r € [—1, 1] between the degrees of a given edge’s
endpoints can be used to distinguish between types of correlations. Let (X,Y")
be a random variable defined as follows. As it was done in the definition of
p(l1,42) and p(ls)l1), let e € E be an edge selected uniformly at random
from E. Then, a fair coin is tossed to identify the first end of e, node wu;
the other end is node v. Random variables X and Y represent the degrees
of node u and, respectively, node v. Then, the degree correlation coefficient
r is simply the Pearson correlation coefficient for this pair of random
variables—see (1.2). It follows that

Cov|[X, Y] E[XY] — E[X] E[Y]

TP T NalX] Varly] | /Var[X) Var[Y]

In particular,

1 1 1
E[XY] = p- Z (2 - deg(u) - deg(v) + 3 - deg(v) ~deg(u))
e=uvelE
1
= - Z deg(u) - deg(v) = Z l1ls p(l1,4s).
e=uveE £1,02€[A]

On the other hand, by symmetry, the means and the variances of X and Y
are equal. After a similar computation as above, we get the following useful
and convenient formula:

Let G = (V, E) be any unweighted graph on n nodes and m > 1 edges.
The degree correlation coefficient is defined as follows:

r= >, eaela) frte p(by, bo) — (Zee[A] €qe)2
<ZZE[A] £2qe) - (Zee[A] qu)Q

If » > 0, then the network is assortative.
If » = 0, then the network is neutral.
If » < 0, then the network is disassortative.

106 Degree Correlations

After a simple transformation, we get yet another formula for r that is
known in the literature:

2o neia)fale (p(ﬁl, ly) — qgl%))
"o 2
(ZZG[A] fQQE) - (ZZG[A] ZQZ)

However, note that despite the fact that it looks nicer, it is slightly more
computationally involved.

The second approach assumes that k., (¢) is well approximated as follows:
knn(€) = al* for some constant @ € Ry and p € R. This leads us to the next
definition.

Let G = (V, E) be any unweighted graph on n nodes and m > 1 edges.
The correlation exponent is defined as follows:

Cov (log(L), log(knn (L)))
Var(log(L)) ’

‘LL:

where L is a random variable uniformly distributed over the set D.
If > 0, then the network is assortative.

If p = 0, then the network is neutral.

If p < 0, then the network is disassortative.

In this formulation p is a coefficient of regression in the model
log(knn(€)) = log(a) + plog(f), estimated using the ordinary least squares
method. Of course, alternative models could be used instead and they should
lead to very similar estimates of u.

The third approach we would like to mention tries to quantify the tendency
for high-degree nodes to link together and so to capture the so-called rich-
club behaviour of a network (Colizza et al., 2006). In order to do it, one can
first compute the number of edges in the graph G, = (V>¢, E>/) induced by
the set of nodes of degree at least ¢, that is,

G(l) = |Esel =m > > plty,),

>l x>0
where
Voo = {veVi:idegv) >} CV
Esy = {e=wekFE :uveVs} CE.

In order to benchmark it, we need to compare it with the same quantity
evaluated for an uncorrelated graph with the same degree distribution, that

Structural Cut-offs 107

is, with

927(5) = mZZ 51,42 mZqulqzz

41>z >t 000>
= e E E (Crde,) (€adp,).
000>

After combining the two equations, we get the following definition.

Let G = (V, E) be any unweighted graph on n nodes and m > 1 edges.
The normalized rich-club coefficient is defined as follows:

_ o) _ e Ytr>e 20,50 P01, 42)
p(g) N (5(6) - <k> 26126 Zézzg(gldel)(Ede) ’

Values larger than 1 for large values of ¢ and increasing with ¢ indicate
the presence of a rich-club in a network.

Note that p(1) =1 as both ¢(1) and ¢(1) are equal to |E|. As we already
mentioned, if p(¢) > 1 for large values of ¢, then there is an evidence for
a rich-club in the network. However, it is also possible that p(¢) < 1 which
indicates anti rich-club behaviour, that is, large degree nodes tend to avoid
other large degree nodes. Finally, let us mention that the degree correlation
function k,,,, (¢) quantifies local properties of the nodes of degree ¢ whereas the
rich-club coefficient p(¢) is a global property of the subgraph induced by large
degree nodes. As a result, p(¢) and k,,(¢) are not correlated in any trivial
way; they simply measure different things.

4.4 Structural Cut-offs

In order to decide whether the degree-degree correlation in a given graph is
assortative or disassortative, we used the concept of uncorrelated graphs. But
is it a fair comparison? This is the main question we would like to address in
this section.

First of all, let us note that for a given degree correlation matrix P =
(p(£1,£2))¢, 1,€a] Obtained for some empirical graph G' with maximum degree
A, it is possible to construct a graph G that exactly follows the probability
distribution specified by P = (p(€1,€2))e, 0,e[a], the counterpart of P for an
uncorrelated network. In order to see this, note that ¢, = £ ng/(2m) is rational
and so P has all rational entries; to construct G one may, for example, take a
union of an appropriately designed family of complete bipartite graphs K; ;.

108 Degree Correlations

However, this potentially might require introducing a graph that is much larger
than the one that we plan to benchmark. Hence, it might be considered as
comparing apples and oranges. It would be natural to ensure that there exists
an uncorrelated graph on the same number of nodes as the original graph
G with the same degree distribution d; as G. In some sense, our benchmark
graph should be uncorrelated but still somehow similar to G. As we will see
in this section, if we impose this natural restriction on our benchmark graph,
then it will not always be possible.

Let us start by noting that if ¢; # {5, then there are 2m - p(¢1, ¢3) edges
between nodes of degree ¢1 and nodes of degree 5. Similarly, there are m-p(¢, £)
edges between nodes of degree ¢. This means that in an uncorrelated graph,
we should expect 2m - p(¢1, f2) edges between nodes of degree ¢; and nodes of
degree 05 if {1 # £, and m - p(¢,) edges between nodes of degree ¢. However,
there is a trivial upper bound on the number of edges we can possibly have,
since our graph is required to be simple. If ¢; # {5, then we may have up to
ne,ne, = n?dy,dg, edges, as this corresponds to the number of pairs of nodes
of this type. On the other hand, the number of edges between nodes of the
same degree is upper bounded by ("24) = n%dy(dy — 1/n)/2. Combining the
two observations together, we get that if one takes two random nodes, one of
degree ¢1 and another of degree ¢5 ({2 could possibly be equal to ¢1), then the
expected number of edges between them is equal to

2mp(41, lo) L 2mp(l, b)) (k) p(la, f2)

n2d51 (d@z — 5@1252/n) - ’ndeleQ - 7”Ld41dz2

In the formula above, d4 is the Kronecker delta: 4 = 1 if A holds and
04 = 0 otherwise. But what if the above expectation is larger than one? Since
we deal with simple graphs, this is clearly not possible. As a result, comparing
graph G to an “imaginary” uncorrelated graph that cannot exist (under the
assumption of a given degree distribution dy and the order of the graph n) is
not a fair comparison and should not be used. In such cases, nodes of high
degree are “forced” to be adjacent to low degree nodes purely because of the
degree distribution of the graph.

A natural question then is whether this problem can occur in practice or
whether it is only a theoretical and hypothetical situation that practitioners
should not worry about. We immediately see that the star K; ,,—; on n nodes
creates a problem: the center node is forced to be connected to all the leaves.
Additionally, let us investigate some asymptotic behaviour of one of the ran-
dom graph models to better understand when we might have a problem. Since
the networks that we usually deal with are large, while this should help us
build some intuition, it should not be used as a decision criterion. Suppose
that v and w are both of degree £ = o(n) and there are m = (n) edges present
in the graph. Using the configuration model (see Section 2.7), the expected

Structural Cut-offs 109

number of edges between v and u is equal to

14

(- 0(1 2P
3 L & _

—~2m-2i+1 2m (k)n

Hence, nodes of degree £ that are above the structural cut-off threshold
ks =/ (k)n

are expected to cause a problem (Bogund, Pastor-Satorras, and Vespignani,
2004). For example, it is quite common in practice for a graph to follow the
power-law degree distribution (see Section 2.4 for a definition) with exponent
v € (2,3), minimum degree 6 = O(1), and average degree (k) = ©(1). In such
graphs, the maximum degree A (the natural cut-off computed in (2.7)) is equal
to on'/(*=1) and so is much larger than the structural cut-off ks introduced
above. Of course, as mentioned above, these are only asymptotic observations
and one should not only look at the maximum degree to decide whether or
not it is justified to use k. (¢) as a benchmark. We will explain how to do so
next.

In order to generate a simple random graph following the prescribed degree
distribution (dy)een, a theoretically sound approach would be to generate a
graph (possibly not simple) using the configuration model (see Section 2.7)
and condition it on being simple. However, this requirement is often difficult
to satisfy in practice and so a natural algorithm using resampling is very slow
and thus not feasible. There are several approaches that are fast enough from
a practical point of view while generating a reasonable bias. More details can
be found in Section 2.7.

Another common approach is to start with the original graph G that we
want to investigate and apply a degree-preserving random process known in
the literature as switching or rewiring (Wolmard, 1999). We already dis-
cussed it in the context of removing parallel edges and loops in the configura-
tion model (see Section 2.7). In each step of this process, we select two edges
uniformly at random, ujus and vyve. If after removing these edges we do not
create any parallel edges by adding ujv; and usvs, then we accept that switch;
otherwise, we ignore it. Note that this operation does not change the degree
distribution of the graph. We repeat this step until all edges are switched at
least once. Let us note that this algorithm is expected to run for ©(mlnm)
steps before it finishes, and it still does not guarantee complete independence
(that is, the final outcome of this random process solely depends on the initial
graph G we started with). Therefore, in practice, it is common to stop the
process prematurely and only perform ¢m edge switches for some constant c;
the larger the value of ¢, the closer the graph is to the uniform distribution.

Let k,,(¢) be the randomized degree correlation function that is
computed for the graph obtained at the end of the process mentioned above.
If the original function k,,, () and its randomized counterpart k., (¢) are indis-
tinguishable, then correlations in G are all structural, completely explainable

110 Degree Correlations

by the degree distribution. In other words, G could be considered an uncorre-
lated graph. On the other hand, if k,,(¢) does not have a visible correlation
with ¢ while k,,,,(¢) does, then we can safely apply our previous techniques
(use the degree correlation coefficient and/or the correlation exponent) as
there seems to be some underlying process that makes the degrees correlated.
Finally, it is also possible that k,,,(¢) does not exhibit correlation while &y, (£)
does, which indicates that the process generating G exhibits some level of as-
sortativity or disassorativity despite the fact that k,,(¢) suggests otherwise.
Hence, in short, one should always investigate kny,(£) — knn(f) as a function
of ¢ before drawing any conclusions.

Let us mention that to cross-validate the experiment and check the code,
it is quite common to perform another independent switching algorithm in
which rewiring steps are always accepted regardless of whether the resulting
graph is simple or not. As a result, the resulting graph should have all degree
correlations removed, causing the corresponding degree correlation function
to be very close to l%nn(f) This approach can serve as an empirical test of
whether performing ¢m edge swaps is enough to ensure that the final graph
does not strongly depend on G, and adjust constant c if needed.

4.5 Correlations in Directed Graphs

So far we were concerned with undirected graphs but it is straightforward to
generalize our tools and observations to directed ones. Let D = (V, E) be any
unweighted directed graph on n nodes and m > 1 directed edges. In order
to generalize the degree correlation matrix P = (p(£17€2))€17Z2E[A]7 we may
proceed as in the undirected case, namely, we may select one directed edge
uv € E from u to v and investigate its end nodes. However, since each node in
a directed graph has an in- and an out-degree, we now have four possibilities
to consider. For example, p°“* ({1, ¢5) is the joint probability that u has
out-degree ¢; and v has in-degree ¢5. The other three variants are defined
similarly and so, for simplicity, we concentrate only on this variant. Note that
the degree correlation matrix is symmetric for undirected graphs whereas for
directed graphs it can be asymmetric.

The conditional probability p°“&(f5|¢1) is the probability that v has in-
degree f5, given that u has out-degree ¢;. As for undirected graphs, D is
said to be uncorrelated if p“t"(f;]¢1) does not depend on ¢;. Continuing
this analogy, we define the degree correlation function k2““"(f) to be the
average in-degree of the out-neighbours of nodes with out-degree £. The degree
correlation coefficient and the correlation exponent are then defined the same
way as before. For a rich-club coefficient, we may concentrate on the graph
induced by the set of nodes of large in-degree, large out-degree, or large total
degree.

Random Geometric Graphs 111

In summary, in order to completely characterize degree correlations
in a directed graph, one needs to consider the four degree functions
(kinvin(g), gin-out (g goutsin(p) fout.out(g)) Tt might happen that some of them
exhibit assortative behaviour whereas others exhibit disassortative behaviour.
We will see one such example in the next section. Hence, the analysis for these

graphs is more challenging than the analysis of undirected graphs.

4.6 Random Geometric Graphs

As mentioned in Section 2.8, random geometric graphs are especially well
suited to model complex networks. Indeed, many complex networks have nodes
that are naturally embedded in some geometric space, and nodes that are close
to each other in that space are more likely to have an edge between them. This,
in particular, explains why many real-world networks contain a large number
of triangles which implies that the clustering coefficients (see Section 1.11) of
these networks are relatively large. Indeed, the neighbours of the neighbours
of a node v are expected to be close in the underlying geometric space to v,
and so are likely to be also neighbours of v. In this section, we will show that
random geometric graphs naturally create assortative networks which explains
why many complex networks exhibit such correlations.

Let us start with the classical random geometric graph RGG(n,r) on the
2-dimensional unit torus we introduced in Section 2.8. Recall that each node
v in RGG(n,r) has the expected degree equal to 7r%(n — 1). In dense graphs,
deg(v) is well concentrated around its expectation, but this is not the case for
sparse graphs. In sparse graphs, nodes of large degree are those that land in a
densely populated region of the geometric space. Most of their neighbours are
relatively close and so are also part of a densely populated region. As a result,
they have large degrees as well. On the other hand, nodes that land in a sparse
region have small degrees and have neighbours that are of small degrees too.
This property naturally creates correlated networks. We confirm this intuition
by computing the degree correlation coefficient r of RGG(n,r) for various
average degrees—see Figure 4.1. As discussed above, as the average degree
increases, the ratio A/§ between the maximum and the minimum degrees
converges to one, and the degree correlation becomes weaker and weaker since
the graph becomes close to being regular. We make the same conclusion by
looking at the degree correlation function k., (¢) of one of the sparse graphs,
namely, RGG(1000,0.1) (Figure 4.2) and one of the dense graphs, namely,
RGG(1000,0.5) (Figure 4.3). Finally, for comparison purposes, in all of these
figures, we show the corresponding values (including En (¢) shown with dashed
lines) for binomial random graphs G(n,p) with comparable average degrees to
show that the G(n, p) model produces uncorrelated networks, as expected.

112 Degree Correlations

—— RGG
Uniform

assortativity
o o o o o
o & Y & PY

o
.

o
IS)

T T T T T T
300 400 500 600 700 800

average degree

T T T
0 100 200

FIGURE 4.1

Comparing the assortativity of the random geometric graph RGG(n,r) and
the binomial random graph G(n,p). All graphs have n = 1,000 nodes. The
various RGG(n,r) are generated with values of r from 0.025 to 0.5, and for
each such graph, we generated G(n,p) with the same number of edges.

RGG with radius 0.1 Uniform RG with same average degree

36

e’ oo 3301 o
34 o®
. 325 °
. . . .o o o . o
32 gttt .
@ [. 0.9 . 0.0 ...
. o 32.0 o g N PP
= . . .
g 30 ° .
~ 31.5 A .
28 o
J ° o
o® 31.0 .
o*
%67 o 30.5
. .
20 25 30 35 40 20 30 40 50
degree (£) degree (£)
FIGURE 4.2

Comparing the degree correlation function of sparse random geometric graph
RGG(1000,0.1) and binomial random graph G(n,p) with the same number of
edges. The average degree is 31.1.

The degree distribution in many real-world networks follows a power-law
with a parameter v which usually belongs to the interval (2,3), as we al-
ready mentioned in Section 4.4. Unfortunately, the random geometric graph
RGG(n,r) does not have this property. In order to fix it and have the desired
degree distribution, the Spatial Preferential Attachment (SPA) combines
preferential attachment with geometry by introducing “spheres of influence”

Random Geometric Graphs 113

RGG with radius 0.5 Uniform RG with same average degree
. 78449 o .
784.5 4 °
° ® ° °
e © o od o °® 784.2 4 P o
78409 .“..ﬂ........... 0% . 'y
o 00 8T o0 26 4o . 0‘0“' Y F4
® o0
S 78354 ° o 784.0 4 Q“‘%- v....:'
I e, L
783.0 4 783.8 1 0.
°]
.
782.5 4
° 783.6
78201 @ e
760 770 780 790 800 810 820 740 760 780 800 820
degree (£) degree (£)

FIGURE 4.3

Comparing the degree correlation function of dense random geometric graph
RGG(1000,0.5) and binomial random graph G(n, p) with the same number of
edges. The average degree is 783.8.

around nodes whose volumes grow with the degrees of nodes (Aiello et al.,
2009).

There are three parameters of the model on top of n, the number of nodes:
the link probability p € [0, 1] and two constants A, Ay such that 0 < A; <
1/p, As > 0, that control the degree distribution as well as the average degree.
Hence, we will refer to the SPA model as SPA(n,p, A1, Az). As in the case of
RGG(n,r), nodes of SPA(n,p, A1, As) are placed in the metric space [0, 1]°
equipped with the torus metric derived from any of the Ly norms. The SPA
model generates a sequences random directed graphs {G;};>1, where G; =
(Vi, Ey), Vi C [0,1]°. Let deg™ (v, t) be the in-degree of the node v in Gy, and
deg™ (v,t) its out-degree. Then, the sphere of influence S(v,t) of node v at
time t > 1 is the ball centered at v with the following volume:

Aqdeg™ (v,t) + As 1}
t)

1S(v,1)] = min{

In order to construct a sequence of graphs we start at ¢ = 0 with Gy being
the null graph (that is, Vo = Ey = 0). At each time step ¢ > 1, we construct
G from Gi_; by, first, choosing a new node v; uniformly at random from
[0,1]° and adding it to V;_; to create V;. Then, independently, for each node
u € Vz_1 such that vy € S(u,t—1), a directed link (vs, u) is created with prob-
ability p. An instance of SP.A(3000,2/3,1,3) (with Ly norm in 2-dimensions)
is depicted in Figure 4.4 (we do not present edges that “wrap around” the
borders for a nicer visualization).

To motivate the SPA model, consider the citation network in which nodes
correspond to research papers and directed edges correspond to citations be-
tween them. Papers are written on specific topics and so are naturally rep-
resented as vectors in some d-dimensional space. Some papers are influential,

114 Degree Correlations

g0
S

o“
%0 0%
o o S

ok

I R
305

< [oo

FIGURE 4.4

The SPA graph with n = 3,000 nodes, generated with parameters p = 2/3,
A; =1, and Ay = 3. Average out- degree (and so also in- degree) is 5.61 (the
expected asymptotic value is 6). The in-degrees follow a power-law distribution
with exponent 2.39 (the expected asymptotic value is 2.5).

highly cited, and well-known even outside of their own fields; these papers
have large “spheres of influence”. On the other hand, other papers are more
specialized, cited only a few times, and known only in their own fields; these
papers have small “spheres of influence”. Authors writing new papers are often
aware of influential papers from outside of their fields but only of specialized
ones from their own field. Clearly, they can only cite papers that they are
aware of but they do it with some probability.

The asymptotic behaviour of the SPA model was investigated. Let us men-
tion a few known properties of the model. This model is known to produce
power law in-degree distribution with coefficient 1 4+ 1/(pA;). On the other
hand, the average out-degree is asymptotic to pAs/(1 —pA;). It is also known
that the local clustering coefficient averaged over the nodes of in-degree d,
C(d), decreases as a function of d. This is another well-known property that
many real-world complex networks have (see Section 1.11). Finally, let us men-
tion that in the original model the distribution of nodes in [0,1]® is assumed
to be uniform but non-uniform distributions were also investigated, which is
clearly a more realistic setting.

Let us now investigate the degree correlations in the SPA model. Since
the model produces directed graphs, we have four degree correlation func-
tions to investigate; see Section 4.5. We present all of them in Figure 4.6.

Implications for Other Graph Parameters 115

For each of the four choices, we can extract the corresponding degree correla-
tion coefficients r and the correlation exponents p. We present all of them for
SP.A(3000,2/3,1,3) in Table 4.5.

TABLE 4.5
The four variants of degree correlation coefficients r and
correlation exponents p for the SPA graph SP.4(3000,2/3,1, 3).

modes correlation coefficient correlation exponent

(in,in) 0.217 0.321
(in,out) -0.104 -0.290
(out,in) -0.031 -0.182
(out,out) 0.388 0.469

We see a clear positive correlation for the (out,out) variant which can be
explained as in the case of RGG(n,r): nodes that land in densely populated
regions have large degrees and their neighbours also have large degrees. We
also see a positive correlation for the (in,in) variant. The reason behind it is
as follows. There is a strong correlation between the age of the nodes and
their in-degrees: the expected in-degree of a node v; at time n is of order
(n/t)PA1. As a result, old nodes have large in-degrees but also their neighbours
are relatively old and so also have large in-degrees. On the other and, young
nodes have small in-degrees and their neighbours, that are even younger, have
small in-degrees too. The other two variants seem to have a mild but negative
correlation.

4.7 Implications for Other Graph Parameters

It is good to know whether or not degree correlation is present in the graph.
But does it have any important and practical implications that we should
be aware of? Let us start the discussion by considering random graphs that
usually provide a good intuition on what could potentially happen in practice.

It is well-known that the giant component emerges in binomial random
graphs G(n,p) when (k) = 1. The same applies to many other random graphs
generating uncorrelated networks. However, it is also known that for some
random graphs generating assortative networks, the phase transition appears
earlier, that is, when (k) = z < 1. We will introduce one such example and do
some experiments shortly. The reason behind it is that hubs tend to connect
to other hubs which creates a “backbone” that attracts other nodes of the
graph. On the other hand, such behaviour is unlikely in disassortative networks
and so they form the giant component much later, namely, when (k) = = >
1. Moreover, these topological differences also affect the order of the giant

116 Degree Correlations

350 e o¢ o ®
. . o 5 * :- [}
300 . S .
. LIV) 4 x— - .
250 e 0 X}
. . o ® o .
s o 0% . S T L
< 200 - % Moo]
~ ® oo [y
[P * 2 Se
150 [3 LA) .
’r\ . b
b/ (] 1 L] L]
100 . . .
° L]
50 ¢! . 0 .
0 50 100 150 200 250 300 350 0 50 100 150 200 250 300 350
(a) in-in (b) in-out

L] L]
100
8 ®
90 L4 7 ® o0
L]
L]
6 L]

80
— L]
= ° ® e e g ©® ° (]
~ . 5 L4

70 L]

L] L]
L] 4 °
60 ® .
e e
. 3 °
L]
50 . .
25 50 75 100 125 150 175 25 50 75 100 125 150 175
degree (£) degree (£)
(c) out-in (d) out-out
FIGURE 4.6

The four variants of the degree correlation function for the SPA graph
SP.A(3000,2/3,1,3).

component.

In order to illustrate this interesting behaviour, let us introduce a simple
random graph model that is capable of generating assortative/disassortative
networks. The Xulvi-Brunet—Sokolov’s algorithm generates networks
with specified degree correlations (Xulvi-Brunet and Sokolov, 2005). This al-
gorithm is a variant of the switching algorithm that we discussed earlier. This
algorithm has one parameter ¢ € [0, 1] and starts with a simple graph G with
the desired degree distribution that can be generated using, for example, the
configuration model (see Section 2.7). Then, the algorithm applies the follow-
ing degree-preserving random process: as before, in each step of the process
two edges, ujus and vyvg, are selected uniformly at random from the pairs
of edges that span four different nodes. This can be done efficiently with a
rejection and resampling strategy. These nodes are then ordered by their de-
grees. In order to generate an assortative network, with probability ¢, the two

Implications for Other Graph Parameters 117

edges are rewired in such a way that one edge connects the two nodes with
the smaller degrees and the other edge connects the two nodes with the larger
degrees; otherwise, the four involved nodes are randomly paired. In order to
generate a disassortative network one needs to make one minor change: as
before, two random edges on four nodes are selected at random but this time,
with probability ¢, we rewire them such that one edge connects the node of
the largest degree with the node with the smallest degree. If the goal is to
generate simple graphs, then we always check if a given switching leads to a
non-simple graph. If it does, then one simply rejects that switch. By iterating
these steps we gradually enhance the network’s assortative or disassortative
behaviour. In our experiments, the switching is applied until every edge has
been successfully rewired at least once but one may stop earlier for a faster,
approximated variant of the algorithm.

Figure 4.7 shows results obtained when the initial graph is the
binominal random graph G(n, p). Indeed, the algorithm produces assortative/
disassortative networks, provided that ¢ # 0. For ¢ = 0, ky, (¢) ~ (k?)/(k) ~
5, as expected from the formula derived in Section 4.3. The phase transition
for these networks is presented in Figure 4.8. In particular, for ¢ = 0 the out-
come of the algorithm is simply G(n, p) and the results are consistent with the
asymptotic and theoretical results discussed in Section 2.3.

These observations can be translated and expressed in the language of
percolation theory which describes the behaviour of a network when nodes or
edges are randomly removed. This theory has many important applications.
For example, suppose that we would like to understand how viruses, news,
beliefs, or gossip spread across the contact network of people. Since the fact
that two individuals interact with each other does not mean that gossip is
exchanged every time they meet, it is natural to consider a random subgraph
of the contact network. People that heard the gossip belong to the connected
component containing the node that initiated the process. Now, depending on
whether the contact network is assortative or disassortative, there might be a
drastic difference between the number of people exposed and the number of
people affected.

118 Degree Correlations
gd — assortative, q=2/3 —--~ disassortative, q=1/3
—— assortative, q=1/3 —-=-=- disassortative, q=2/3
7 -
< 6
K
X
5 -
4 -
3 T T T T T T T T T
1 3 5 7 9 11 13 15 17
degree (£)
FIGURE 4.7

The degree correlation function k,,(¢) for the Xulvi-Burnet—Sokolov’s al-
gorithm applied to G(n,p) on n = 216 nodes with average degree (k) = 4.
The plots show averages over 64 different initial graphs. For large values of
¢ the plots become unstable because of the small number of nodes of large

3.0

degree.
1.0
—— assortative, q=2/3 T
—— assortative, q=1/3 =~ _-z750C0
0.8 === gq=0 .
-—-- disassortative, g=1/3 I;‘(./'"
§ --- disassortative, q=2/3 /-
2 0.6 1
“ /
o
e
o
5 0.4
o
&
0.2 1
0.0 f . T T T
0.0 0.5 1.0 1.5 2.0 2.5
average degree
FIGURE 4.8

Order of the giant component as a function of the expected average degree
for the Xulvi-Burnet—Sokolov’s algorithm applied to G(n,p) on n = 216
nodes. The plots show averages over 64 different initial graphs.

Ezxperiments 119

4.8 Experiments

For the experiments, we revisit the US airport graph that we considered
in the previous chapter. We first look at the degree correlation function.
Since the graph is directed, we consider the four possible variants, namely,
kimin (), kin.out(g) goutsin(g), kout-out(¢) which we show in Figure 4.9. While
not identical, we see that the four plots are very similar, showing a slightly
negative correlation except for the nodes of small degrees. This similarity is
not surprising as in this directed graph the edges very often come in pairs:
when there are flights from A to B, there are very often flights from B to A.

o ®
90 o
80 1 ° ° * . *
,°%° 801 o® g0 " .®
S0 S I B R L
g GBLEMI T S o & 8 ..
< . %%, P s ° 3 %
~ °® o Voo 701 Yo o A L Y
L ° o o . o« S
601 @ o ® o', 0 e
(] e 0 601 ® e
® . ° . . o
so4 ® o .
. 501 o
0 20 40 60 80 100 120 140 160 0 20 40 60 8 100 120 140 160
(a) in-in (b) in-out
%0 - .
o 100
85 .
L] L] L]
80 o0 0 0% 90 .
e et
_ 751 S 0B % . o
) l' °* ®, ; ne. a 801 "".'"""""".c"“r&l'. """"""""""""""""""
S701 e 0.0°00. % 0 "%, e 0N g M
~ o #@% . . ., .) . [Y o9,
S am®, ee ® 701 g0® § o0 o . ".l‘
L]
ol 0® e . % .:ﬁ . 5'3
.) 601 o .
55] . . K . L4
T T .\ T T T T T 504 T T .\ T T T T T
0 25 50 75 100 125 150 175 0 25 50 75 100 125 150 175
degree (f) degree (£)
(c) out-in (d) out-out
FIGURE 4.9

The four variants of the degree correlation function for the US airport directed
graph.

Motivated by this observation, we now consider an undirected, unweighted
version of the airport graph where an edge between two airports is introduced
if there is at least one flight connecting them. In Figure 4.10, we plot the
degree correlation function for this graph, both on a linear and log-log scale.
We note once again the high similarity with the previous plots where edge

120 Degree Correlations

direction was considered. In what follows, we retain this undirected graph for
the analysis.

110 b .
100 Ny ® e 1o "o
] ; Ve -f
) e oo¢b 1 . . [2
o . l.-f'. % l'l.; 9x10 o5 h
S 200088 g n;.‘% 8x 10! . o oo .
X 80 H (] &» ' “ ° . N
e ° e ® e ‘w
., i . * o0 7x10! [o
70 " . ° K4 . b .
60 6x 10!
L] L]
0 25 50 75 100 125 150 175 10° 10! 102
degree (f) degree (£)
(a) linear scale (b) log scale
FIGURE 4.10

The degree correlation function for the undirected version of the US airport
graph. We show two plots using a linear (a) and a log-log (b) scale.

Before we move forward, let us note that in Figure 4.10 it is clear that
the relationship between ¢ and k,, () is non-monotonous and is cap-shaped.
This shows how important it is to visually inspect the data, as just calculating
the degree coefficient r or the correlation exponent p will not reveal this fact.
Still, in the analysis that follows, we use them as they are very convenient if
you are analyzing multiple graphs.

Next, we look at the family of induced subgraphs obtained for all states
with more than 5 nodes. For each subgraph, we compute the degree correlation
coefficient r (often referred to as assortativity) and the correlation exponent
obtained via a simple linear log-log regression model. In Table 4.11, we show
the airports with the most negative or positive assortativity values. Addition-
ally, for the purpose of comparison, we also report the correlation exponents
. In Figure 4.12, we see a strong correlation between p and r. In fact, the
Pearson correlation values between those two sets of measures is 0.965.

Coming back to the family of subgraphs, the first thing we observe is the
presence of airports with extreme assortativity values: AR has r =1 and NE
has r = —1. We plot those small subgraphs in Figure 4.13(a) and (b). Those
examples are clear illustrations of the two extreme cases. The AR graph con-
sists of two cliques, so each node has the same degree as its neighbour. On the
other hand, in the NE graph every node of degree 1 has a neighbour of degree 2,
and nodes of degree 2 have 2 neighbours of degree 1. In Figure 4.13(c) and (d),
we show two more examples with slightly larger graphs. In (c), we merge the
graphs from North and South Dakota; the resulting graph has assortativity
value r = 0.243. We notice the presence of a dense region (interconnected high
degree nodes) and some tendrils with low degree nodes. In (d), we show the

Ezxperiments 121

TABLE 4.11

US states subgraphs obtained from the airport graph, sorted by
assortativity (r). The corresponding correlation exponents (i) are
included for comparison purpose.

state nodes edges T n
NE 6 4 —1.000 —1.000
MN 6 6 —0.833 —0.802
UT 6 6 —0.833 —0.802
A7 7 9 —0.601 —0.612
MO 11 18 —0.547 —0.345
SD 6 7 0.263 0.268
ND 6 6 0.400 0.859
AR 7 9 1.000 1.000

graph for MO which has assortativity value r = —0.547. We see that in this
graph the low degree nodes mostly connect to the large degree hub nodes.

In order to demonstrate the importance of the structural cut-off, in Fig-
ure 4.14(a) we computed assortativity r and the correlation exponent pu
for 1,000 random graphs with the same degree distribution as the Dakota
(ND+SD) graph (no node above the structural cutoff) generated by the con-
figuration model. Results are shown with “violinplots” which nicely mix box-
plots and kernel density estimations. The resulting values are quite different
from the real graph where r = 0.243 and p = 0.383. We conclude that the
correlations present in the real graph are not “forced” by the degree distribu-
tion. However, in Figure 4.14(b) we did the same experiment for the Missouri
(MO) graph, which has high degree nodes above the structural cut-off. We ob-
serve values very similar to the ones for the real graph which are r = —0.547
and g = —0.345. Therefore, in that case, the resulting values for r and pu
can mostly be explained by the degree distribution—hubs are forced to be
adjacent to small degree nodes. Another way to see this is to plot the degree
correlation functions k,,, (¢) for the real graphs and the ones generated by the
configuration model.

We now consider the entire US airport graph, which has an assortativity
value of r = —0.0554. In Figure 4.15(a), we illustrate the friendship paradox.
For each node, we compare its degree with the average degree of its neighbours.
We draw a line with unit slope to highlight the fact that the region above that
line is much denser. This is due to the fact that there are many low degree
nodes (smaller airports) which mostly tend to connect to hub airports, which
explains the presence of this “paradox.” In Figure 4.15(b), we compute the
rich-club ratio p(£) for all values of £. We see that the curve starts at p(1) = 1,
increases slightly before decreasing gradually. We conclude that there is no
indication of a rich-club phenomenon here.

122 Degree Correlations

1.00 K}
0.75
0.50
0.25 1 a
° -

0.00 L
>t

o o

-0.25 1 ‘.3.“

—0.50 1

correlation exponent (u)

oo
-0.75 1 ’

-1.00{ @

-1.00 -0.75 -0.50 -0.25 0.00 025 050 0.75 1.00
degree correlation coefficient (r)

FIGURE 4.12
Assortativity (r) and correlation exponent (u) for the state subgraphs of the
US airport graph.

(¢] (¢]
° (¢]
® @
(¢
[¢] (€]
(5] @
[¢] @
(a) +1 assortativity (AR) (b) -1 assortativity (NE).
») ® ®
[5) (6]
° . °
() ®) ®
@ [¢]
5] [¢]
(€] ® ° ®
@
@ @

(c) Positive assortativity (ND and SD) (d) Negative assortativity (MO).

FIGURE 4.13
State subgraphs for the US airport graph with positive ((a) and (c)) and
negative ((b) and (d)) assortativity.

Ezxperiments 123

assortativity (r) correlation exponent (u) assortativity (r) correlation exponent (u)

(a) ND+SD graph (b) MO graph

FIGURE 4.14

Assortativity (r) and correlation exponent (1) obtained for 1,000 runs of the
configuration model using the degree distribution of the airport subgraph for
(a) North and South Dakota and (b) Missouri.

In Figure 4.16, we re-visit the GitHub developer graph and the European
electric grid network introduced in Chapter 1, comparing the degree correla-
tion functions. We see that not only are the degree distributions quite different
but also that the type of connections and the assortativity values are very dif-
ferent. In the GitHub graph, low degree nodes are mostly connected to high
degree hub nodes, and this effect drops very quickly as we consider higher
degree nodes. For the grid network on the other hand, the behaviour is the
opposite but with much more homogeneous values for k., (£).

o /// 104 o e o & o o oaceescesseemmm
o -
g P
g - < 084
o o go “
e P S
3 g 1
a - S 0.64 H
S 3 | RS Bogis E %
= by LY %
g AVow S/}f TaRe L 204

2 - E
2 g
© =02
[
>
©

0.0
Sb 7‘5 160 12‘5 1_%0 1%5 200 ll‘)u 16‘ 162
node degree degree £
(a) Friendship paradox (b) Rich club coefficients

FIGURE 4.15
The friendship paradox (a) and rich-club behaviour (b) for the US airport
graph.

124

1000

800 %

Knn(2)

400 -

Degree Correlations

"

()

é 3.4

W) 321
St L . .
RV A et .

0 200 400 600 800 1000 2 4 6 8 10 12 14 16
degree (£) degree (£)

(b) Grid graph

200 4

(a) GitHub graph

FIGURE 4.16
Degree correlation function for (a) the GitHub developers graph (with r =
—0.075) and (b) the Europe electric grid network (with » = 0.014).

Finally, in Figure 4.17, we look again at the rich-club coefficient but this
time for a well-known graph that exhibits a rich-club behaviour, first studied
by Watts and Strogatz (1998) and available here!. The nodes are movie actors
and there is an edge between two actors if they co-appear in at least one
movie. In that plot, we clearly observe the rich-club phenomenon. This can be
explained by the fact that famous actors tend to play in many movies (high
degree) and with other famous actors (rich-club phenomenon).

2.5 1

2.0 A

1.5

1.0

rich club coefficient p(£)

0.5 1

0.0 1 .

10° 10t 102 103
degree {

FIGURE 4.17
The rich-club phenomenon is clearly seen in a graph of co-appearance of movie
actors.

Lww . complex-networks.net

Practitioner’s Corner 125

4.9 Practitioner’s Corner

Beyond being informative about the graph’s degree distribution, the degree
correlation function provides information about the local structure of a graph.
It can be computed for undirected as well as directed graphs, where there are
four different variants due to combinations of in- and out- degrees. The degree
correlation coefficient r is used to measure whether nodes tend to connect
with other nodes of similar degree (positive) or not (negative); this can also be
estimated via the correlation exponent p obtained via regression on the degree
correlation function. By considering random models such as the configuration
model or switching model, we can validate whether the assortativity suggested
by some measures is truly present in a graph, or if it is just an artefact of
its degree distribution. This is related to the concept of a structural cut-off
which indicates that high degree nodes can expect to have more than one
edge between them in an uncorrelated counterpart, which is problematic for
simple graphs. Finally, another structure that is sometimes seen in graphs is
the presence of a “rich-club” phenomenon, where high degree nodes have lots
of edges between them. This can be tested with the rich-club coefficient.

4.10 Problems

In this section, we present a collection of potential practical problems for the
reader to attempt.

1. For each of the three GitHub Developers graphs (the ml developers,
the web developers, and the original one), do the following:

a. plot the degree correlation function k., (¢) and its uncorrelated
counterpart Ky, (£);

b. find the degree correlation coefficient r,
c. find the correlation exponent i,

d. plot the rich-club coefficient p(¥).

2. Starting with the original GitHub Developers graph, apply the
switching method to get the randomized degree correlation func-
tion kpy (€). Compare it with the degree correlation function &y, (€)
and its uncorrelated counterpart ky,(¢). What is your conclusion?

3. Starting with the original GitHub Developers graph, apply the

switching method but instead of waiting for all edges to be switched
at least once, perform only em edge switchings for ¢ € {0.5,1,2}

126 Degree Correlations

(m is the number of edges). For each experiment, plot the (ap-
proximated) randomized degree correlation function k,, (£). Inde-
pendently check how many edges have not been switched. (After
cm edge switchings, we randomly switch 2ecm edges and theoreti-
cal results imply that we expect e~2¢ fraction of edges to remain
not switched. You may check if your experiment returns a similar
answer.)

4. Consider the SPA graph with parameters n = 500,p = 0.8, and
Ay = 2. For all values of A; from 0.1 to 3.0, in steps of 0.1, generate
a SPA graph, compute the distribution of in-degrees deg™ (v, n) and
fit a power-law distribution of the in-degrees as a function of the age
t > 1 of the nodes. Compare the resulting power-law exponents with
asymptotic theoretical predictions, namely, the function f(A;) =
1+1/(p- Av).

5. Generate a SPA graph with parameters n = 1,000,p = 0.8, 4; =1
and Ay = 2.

a. Plot the in-degrees deg™ (v, n) as a function of the age ¢t > 1
of the nodes. Also plot the same quantities with log scaling on
both axis. What do you observe?

b. Now, compare the in-degrees deg™ (v¢,n) with the formula
(n/t)P41. What is the Pearson’s correlation coefficient between
those quantities?

c. Plot the out-degrees deg‘”‘(vt7 n) as a function of the age t > 1
of the nodes. What do you observe?

d. Compute the local clustering coefficient averaged over the
nodes of in-degree d, C(d), and plot the results as a function
of d using log scale. Compare the results with a plot of d~!.

6. Perform a similar experiment on 5 graphs obtained by applying
Xulvi-Burnet—Sokolov’s algorithm to G(n, p). (The algorithm is
quite slow but it should be quick with, say, n = 28 and 10 repeats.)
Sample pairs of nodes to estimate the average distance between two
nodes in the graph instead of investigating the fraction of nodes in
the giant component. What is your conclusion?

7. Use the Chung-Lu model with n = 10,000 nodes to generate three
graphs with power law degree distribution (v = 2.1, v = 2.5, and
v =2.9),d =1, and A = 100—see Figure 2.6. For each of them,
investigate the friendship paradox and rich-club behaviour similarly
as we have done in Figure 4.15.

8. Generate power-law degree distribution d with n = 10,000, v = 2.1,
6 =1, and A = 500.

a. Generate the random graph P, 4 with this degree sequence
(it is implemented in Python’s iGraph—use option simple

Recommended Supplementary Reading 127

in function Graph.Degree Sequence). Plot the degree corre-
lation function k., (¢) for this graph. Since this graph is not
necessarily simple, k,,(¢) should be close to a straight line
Fen (0) = (k%) / (k) which you should plot too.

b. Generate a random graph with this degree sequence insist-
ing that the outcome is a simple graph (it is implemented
in Python’s iGraph—for example, use option vl in func-
tion Graph.Degree_Sequence that uses the implementation of
Viger and Latapy that creates a connected graph). Plot the
degree correlation function k,,(¢) for this graph. Since this
graph is simple, k,,(¢) should be close to k., (), the random-
ized degree correlation function.

What is the conclusion?

4.11 Recommended Supplementary Reading

The Internet was the first complex network in which degree-degree correlations
were explored and found:

e R. Pastor-Satorras, A. Vazquez, A. Vespignani. Dynamical and correlation
properties of the Internet. Phys. Rev. Lett. 87 (2001), 258701. (Degree Cor-
relation Function)

The movie actor dataset introduced in this chapter was first studied in:

e D.J. Watts and S.H. Strogatz, Collective dynamics of 'small-world’ networks,
Nature 393 (1998), 440-442.

There are a few original papers introducing the corresponding concepts
and one survey:

e M.E.J. Newman. Assortative mizing in networks. Phys. Rev. Lett. 89 (2002),
208701. (Degree Correlation Coefficient)

e S.L. Feld. Why your friends have more friends than you do. American Jour-
nal of Sociology 96(6) (1991), 1464-1477. (Friendship Paradox)

e V. Colizza, A. Flammini, M.A. Serrano, A. Vespignani. Detecting rich-club
ordering in complex networks. Nat. Phys. 2 (2006), 110-115. (Rich Club)

e M. Bogund, R. Pastor-Satorras, A. Vespignani. Cut-offs and finite size effects
in scale-free networks. Eur. Phys. J. B 38 (2004), 205-209. (Structural Cut-
off)

128 Degree Correlations

e N.C. Wormald. Models of random regular graphs. Surveys in Combinatorics.
239-298, London Math. Soc. Lecture Note Ser., 267, Cambridge Univ. Press,
Cambridge, 1999. (Switching)

e W. Aiello, A. Bonato, C. Cooper, J. Janssen, and P. Pralat. A spatial web
graph model with local influence region. Internet Mathematics 5 (2009), 175~
196. (Spatial Preferential Attachment model)

e R. Xulvi-Brunet, I.M. Sokolov. Changing correlations in networks: assorta-
tiity and dissortativity. Acta Phys. Pol. B 36 (2005), 1431-1455. (Xulvi-
Brunet—Sokolov’s algorithm)

5

Community Detection

5.1 Introduction

A network has community structure if its set of nodes can be split into a num-
ber of subsets such that each subset is densely internally connected (Radicchi
et al., 2004). For example, many social networks consist of communities based
on the common location of their users, their interests, occupation, gender, age,
etc. Dense clusters of connected neurons in the brain are often synchronized
by their firing patterns. In the web graph, nodes that belong to the same clus-
ter correspond to web pages on a similar topic. In protein-protein interaction
networks, proteins that belong to the same community are often associated
with a particular biological function within the organism.

There are a lot of partitions of a given set of n nodes, even if n is very
small. Hence, finding a partition that accurately represents the community
structure of a given network is a challenging but important problem for a
number of reasons. Communities allow us to look at the network from a large
distance and see the big picture by creating a large scale map of a network
with individual communities represented as meta-nodes. They help us better
understand the function of the system represented by the network. They also
let us classify the nodes based on the position they have in their own clusters
and how they are connected to other clusters. As a result, we may better
understand their roles and importance.

This chapter is structured as follows. We first introduce basic definitions
and properties that are expected to be present in a partition returned by a
good community detection algorithm (Section 5.2). The problem we try to ad-
dress in this chapter is unsupervised in nature and so we typically do not know
how to benchmark a given algorithm run on a particular real-world network.
As a result, there is a need to be able to construct synthetic models with a
given community structure and to then rigorously evaluate them (Section 5.3).
Since finding communities is an important task, it has generated many mul-
tidisciplinary research projects. As a result, algorithms use different ideas
and approaches, such as the graph modularity function (Section 5.4), hierar-
chical clustering (Section 5.5), label propagation, spectral bisection method,
and the information-theoretic method (Section 5.6). As usual, we finish the
chapter with experiments (Section 5.7) and provide some tips for practitioners

129

130 Community Detection

(Section 5.8).

Finally, let us mention that in this chapter we concentrate on non-
overlapping communities. Overlapping communities are separately discussed
in Chapter 8.

5.2 Basic Properties of Communities

Most of us have a good intuition of what it means to be a part of some commu-
nity. For example, one might explicitly be a member of a local chess club (by
paying an annual membership fee or by simply attending their weekly meet-
ings) but there are many more implicit communities one might belong to, often
involving networks. Indeed, one might belong to the community consisting of
mathematicians within the collaboration network, regardless of whether that
person has an academic job, higher education, etc. The important question
is then what makes that person a part of it and how one may detect such
memberships. There are some properties that will allow us to formally define
communities in networks and then to design algorithms to find them but let
us stress the fact that such properties are simply a natural implication of an
underlying structure (that might or might not be visible to us). For example,
the community of mathematicians publishing papers together consists of peo-
ple that are interested in mathematics in the first place and, as a result, they
naturally start collaborating with each other. Such behaviour and interactions
between them creates a graph with certain properties. Our goal is to use these
properties to uncover communities and often we have no other information but
the graph. This approach can be viewed as the reversed engineering process
that tries to uncover a hidden, underlying attributes of nodes, the so-called
ground truth, based on a graph that is visible to us.

Ground Truth

In order to explain the concept behind the ground truth, let us consider a
social network that has received a lot of attention in the context of commu-
nity detection. The Zachary’s Karate Club Network (Zachary, 1977) is a small
graph, available within igraph, that represents social interactions between 34
members of a karate club. Since the club was small, members of the club knew
each other well but not all of them interacted outside of the club. Such inter-
actions can be represented by the 78 edges in the corresponding graph that
we will frequently analyze in this book. A conflict between the club’s presi-
dent and the instructor split the members of the club into two groups which
suddenly revealed the underlying community structure, the ground truth.

In general, ground truth can be associated with some attributes assigned
to the nodes that influence how edges in a graph are formed. In the example
of Zachary’s Karate Club, the ground truth is simply a partition of nodes of

Basic Properties of Communities 131

the associated graph into two groups but, in general, the number of parts can
be arbitrary.

Let V be any finite set (for example, V' could be the set of nodes of a graph
G). A partition of V is a grouping of its elements into non-empty subsets,
in such a way that every element is included in exactly one subset. In other
words, V1, Vs, ..., Vp is a partition if and only if ViUV U... UV, =V and
VinV;=0forany 1 <i<j </

In this chapter, we mostly focus on problems where it is assumed that the
ground truth is a partition, informing us about the structure of communities
in the graph. However, in general, other ground truths may be considered.
The simplest extension of partitioning nodes of a graph is to allow each node
to be a member of more than one community or be part of no community.
As mentioned in the introduction, overlapping communities are separately
discussed in Chapter 8.

The fact that we have access to the ground truth explaining an underlying
structure is a very rare situation. As a result, many algorithms are bench-
marked using this small graph as an initial test. Of course, one should not
draw any serious conclusions based on such a small example. In order to test
the performance of various algorithms, one should instead use some large but
artificially generated graphs with community structures. We will discuss a few
of such benchmark networks in Section 5.3. There are also some performance
measures such as graph modularity that are unsupervised in nature and so
they do not require the ground truth for an evaluation procedure. We will
introduce them in Section 5.4.

Definition

Let G = (V, E) be a graph with some community structure. Each community
in G corresponds to a subset C of V', the set of nodes that induces a subgraph
G|[C] (see Section 1.9 for a formal definition). It is often expected that G[C] is
connected but, more importantly, nodes in a community are more likely to be
connected to other members of the same community than to nodes in other
communities. This leads us to the following natural definitions that can be
applied to both weighted and unweighted graphs.

Let G = (V,E) be any graph, and let ¢ C V. The internal degree
deg'™ (v) (with respect to C) of node v is the number of neighbours of v
that belong to C, that is,

deg™(v) = |[N(v) N C].

132 Community Detection

The external degree deg®’(v) (with respect to C) of node v is the
number of neighbours of v outside of C, that is,

deg® (v) = |N(v) \ C| = deg(v) — deg™ (v).

The following two concepts are natural and common in the literature.

Let G = (V,E) be any graph, and let C C V. Set C forms a strong
community if each node in C' has more neighbours in C' than outside of
C, that is, for each v € C we have

deg™ (v) > deg®*(v). (5.1)

One may relax this notion by considering the average degree inside the
community C' (over all nodes in C') and compare it with the total average
degree, instead of insisting that all nodes in C satisfy the desired inequality.

Let G = (V,E) be any graph, and let C C V. Set C forms a weak

community if
Z deg™ (v) > Z deg® (v). (5.2)
veC veC

Of course, if C satisfies (5.1), then it also satisfies (5.2) so each strong
community is a weak community but some weak communities might not be
strong.

There are many other notions that one may use to formally define com-
munities. Consider, for example, the following scenario. Suppose that two
researchers have the same number of friends on Instagram (say, 100) but they
belong to two different communities. The first researcher, Alice, is part of a
large community (say, she is a data scientist) whereas the second researcher,
Bob, belongs to a small community (say, he is a mathematician doing some
esoteric part of mathematics). Suppose that 60% of Instagram friends of Alice
do data science making her a clear member of that community. What about
Bob? Should we expect that more than 50% of his friends to be working in
his field of research? We believe the answer is no. In fact, it might be the case
that there are less than 50 people around the world working on this subject!
It seems that it makes more sense for the number of internal neighbours of
a given node to be proportional to the size of the community this node be-
longs to. As long as the probability that a given node is adjacent to another

Basic Properties of Communities 133

member of its community is larger than the probability of being adjacent to
a random node in the whole graph, this node is a legitimate member of this
community. This notion is strongly related to the concept of modularity that
we will discuss in Section 5.4 and motivates our last definition.

Let G = (V, E) be any graph, and let C CV (C # 0 and C #V). Cis a
community if each node in C' has proportionally more neighbours in C
than outside of C, that is, for each v € C' we have

degint(v) degemt(v)
C]| VAC|

(5.3)

Node Roles

Let G = (V, E) be a graph on the set of nodes V. Suppose that we are given a
partition A = {A1, Ao, ..., A} of V; A could be the partition representing the
ground truth or a partition identified by some community detection algorithm.
In this sub-section, we will use deg4,(v) to denote the number of neighbours
of v in part A;, that is, deg,. (v) = [N (v) N A;|. We will also continue using
the definitions from the previous sub-section, in particular, the internal degree
of node v is denoted by deg”™ (v) = deg 4, (v) for the unique i € [¢] for which
v E A;.

Our goal is to try to quantify the role played by each node within a network
that exhibits community structure. The first definition captures how strongly
a particular node is connected to other nodes within its own community,
completely ignoring edges between communities.

Let G = (V, E) be any graph, and let A = {4;, As, ..., A¢} be a partition
of V. The normalized within-module degree of a node v (with respect
to A) is defined as follows:

_ deg™(v) — (o)
a(v) ’

z(v)

where p(v) and o(v) are respectively the mean and the standard deviation
of deg"™*(u) over all nodes in the part v belongs to.

Note that in the definition above we assumed that the graph induced by
the part node v belongs to is not regular (that is, o(v) # 0). Note also that
z(v) is the familiar Z-score as it measures how many standard deviations the
internal degree of v deviates from the mean. If node v is tightly connected
to other nodes within the community, then z(v) is large and positive. On the

134 Community Detection

other hand, |z(v)| is large and z(v) is negative when v is loosely connected to
other peers.

Another important aspect is to capture how edges (both internal and ex-
ternal) are distributed between all parts of the partition A.

Let G = (V, E) be any graph, and let A = {43, As, ..., A¢} be a partition
of V. The participation coefficient of a node v (with respect to A) is
defined as follows:

‘L (degy, (v))
pv) :1_2(deslv))

p=ll

The participation coefficient p(v) is equal to zero if v has neighbours ex-
clusively in one part (most likely in its own community). In the other extreme
situation, the neighbours of v are homogeneously distributed among all parts
and so p(v) is close to the trivial upper bound of

¢ 2
1—2(d§§(?W> :1—%%1.

i=1 g(v)
This coefficient is a natural way to measure concentration. Indeed, in eco-
nomics, 1 — p(v) is called the Herfindahl-Hirschman index and is es-
sentially equivalent to the Simpson diversity index used in ecology, the
inverse participation ratio (IPR) in physics, and the effective number
of parties index in politics.

The two definitions we just introduced can help us to assign roles to all
nodes in the network based on their topological function within the com-
munities (Guimerd and Amaral, 2005). The following classification has been
proposed in the literature. If z(v) > 2.5, then node v is classified as a hub;
otherwise, it is a non-hub. These two classes are then refined by investigating
the participation coefficient. Non-hubs are partitioned into the following four
classes:

e ultra-peripheral nodes (almost all edges are internal) if p(v) < 0.05,

e peripheral nodes (most edges are internal) if 0.05 < p(v) < 0.62,

e connector nodes (most edges are external) if 0.62 < p(v) < 0.80,

e kinless nodes (neighbours are homogeneously distributed) if p(v) > 0.80.
On the other hand, hubs are partitioned into three classes:

e provincial hubs if p(v) < 0.30,

Basic Properties of Communities 135

e connector hubs if 0.30 < p(v) < 0.75,
e kinless hubs if p(v) > 0.75.

The above classification might look rather arbitrary but it certainly pro-
vides some useful insight about the roles particular nodes have. For example,
a provincial hub has a pivotal role within its own community whereas a con-
nector hub is important for transferring information between communities.

Another simple but natural and useful measure that captures node char-
acteristics with respect to community structure of a graph is a ratio of its
degree to its internal degree. This idea is captured by the following definition
(Helling, Scholtes, and Takes, 2019).

Let G = (V, E) be any graph, and let A = {4, As, ..., A¢} be a partition
of V. Assuming that deg"(v) > 0, the anomaly score of a node v (with
respect to A) is defined as follows:

__deg(v)
cd(v) = deg™ (0)

If all neighbours of a node v belong to its community, then cd(v) = 1. In
the other extreme, if no two neighbours of v belong to the same community,
then cd(v) = deg(v). The anomaly score captures the strength of a node’s
attachment to its own community.

The limitation of the anomaly score is that it ignores the size of the com-
munity that the node belongs to. It is natural to expect that if a node belongs
to a larger community it should have more neighbours in it by pure luck. (See
the definition of a community (5.3) and the discussion right before it.) This
idea is captured by the following definition (Kaminski et al., 2024).

Let G = (V, E) be any graph, and let A = {A4;, As, ..., A¢} be a partition
of V. The community association strength of a node v belonging to
community A, (with respect to A) is defined as follows:

cas(v) = deg 4, (v) _ vol(4;) — deg(v)
~ deg(v) vol(V)

Note that deg 4. (v)/deg(v) is the observed fraction of node’s neighbours in
its own community (it is the inverse of c¢d(v)) and (vol(A;) — deg(v))/vol(V)
measures the expected number of neighbours in its own community if the edges
were created randomly following the Chung-Lu model. Therefore, cas(v)

136 Community Detection

measures how much more attached to its own community a node v is in com-
parison to what one would expect in a Chung-Lu model setting.

Similarly to the anomaly score, the participation coefficient also ignores
the sizes of the communities in A. Therefore, it is natural to define a measure
how surprising the distribution of node’s neighbours across communities is in
relation to the expectation provided by the Chung-Lu model. This idea is
made formal in the following definition (Kamiriski et al., 2024).

Let G = (V, E) be any graph, and let A = {4, As, ..., A¢} be a partition
of V. The community distribution distance of a node v (with respect
to A) is defined as follows:

{ (dega(®) vol(an)?)
cdd(v) = (Z(deg(v) ; VOI(V)> .

Similarly to the community association strength, the community distribu-
tion distance compares the observed fractions of node neighbours in a given
community to the expectations given by the Chung-Lu model.

All the measures we introduced in this section (normalized within-
module degree, participation coefficient, anomaly score, community associa-
tion strength, and community distribution distance) can be analyzed on their
own to qualitatively understand the role of a node in a graph with respect
to some community partition 4. However, such features can be also useful
for predictive modelling if, for example, the fact that some node is a strong
member of its own community is related to some feature of the node that we
want to forecast. In Section 5.7, we present an example showing the practical
use of the measures we discussed above.

The Number of Partitions

In order to find communities in a given graph G = (V, E), we need to partition
the set of nodes V' into an arbitrary number of parts. The Bell number B,
counts the number of possible partitions of a set of size n. Starting with
By = By =1, the first few Bell numbers are: 1, 1, 2, 5, 15, 52, 203, 877, 4140.
This sequence looks innocent but the rate of growth of the first few terms
is misleading; the number of partitions grows very fast as a function of n.
Indeed, trivially, the number of partitions into 2 parts is equal to 2", already
exponentially many, and so we get that B,, > 2". In fact, B, grows much
faster than that.

Synthetic Models with Community Structure 137

The Bell numbers can be computed using the following recurrence relation
involving binomial coefficients: for any n € N,

Bpt1 = Z (Z) By.

k=0

Indeed, in order to partition a set of n + 1 elements, one may first remove a
part containing the first element and then take any partition of the remaining
clements. There are () choices for the k items that remain after one part is
removed and By, choices of how to partition them. Of course, there are many
other interesting relations between Bell numbers. Similarly, several asymptotic

formulas for the Bell numbers are known, including the following;:

In B,
n

5= (ratymn)

Hence, indeed, B,, grows much faster than any exponential function.

=Ilnn—Inlnn — 1+ 0(1),

which implies that

These observations have an important implication for our problem. Even
for very small graphs on, say, 20 nodes we will not be able to investigate all
partitions. Since we cannot do it for such small graphs, there is no hope for
larger ones. However, our ultimate goal is to find communities in enormous
graphs such as the collaboration network or the Facebook graph. Hence, all
algorithms we investigate in this chapter are heuristic in nature. Our hope is
to find a decent partition that is good enough for the application at hand; we
should never expect to find the best one.

5.3 Synthetic Models with Community Structure

In order to compare clustering algorithms, one can use a network with an ex-
plicitly given ground truth such as the Zachary’s Karate Club network men-
tioned above. However, this small network should be treated as a toy-example
rather than as a serious benchmark. Dataset collections such as SNAP (Stan-
ford Large Network Dataset Collection) offer a good source of networks from
different domains, some of them with communities identified and labelled
(Leskovec and Krevl, 2014). Having said that, there are still not too many
real-world complex networks available that have a ground truth available to
be used. Alternatively, one can use some other quality measure, for example,
the modularity function mentioned in Section 5.4. Indeed, modularity is not
only a global criterion to define communities and a way to measure the pres-
ence of community structure in a network but, at the same time, it is often

138 Community Detection

used as a quality function of community detection algorithms. However, it is
not a fair benchmark, especially for comparing algorithms such as Leiden,
Louvain, and Ensemble Clustering (see Section 5.4) that find communities
by trying to optimize the very same modularity function!

In order to evaluate algorithms in a fair and rigorous way, one should com-
pare algorithm solutions run on large synthetic networks with an engineered
ground truth that can be easily tuned to investigate the behaviour of the algo-
rithm in various scenarios. Let us introduce a few random graph models with
community structure before we show how to use them to make such evalua-
tions. Of course, there are many more models of complex networks so we only
scratch the surface by presenting three models that are, arguably, the most
related to community detection. Other models worth mentioning are BTER
(Slota et al., 2019) and ReCoN (Staudt et al., 2017).

Stochastic Block Model

We start with the stochastic block model (Holland, Laskey, and Leinhardt,
1983), which is a simple and natural generalization of the binomial random
graph model G(n, p) that we introduced in Section 2.3. This model produces
random graphs consisting of communities but edges are still generated inde-
pendently, making this model relatively easy to study from a theoretical point
of view. It is also easy to generate these graphs in practice.

Let P = (p(4,7))i,jelq be a symmetric £ x £ matrix whose entries are in
[0,1] and let N = (n;);¢[g be a vector of £ natural numbers. The stochas-
tic block model S(P,N) can be generated by starting with an empty
graph on the set of nodes [n] = {1,2,...,n} with n = 37, n; parti-
tioned into £ subsets C1, Cs, . .., Cy, called communities, with |C;| = n;,
i € [¢]. For each pair of nodes u,v € [n] withu < v, u € C;, and v € C}, we
independently introduce an edge uv in S(P,N) with probability p(i, 7).

The planted partition model is a variant of the stochastic block
model in which the values of the probability matrix P has values of p on the
diagonal and values of ¢ for non-diagonal entries. As a result, two nodes within
the same community share an edge with probability p whereas two nodes in
different communities share an edge with probability ¢q. The case where p > ¢ is
called an assortative model, while the case of p < ¢ is called a disassortative
model. (Recall that such terms were already used in Section 4.2 in the context
of degree correlations but there is no relationship between the two notions.)
Finally, if the probability matrix is a constant matrix (that is, p(i,j) = p for
all 1 < i < j < /), then the stochastic block model recovers the classical
binomial random graph G(n,p).

Synthetic Models with Community Structure 139

Lancichinetti-Fortunato—Radicchi (LFR) Model

The stochastic block model S(P,N) introduced above generates a random
graph in which all nodes that belong to the same community have exactly
the same distributions of their degrees, that is, each of them has a degree
that is a sum of the same binomial distributions (one corresponding to their
internal degree and one to their external one). In particular, they have the
same expected degree. On the other hand, the degree distributions as well
as the community sizes of most real networks follow power-law distributions
(see Section 2.4). The community sizes in S(P,N) are provided as an input
vector N but it is left for the user to make sure they follow some realistic
distribution.

The next random graph model, the LFR (Lancichinetti—Fortunato—
Radicchi) benchmark (Lancichinetti, Fortunato, and Radicchi, 2008), allows
for heterogeneity in the distributions of both nodes degrees and of community
sizes. As a result, it has become a standard and extensively used method for
generating artificial networks with communities. Since the formal definition
and implementation details are quite involved, we first define (rather vaguely)
the LFR model before we describe a few specific ingredients of the algorithm
that generates it.

Let v € [2,3], 7 € [1,2], and p € [0,1] (u is called the mixing parame-
ter). The LFR model L(v, T, 1) generates random graphs with commu-
nity sizes and node degrees following truncated power law distributions
with exponents 7 and 7 respectively. Each node aims to have a p fraction
of its neighbours outside of its own community.

The process of generating LFR. graphs follows the following steps.

e Randomly generate the degree distribution following a truncated power law
distribution with exponent v and the desired average degree (k). The sug-
gested range [2, 3] of values for parameter v is chosen according to experi-
mental values commonly observed in complex networks. In particular, based
on the generated degree sequence d = (dy,ds,...,d,), the minimum and
the maximum degree (§ and, respectively, A) are determined.

e Use the random graph with degree sequence d (see Section 2.7) to
create a graph with the desired degree sequence d.

e Randomly generate the community sizes following a power law distribution
with exponent 7. As in the case of parameter -, the suggested range [1, 2] of
values for parameter 7 is chosen according to experimental values commonly
observed in complex networks. The sum of all sizes must be equal to n, the
desired number of nodes. The minimum and the maximum community sizes
(nmin and, respectively, nmax) must satisfy some properties so that every

140 Community Detection

non-isolated node belongs to one community. In particular, it is required
that nmin > 6 and nmax > A.

e Initially, no node is assigned to any community. Recall that the goal for
each node is to have a fraction of (1 — p) of its neighbours within the same
community. In order to achieve this, each node is randomly assigned to a
community. If the desired number of neighbours of a given node within the
community does not exceed the community size, then the node is added
to the community; otherwise, it stays unassigned. In the following itera-
tions, each unassigned node is randomly assigned to some community. If
that community is complete (that is, its desired size is already reached),
then a randomly selected node from that community becomes unassigned.
The process is repeated until all the communities are complete, that is, all
the nodes are assigned to a community.

e In order to achieve the desired property for the fraction of internal neigh-
bours expressed by the mixing parameter pu, several random rewiring of edges
are performed, where the preference is to rewire edges that do not link nodes
which have common neighbours. Each rewiring preserves the degree distri-
bution but aims to improve the ratio between the number of internal and the
number of external neighbours. The process stops when good approximation
is achieved for all nodes.

Artificial Benchmark for Community Detection (ABCD)

The LFR benchmark mentioned above is a very good model and has become a
standard benchmark for experimental studies, both for disjoint and for over-
lapping communities. However, in order to provide motivation for our next
benchmark graph, let us point out some potential issues.

Scalability: In order to generate a random graph following a given de-
gree sequence and the desired ratio between internal and external neighbours,
the LFR benchmark uses the fixed degree sequence model and then the edge
switching Markov chain algorithm to obtain the desired community structure
once the stationary distribution is reached. The convergence process is inher-
ently slow and so the model has clear scalability limitations that are known
to both academics and practitioners.

Many Variants and Lack of Theoretical Foundations: Since the
most computationally expensive part of the LFR benchmark is edge switch-
ing, many fast implementations stop the process before the stationary distri-
bution is reached. There are at least two negative implications of this situation.

First of all, there are many variants of this benchmark model and one can
only create “LFR-type” graphs and graphs generated by different implemen-
tations can have slightly different properties. This is certainly not expected
from benchmark graphs that should provide a rigorous, fair, and reproducible
comparison.

Synthetic Models with Community Structure 141

e ®e o "0
.
-
s e
. . o o
e o =T N
o oa * uuoﬂo
= = L A
o
o/ o® oo

A 4

LFR: small to large

FIGURE 5.1

Examples of graphs generated by the LFR algorithm. All graphs have the
same degree distribution and community sizes but have different values of the
mixing parameter: p € {0.1,0.3,0.95}.

The lack of a simple and clear description of the algorithm has another
negative aspect, namely, it is challenging to analyze the LFR model theoreti-
cally. It is unfortunate, as more theoretical research on models with community
structure might shed some light on how communities are formed and help us
design better and faster clustering algorithms.

Communities are Unnaturally-defined: The mixing parameter u, the
main parameter of the LFR model guiding the strength of the communities,
has a non-obvious interpretation and so can lead to unnaturally-defined net-
works. (See Figure 5.1 for an illustration.) Indeed, the model aims to keep
the fraction of inter-community edges at approximately u. In one of the two
extremes, when p = 0, all edges are within communities. On the other hand,
when ¢ = 1, LFR generates pure “anti-communities” with no edge present in
any of the communities. This is clearly an undesirable property that leads to
unnaturally-defined communities. The threshold value of p that produces pure
random graphs that are community agnostic is “hidden” somewhere in the in-
terval [0, 1]. It is possible to compute this threshold value but the formula is
quite involved and not widely known.

Densities of Communities: The LFR model aims to generate a graph
in which a fraction of 1 — p edges adjacent to a given node stay within the
community of that node. This property is required to hold for all nodes, re-
gardless of the size of the community that they belong to. As a result, small
communities will become much denser than large communities. It is not clear
that this property is desirable, especially in the case of unbalanced commu-
nity sizes which the model is aiming for. Indeed, it seems that larger clusters
should capture a proportionally larger fraction of edges—recall the discussion
right after the definition of community (see (5.3)).

The approach used in LFR (which we call a local variant) seems to be
inherited from the definition of strong community (see (5.1)). The next

142 Community Detection

model proposes another approach (that we call a global variant) that builds
on top of the definition of community (see (5.3)) that, arguably, is more
natural.

Now, we are ready to introduce the Artificial Benchmark for Community
Detection (ABCD), see Kaminiski, Pratat, and Théberge (2021). As we did
with LFR, we provide a “bare minimum” definition (that is almost the same
as for LFR) before we describe a few details of the implementation.

Let v € [2,3], 7 € [1,2], and € € [0, 1] (& is called the mixing parameter).
The ABCD model A(v, 7,§) generates random graphs with community
sizes and node degrees following truncated power law distributions with
exponents 7 and ~y respectively. The mixing parameter & controls the
fraction of edges that are between communities.

The process of generating ABCD graphs follows the following steps.

e As we did in LFR, we start by randomly generating the degree distribu-
tion d following a truncated power law distribution with exponent v and the
community sizes following a power law distribution with exponent 7. (Alter-
natively, they may be provided as deterministic parameters of the model).
In particular, ¢ is the number of communities.

e The model can be viewed as a union of £+ 1 independent random graphs G;
(i € [()U{0})—one for each community, and one for the whole graph. As a
result, one can view it as a generalization of the double round exposure
method (also known in the literature as “sprinkling”). We start with the
background graph Gy and “sprinkle” additional edges within communities
that come from graphs G; (i € [¢]); the smaller the value of £, the stronger
the ties between members of the same cluster are.

e Parameter £ € [0, 1] controls the fraction of edges that are between commu-
nities. We split the degree sequence d into y and z as follows, keeping the
same value of £ for each node (y will be associated with communities and z
will be associated with the background graph):

Y= -yn) = (1-8d=(1-& di,....,(1-&) dn),
z={(21,...,2n) = &d=({-dy,...,& dy).

This splitting strategy corresponds to the more natural, global, variant. In
order to generate graphs that are even closer to the original LFR model,
one may alternatively use another strategy for splitting, the local variant.
Both are easily available to the user.

e The process of assigning nodes into communities is quite involved so we will
not explain it here. However, let us mention that it efficiently selects uni-
formly at random one admissible assignment which, in particular, guarantees
that a simple graph satisfying all the desired properties can be constructed.

Synthetic Models with Community Structure 143

e Since we aim to generate a graph which follows the degree sequence d,
the two vectors (y and z) need to be adjusted so that not only are they
integer-valued but the corresponding subsequences (for each cluster and the
background graph) are graphic.

e We use the random graph with fixed degree sequence (see Section 2.7)
to independently generate the background graph Gy and the cluster
graphs G; (for i € [¢]). The final multi-graph A(~,7,£) is defined as the
union of graphs G; (i € [¢]U {0}).

For theoretical results on ABCD, one may simply stay with multi-graphs
that might not be simple but the expected number of loops and parallel edges
is small, especially for sparse graphs, so that most results should not be af-
fected by their presence. From practical point of view, if one insists on the
final graph to be simple, then the following additional step can be performed.

e For each parallel edge uv (or a loop), we choose a random edge zy, remove
uv, xy, and with probability 1/2 add ux, vy; otherwise, add uy, vz.

We already saw such switching in Section 4.4. In this application, it generates
a random graph that is very close to the uniform distribution over the family
of simple graphs. It should solve all problems in O(1) time, provided that the
graph is sparse.

Finally, let us mention that the building blocks in the model are flexible
and may be adjusted to satisfy different needs. Indeed, the original ABCD
model was successfully adjusted to include potential outliers (ABCD+o0)
and overlapping communities (ABCD+o0?). Moreover, it was extended to
hypergraphs (h—ABCD). We will see these models later on. For generating
enormous graphs, there is a fast implementation available that uses multiple
threads (ABCDe).

Evaluating the Quality of Clustering Algorithms

Suppose that we run an algorithm on a network with known ground truth
(such as the Zachary’s karate club) or a synthetic benchmark graph (such
as LFR or ABCD). The partition returned by the algorithm is most likely
different than the ground truth partition. How then one can evaluate the
quality of the algorithm? One possibility is to use a measure based on informa-
tion theory, such as the Adjusted Mutual Information (AMI), see Vinh,
Epps, and Bailey (2010), that allows us to quantify the similarity between two
partitions of the same set of nodes. Alternatively, one can measure similarity
by considering pairs of nodes; one example of such measure is the Adjusted
Rand Index (ARI), see Hubert and Arabie (1985). These measures are
designed for comparing set partitions and not graph partitions specifically.
We call them graph-agnostic as they ignore the graph structure. There are
more sophisticated graph-aware measures for graph partition similarity, see
e.g. Poulin and Théberge (2021), but we do not discuss them here.

144 Community Detection

Suppose that & and W are two partitions of the same set of nodes V;
in particular, Uy UU; U...UU, =V and W UWoU...UW,, = V. The
mutual information of communities overlap between the two partitions can
be summarized in the form of contingency table that is the u X w matrix
N = (nij)ie[u),je[w], Where n;; is the number of nodes that belong to both
community U; and W;, that is, n;; = |U; N W,|. For i € [u] and j € [w], let
Py (i), Pw(j) and, respectively, Pyw (i,7) be the probability that a random
node belongs to community U;, to community W} and, respectively, to both
communities; that is,

. Ui;) W; o Unw; Nij
Po) = py) = Sl Py = O

n n n n
The Mutual Information (MI) measures the information shared by the two
community assignments:

MIWU,W) = > Puw (i j) logy (M) '

i€lu],j€[w]:Puw (¢,5)>0

MI(U,W) measures the information that & and W share; it tells us how much
knowing one of these partitions reduces our uncertainty about the other one.

Note that MI(U, W) =0 if U and W are independent of each other (that
is, Pyw (i,7) = Py(i)Pw(j) for all ,7). At the other extreme, that is when
the two partitions are identical, MI(U, W) = H(U) = H(W), where

HWU) == Y Puli)log, (Pu (i)
i€[u]

is the Shannon entropy associated with partition ¢/. In any case, MI(U, W)
is upper bounded by the entropies H (/) and H(W). This observation justifies
the following definition of the Normalized Mutual Information (NMI).

Let U (U; U0 U...UU,) and W (W1 UWLU...UW,,) be two partitions of
the same set of nodes V. For i € [u] and j € [w], let n; = |Uy|, n; = [W}],
and n;; = |U; N W;|. The Normalized Mutual Information between
U and W is defined as follows:

MIU, W)
(HU)+ H(W))/2

=23 e 2ojefw) Mis 1082 (Znnj>

Zie[u] n; logy(ni/n) + Zje[w] n; log, (n;/n) .

NMIU,W)

Alternatively, one could normalize MI(U,W) by dividing it by
min{HU), HW)} or max{H U), HWW)}. All of these variants have a nice

Synthetic Models with Community Structure 145

feature that they range between zero when the algorithm returning & com-
pletely fails the task of detecting the ground truth W, and one when the
algorithm works perfectly. Moreover, they maintain the symmetry of the mu-
tual information with respect to its two arguments. The most widely accepted
normalization is the one proposed above.

Let us now turn into pair counting based measures that built upon counting
pairs of items on which two clusterings agree or disagree. As before, consider
U and W, two partitions of the same set of nodes V. Let Qu and Qyw denote
the set of pairs of nodes lying in one of the parts of & and, respectively, W.

Moreover, for a given set QQ C (‘2/) consisting of pairs of nodes, we will use

Q= (‘2/) \ @ to denote the complement of Q.

The Rand Index (RI) is defined as the probability that & and W agree
on a pair of nodes selected uniformly at random from the set of all pairs, that
is,

_ 1QunQw|+|Qu NQw]|

(3)
Alternatively, one may view the Rand Index as a measure of the percentage
of correct decisions made by the clustering algorithm, that is,

RI(U, W)

N1+ Noo

RIUW) =)
() Noo + Nio + No1 + N1

where Npp is the number of true positives (pairs of nodes that are in the same
community in both W and the reference ground truth partition i), Ny is
the number of false negatives, Ny is the number of false positives, and Nyg is
the number of true negatives; that is,

Vo = 22 (V) 51

i€[u] je[w]
n;
Ny = > <2>—N11
i€ [u]
n':
No1 = Z (;)-Nn
JE€[w]
n
Noo = (2>N11N10N01

= ()2 (0)-2 ()

i€lu jEw

146 Community Detection

Combining all of these things together, we get our next definition.

Let U (U; U0 U...UU,) and W (W1 UWLU...UW,,) be two partitions of
the same set of nodes V. For i € [u] and j € [w], let n; = |Uy|, n; = [W}],
and n;; = |U; N W;|. The Rand Index between U/ and W is defined as
follows:

’

2% et Ljetu) ("F) = iep (5) = Zjepw) (7) + (2)
(%) '

RIU,W) =

The above mentioned similarity measures fail to satisfy the following,
rather intuitive and desired, property known as the constant baseline prop-
erty. In order to understand it, suppose that U is the ground truth partition
of V. For two given natural numbers ¢, j such that 7 > j > 2, let W; and W;
be two partitions sampled independently and uniformly at random from the
set of partitions into ¢ and, respectively, j parts. One would expect that the
similarity measure between ¢/ and W; and between U and W; should be the
same, ideally equal to zero. However, this is not the case for the Mutual In-
formation (including the normalized counterpart) nor the Rand Index that
tends to increase together with ¢. This is the main reason why these measures
are mainly used in its adjusted form.

In order to correct the measures for randomness, it is necessary to specify
a model according to which random partitions are generated. One commonly
used model is the generalized hypergeometric model in which partitions
are generated randomly, subject to having a fixed number of parts and the
number of elements in each part.

In this model, the expected mutual information between two random par-
titions U and W is equal to

min{ni,n;}
E[MIUW) =Y > = log, (f})

n; -n
i€[u] j€[w] nij=max{n;+n}—n,1} v

ni! 0! (n —n;)! (n —nf)!

The Adjusted Mutual Information (AMI) is then defined as follows:

MIU,W) —E[MIU, W)

AMIUW) = S W), HOV)} — B MUY

As a result, the AMI is equal to one when the two partitions are identical and
equal to zero when the MI between two partitions equals the value expected
due to chance alone.

Graph Modularity 147

Exactly the same strategy can be applied to adjust the Rand Index.
Under the generalized hypergeometric model, it can be shown that

E Z <TL”> _ Zze[u} (’;1) Zje[w] (T;J))

2 (3)
Hence, the Adjusted Rand Index (ARI) can be conveniently simplified as
follows:

i€lu] je[w]

it Sietul (%) = (Ziep (3) Sierur () /)

(Zier(3) + Liern (9))/2 = (Siera (5) e (%)) /()

Alternatively, using the notation introduced in (5.4),

ARIU,W) =

2(NooN11 — No1Nio)
(Noo + No1)(No1 + Ni1) + (Noo + N1o)(N1o + N11)

ARI(U, W) =

5.4 Graph Modularity

The key ingredient for many clustering algorithms is modularity that we dis-
cuss in this section. As already mentioned earlier, modularity is at the same
time a global criterion to define communities, a quality function of community
detection algorithms, and a way to measure the presence of community struc-
ture in a network. Modularity for graphs is based on the comparison between
the actual density of edges inside a community and the density one would
expect to have if the nodes of the graph were attached at random, regard-
less of community structure, while respecting the nodes’ degree on average
(Newman and Girvan, 2004). Such reference random family of graphs (known
in this context as the null-model) is the Chung-Lu random model that
we introduced in Section 2.5. Despite some known issues with the modularity
function, such as the “resolution limit” that we discuss later on, many popular
algorithms for partitioning large graph data sets use it.

Definition

Let G = (V, E) be a graph on the set of nodes V = {vy,va,...,v,}. Let

d= (deg(vl), deg(va), ... ,deg(vn))

148 Community Detection

be the degree sequence of G. For a given partition A = {A;, Ay, ..., Ay} of
V', the modularity function is defined as follows:

c(A) = % Z (ea(Ai) — Egrg(aylear (As))])
A;eA
Z eG(Az‘) . Z EGWG((B;TG’(Ai)]’ (5.5)

AeA |E| A€A

where eq(A;) = |{vjuy € E : vj,v, € A;}| is the number of edges in the
subgraph of G induced by set A;. The modularity measures the deviation of
the number of edges of G that lie inside parts of A from the corresponding
expected value based on the Chung-Lu random graph G(d), the random
graph with expected degree sequence d. The expected value for part A; can
be computed as follows:

N dee (v eg?(v;
]Egl,\,g(d)[eG’(Ai)] = Z deg(v]2)|g’g<k)+ Z dm

'Uj'Uk:e(AQi) vjEA;

_ 1 _(Vol(Ai))2
= | 2) | =T

i (Yol(A) 2
- a1 (Vi))

The first term in (5.5), >°, c4ec(4i)/|E|, is called the edge contri-
bution, whereas the second one, Y, o 4(vol(A;))?/4|EJ?, is called the de-
gree tax. It is easy to see that both terms are between zero and one and
so, in particular, gg(A) < 1. Also, if A = {V}, then gg(A) = 0, and if
A= {{vi1},...,{vn}}, then ¢g(A) = _ZjeTng@) < 0. On the other hand, it
can be shown that ¢g(A) > —1/2.

The maximum modularity ¢*(G) is defined as the maximum of ¢g(A)
over all possible partitions .4 of V; that is, ¢*(G) = max4 gg(A). Despite
the fact ¢*(G) is well defined, as mentioned in Section 5.2, the number of
partitions of V increases very fast with |V| and so, in practice, one is not able
to find a partition that maximizes the modularity function unless graph G
is really small. (For small networks one may try to use Bayan algorithm
(Aref, Chheda, and Mostajabdaveh, 2023) to find the modularity function
exactly.) Hence, all algorithms that try to optimize the modularity function are
heuristic in nature. In order to maximize g¢(.A) one wants to find a partition
with large edge contribution subject to small degree tax. If ¢*(G) approaches 1
(which is the trivial upper bound), we observe a strong community structure;
conversely, if ¢*(G) is close to zero (which is the trivial lower bound), there
is no community structure. Finally, let us mention that the definition in (5.5)
can be easily generalized to weighted graphs by replacing edge counts with

Graph Modularity 149

sums of edge weights. Adjusting it to directed graphs is also straightforward
and we do it at the end of this section. The situation is more involved in the
context of hypergraphs. We will come back to this topic in Chapter 7.

Algorithms

Since scalability is an important issue in all community detection algorithms,
almost all modularity based algorithms follow some greedy optimization meth-
ods. For example, one of the earlier attempts include the CNM algorithm
(Clauset—Newman—Moore), see Clauset, Newman and Moore (2004), that
merges two communities whose amalgamation produces the largest increase
in modularity function. Here we provide more details on another greedy algo-
rithm, namely, the Louvain (Blondel et al., 2008) algorithm that is, arguably,
the best algorithm from this class of algorithms. It appears to run in time
O(n1n® n) where n is the number of nodes in the network.

In this algorithm, small communities are first found by optimizing modu-
larity locally on all nodes. Then, each small community is grouped into one
node and the original step is repeated on a smaller graph. The process stops
when no improvement on the modularity function can be further achieved.

One pass of the Louvain algorithm consists of two phases that are re-
peated iteratively. Initially, each node in the network is assigned to its own
community. For each node v, we consider all neighbours v of v and compute the
change in the modularity function if v is removed from its own community and
moved into the community of u. It is important to mention that this value can
be easily and efficiently calculated without the need to recompute the mod-
ularity function from scratch. Once all the communities that v could belong
to are considered, v is placed into the community that resulted in the largest
increase of the modularity function. If no increase is possible, v remains in its
original community. The process is repeated for the remaining nodes follow-
ing a given (typically random) permutation of nodes. If no increase is possible
after considering all nodes, a local maximum value is achieved and the first
phase ends.

During the second phase, the algorithm contracts all nodes that belong
to one community into a single node. All edges within that community are
replaced by a single weighted loop. Similarly, all edges between two communi-
ties are replaced by a single weighted edge. Once the new network is created,
the second phase ends. The resulting graph is typically much smaller than the
original graph. As a result, the first pass is typically the most time consuming
part of the algorithm.

Despite the fact that the Louvain algorithm offers one of the best trade-
offs between the quality of the clusters it produces and its speed, it has some
stability issues. This is mainly seen in unweighted graphs, where the random-
ized order of the nodes in a pass can lead to very different communities; this
is due to the fact that there can be several community moves that lead to the
same change in the modularity function.

150 Community Detection

In order to produce more stable outcomes, one may use the concept of
ensemble clustering often referred to as consensus clustering. The main idea
behind this concept is to combine several partitions over the same dataset to
produce a final, more stable partition.

Let G = (V, E) be any weighted graph on n nodes. The Ensemble Clus-
tering algorithm for Graphs (ECG), see Poulin and Théberge (2019),
starts with ¢ randomized level-1 partitions Py, P, ..., P, of the set of nodes
that are obtained by ¢ independent runs of the first phase of the Louvain
algorithm and only once. (We do not discuss complexity issues in length but
let us point out that this step can be easily distributed as these ¢ runs are
completely independent.) Running a single level of the algorithm is a good
example of a weak learner, where nodes are grouped into many small clusters.
We assign new weights to edges of G as follows: for each uv € E,

(uv) wy + (1 — wy) - %Zle a;(u,v), if uv belongs to the 2-core of G,
w(uv) =
Wi otherwise,

where w, € [0, 1] is the parameter of the algorithm and a;(u,v) = 1if u and v
appear together in some part of partition P;; otherwise, a;(u,v) = 0. Clearly,
w(uv) € [ws, 1] and the minimum weight w, is assigned to edges that were
never put into the same part in any partition P;, or are outside of the 2-core.
Finally, the Louvain or Leiden algorithm is performed (till the very end, not
just level-1) on a weighted version of the initial graph G = (V, F). Note that
the original weights of the edges of G are discarded but, of course, they were
taken into account when creating partitions P;.

When running the ECG algorithm, the size ¢ of the ensemble and the
minimum edge weight w, are the only parameters that need to be supplied.
However, the results are not too sensitive to their choice (assuming ¢ is large
enough and w, is relatively close to 0) and the default values are usually
suitable, namely, ¢/ = 16 and w, = 0.05.

Another issue with the Louvain algorithm is that it may produce badly
connected communities, in the extreme situations the communities it pro-
duces could even be disconnected. The Leiden (Traag, Waltman, and Van
Eck, 2019) is a recently proposed modification of the Louvain algorithm
that, among other things, ensures that communities are connected. This is
achieved by periodically randomly breaking down communities into smaller
well-connected ones. The Leiden algorithm is implemented in igraph, and
is also available as an option for the last step of ECG. Finally, let us men-
tion that an improvement of Leiden algorithm has been recently proposed
as TAU algorithm (Gilad and Sharan, 2023), which uses genetic search to
improve its performance.

Graph Modularity 151

Resolution Limit

Recall that the modularity function compares the number of edges within one
part of a partition with the expected number of edges one would see in the
network with the same degree distribution but edges wired randomly. Such
random null-model implicitly assumes that each node in a network can be
potentially adjacent to any other node. This assumption is not reasonable in
practice, especially if the network at hand is large. Unfortunately, it has an
important implication known in the literature as the resolution limit that
can be summarized as follows: optimizing modularity function in large net-
works cannot find small communities, even if they are well defined (Fortunato
and Barthelemy, 2007).

Indeed, the expected number of edges between part A; and part A; # A;
in the corresponding Chung-Lu model G(d) is equal to

Z Z deg(v;) deg(v,) _ vol(A;) vol(4;)
v €EA; VjEA; 2|E‘ 2|E|
Hence, if vol(4;) < vol(A4,) < /2|E|, then the expected number of edges
between the two parts is smaller than one. If this happens, then a single edge
between them would be interpreted by algorithms that use the modularity
function that there is a correlation between them and would lead to merging
the corresponding two parts, as this operation would increase the modular-
ity function. In particular, even weakly interconnected complete graphs that
have the largest possible internal density and represent clearly identifiable
communities, would be merged together, provided the network is sufficiently
large.

In order to deal with the resolution limit, one may use the original Lou-
vain algorithm to find an initial partition P = (43, A, ..., A¢) of the entire
network. The goal is then to try to subdivide some large communities A; by
independently running the algorithm on G[A4;], the graph induced by part A;.
Alternatively, one may run ECG that tends to deal better with this issue. In
particular, for the ring of cliques mentioned above, it gives the weight w(uv)
close to one for edges within cliques but close to w, for edges between them,
thus reducing the risk of merging cliques. In Section 5.7, we experiment with
the ring of cliques and discuss this issue more.

Yet another solution, known as multiresolution method, adds a resis-
tance r € R to every node that can be viewed as a loop of weight r. Positive
value of r increases the aversion of nodes to form communities whereas nega-
tive value of r does the opposite. Independently, one may multiply the degree
tax by a universal constant v € Ry, that is, optimize the following function

ec(4; vol(A; 2
o) = X9 S () 5:9)

A;eA

instead of (5.5). We will refer to v as the resolution parameter. Algorithms

152 Community Detection

optimizing (5.6) will keep A; and A; (¢ # j) separated as long as the expected
number of edges between A; and Aj; in the null-model stays below 7.

Directed Graphs

Generalizing the modularity function to directed graphs (including weighted
directed graphs) is straightforward. As before, the goal is to compare the
number of directed edges of D that lie inside some part of a given partition
with the corresponding expected value based on the corresponding null-model.
In order to achieve it, one needs to generalize the Chung-Lu random graph
G(d), the random graph with expected degree sequence d, to directed graphs.

Let D = (V,E) be a directed graph on the set of nodes V =
{v1,v9,...,v,}. Let

dn = (degm(vl)7 degm(vg), . ,degm(vn))
dovt = (degom(vl), deg®(uvy), . .. ,deg"“t(vn))

be the degree sequence of D. For a given partition A = {43, As, ..., A¢} of
V', the modularity function is defined as follows:

in out

n(A) = Z epl(/|1,) B Z (vol (Al)g\;ol (Al)),
A;eA A;eA
where ep(A4;) = [{vjur € E : vj,vp € As}| is the number of directed edges
in the subgraph of D induced by set A;, vol™(A4;) = > .4, deg™(v), and
Vol (4;) = 32, ¢4, deg”(v). As before, the first term is called the edge
contribution whereas the second one is called the degree tax. All algorithms
that optimize the modularity function can be now reused to deal with directed
graphs.

5.5 Hierarchical Clustering

Graph clustering algorithms are unsupervised machine learning tools. In par-
ticular, it is usually assumed that the decision about the number of the com-
munities the set of nodes should be partitioned into should be made by the
algorithm. This is in contrast to, for example, k-means clustering algorithm
of data points in the form of d-dimensional vectors in which the number of
clusters, k, is provided as a parameter. Independently, other algorithms may
be run on top of k-means to select the number of clusters.

Alternatively, similarly to standard hierarchical clustering algorithms de-
veloped for tabular data (that is, data that is structured into rows, each of
which contains information about some feature), one may apply a general

Hierarchical Clustering 153

method of building a hierarchy of clusters. Strategies for such hierarchical
clustering algorithms generally fall into two natural types: agglomerative or
divisive. Agglomerative algorithms start with the trivial partition of the set
of nodes V into n clusters, where each cluster consists of a single node. At
each step of the process, an algorithm selects a pair of clusters with the largest
similarity and then these two clusters are merged into one. The process con-
tinues until we reach the other extreme trivial partition of V' with only one
cluster, V itself. Instead of this “bottom-up” approach, one may consider a
“top-down” approach that is used by the second family of hierarchical algo-
rithms. Indeed, divisive algorithms start with the trivial partition consisting
of a single cluster including the entire set V and then they try to refine the
partition by splitting one of the clusters into two. The process ends with the
partition in which each node is a singleton and forms its own cluster.

Regardless which of the two types of hierarchical clustering we use, the
outcome will be the sequence of n partitions, one for each number of parts.
Such outcomes can be conveniently represented by a dendrogram known also
as a hierarchical tree. (See Figure 5.4 in the section with experiments for
an example of a dendrogram.) On the left side we usually put the leaves of the
tree that correspond to the labels of the nodes of a graph. Going right, each
time exactly one pair of clusters is merged which is indicated by a vertical line
joining two vertical lines corresponding to the two clusters.

Hierarchical clustering algorithms provide an interesting point of view but
they have some clear limitations. First of all, they provide a sequence of n
partitions and it is often not clear which one should be used for a given network
and problem at hand. One natural approach is to benchmark these partitions
using some external criterion (such as the modularity function we discussed in
Section 5.4) and select the partition that yields the best “score.” This is what
the Girvan—Newman algorithm does by default. Moreover, these algorithms
are rather slow and so they cannot be used for large networks that we often
need to deal with in practice. Finally, note that the outcome of the process
heavily depends on the similarity measure (for agglomerative algorithms) or
dissimilarity measure (for divisive ones) between clusters. Below, we present
some specific implementations, one for each type, but there are many other
natural measures one may want to use. We discuss this more and provide
other alternatives in Section 6.3 in which similarity between nodes becomes
important again, this time to embed the nodes of a graph.

Ravasz (Agglomerative) Algorithm

In order to illustrate agglomerative algorithms, we consider the following par-
ticular implementation, Ravasz algorithm (Ravasz et al., 2002), that uses
the topological overlap matrix to measure similarity between nodes of an un-
weighted graph G. The idea behind it is to design a measure that is large for
pairs of nodes that belong to the same community and small otherwise.

154 Community Detection

Let G = (V,E) be any unweighted graph on the set of nodes V =

{v1,v2,...,v,} without any isolated nodes. The topological overlap

matrix S = (s(vi,v;)); je[n is a quadratic and symmetric matrix in which
[N (vi) NN ()] + bviv,eE

min{deg(v;), deg(v;)} + 0v,u,¢5

s(vi,v5) =

In the formula above, ¢ 4 is the Kronecker delta: 64 = 1 if A holds and
da = 0 otherwise. Let us point out that always s(v;,v;) € [0,1]. Moreover,
s(v;,vj) = 1 if and only if nodes v; and v; are adjacent and all neighbours
of v; (other than v;) are also adjacent to v; (or vice versa). On the other
extreme, s(v;,v;) = 0 if and only if the corresponding nodes have no common
neighbours and are not adjacent.

More importantly, matrix S provides a way to measure similarity between
nodes but during the algorithm, one needs to evaluate how similar two com-
munities are. Suppose that we are given two non-overlapping communities, A
and B; that is,) # ACV, () # B C V, and AN B = (. The three natural
choices are: single, complete and average cluster similarity, ss(A, B),
sc(4, B) and, respectively, s, (A, B) defined as follows:

ss(A,B) = min{s(a,b):a € Abe B}
sc(A,B) = max{s(a,b):a€ Abe B}
1
sq(A,B) = E] > s(ab).
acA,beB

The Ravasz algorithm uses the average.

As it is done in all agglomerative algorithms, this particular instance ini-
tially assigns each node to its own community and computes the topological
overlap matrix by evaluating s(v;,v;) for all (3) pairs of nodes. Then, one
needs to identify a pair of communities with the largest similarity and merge
them into a single community (in case of a tie, a decision is made randomly).
After that operation, the similarity matrix has to be updated (as noted above,
we store the similarities between communities in a matrix) which can be done
by computing similarities between the new community and all remaining com-
munities. We repeat this process until we reach the trivial partition consisting
of the whole set of nodes. Both the time and the space complexity of this algo-
rithm are ©(n?), provided that the average node degree in the graph is ©(1),
which is reasonable for small graphs but, as already mentioned, not scalable.

Hierarchical Clustering 155

Girvan—Newman (Divisive) Algorithm

In order to illustrate divisive algorithms, we consider the following particular
implementation, Girvan—Newman algorithm (Girvan and Newman, 2002).
Later on, we will discuss another example of such algorithms using matrix al-
gebra called Spectral Bisection Method. The goal of Girvan—Newman
algorithm is to systematically remove edges between nodes that we suspect
that they belong to different communities. From time to time, this operation
disconnects some connected component of a graph that is split into two, re-
sulting in another branch in the corresponding dendrogram. The goal now is
to design a measure between a pair of nodes that is large for pairs of nodes
that belong to different communities and small otherwise.

The idea used is closely related to betweenness centrality discussed in
Section 3.3. Recall that node betweenness is an indicator of highly central
nodes in a graph. Indeed, if many shortest paths go through node v, then
v plays a central role within the network. This notion naturally extends to
edges. For a given edge uv, the edge betweenness £(uv) is the number of
shortest paths between pairs of nodes that run along edge uv. If there is more
than one shortest path between a pair of nodes, each path is independently
considered. If a graph consists of communities that are only loosely connected
by a few edges between them, then all shortest paths between nodes in different
communities must go along one of these few edges. By averaging argument,
one of such edges must have large edge betweenness. (Consider, for example,
the George Washington Bridge, spanning the Hudson River between New York
City and Fort Lee, New Jersey, that is the world’s busiest bridge in terms of
vehicular traffic.)

Now, we are ready to explain details of the algorithm. We start from the
original graph G and compute the edge betweenness ¢(uv) of each edge uv € F.
In each step of the process, we remove an edge with the largest betweenness,
making a random decision in case of a tie, and we consider the connected
components as the communities. We then recompute the edge betweenness
for the new graph. These steps are repeated until we are left with an empty
graph on n nodes; each node belongs to its own community. The complexity
of the fastest algorithm to compute betweenness of m edges is ©(mn). Hence
the worst-case complexity of the Girvan—Newman algorithm is ©(m?n).
However, after one edge of the graph is removed, the algorithm has to recal-
culate the betweenness only of those edges that were affected by the removal,
which is at most those that are in the same component as the removed edge.
Hence, in practice, the complexity can be expected to be better than the
above worst-case scenario. In any case, as before, the conclusion is that this
algorithm is not scalable and so it cannot be used for large graphs we usually
need to deal with.

156 Community Detection

5.6 A Few Other Methods

In previous sections, we grouped clustering algorithms into two families: algo-
rithms based on the modularity function (Section 5.4) and hierarchical clus-
tering (Section 5.5). There are many other approaches worth highlighting and
our exposition is by no means exhaustive. In this section we present three
more algorithms that use different techniques and ideas than the ones dis-
cussed earlier.

Label Propagation Algorithm

Let G = (V, E) be an undirected graph. The first approach, the Label Prop-
agation algorithm (Raghavan, Albert, and Kumara, 2007), tries to make local
decisions based on the assumption that there are more edges present within
ground-truth communities in comparison to the number of edges between
communities. The algorithm starts with a trivial partition of V into n = |V|
communities, that is, each node belongs to its own community. Each node will
keep a label representing its community; hence, there are initially n labels. In
each phase of the algorithm, we investigate nodes in an order selected uni-
formly at random from the set of all permutations of V. Each investigated
node v adjusts (if needed) its label to the label that the majority of neigh-
bours of v have. If there are at least two labels present in the neighbourhood
of v with the same maximum number of occurrences, then v adopts one of
them uniformly at random. Some labels quickly propagate throughout the
network whereas some other disappear. The intuition behind the algorithm is
that highly connected groups of nodes should quickly reach consensus on one
of the labels and then such communities should expand, affecting other parts
of the graph.

The algorithm stops if at the end of a given phase each node has a label
that is consistent with the majority label of its neighbours. Note that if this
is the case, then a stationary state is reached and continuing the process will
not change anything. Unfortunately, it is not guaranteed that such stationary
state is reached and it is possible that the algorithm indefinitely cycles through
the same sequence of labels. As a result, in practice, the algorithm runs for a
predefined number of phases (say, 100) unless it earlier reaches a stationary
state.

The Label Propagation algorithm is very fast. However, on a negative
note, let us mention it is quite unstable and results can vary a lot at each run.
This is, of course, a common problem of clustering algorithms and one may
use some variant of a consensus clustering to obtain more stable variant of this
algorithm. For example, in order to find such consensus, one may generate m
partitions Py, Ps, ..., P, by independently running the Label Propagation
algorithm. Then, for a given measure of clustering quality we discussed earlier

A Few Other Methods 157

(for example, the Adjusted Mutual Information (AMI)), the consensus
partition P¢ is identified that maximizes Y ;" | AMI(P¢, P;).

Spectral Bisection Method

In this section we assume that a graph G = (V,E) on n nodes is simple,
undirected, and connected; if G is not connected, then one may independently
find communities in each connected component. Assume that our goal is to
partition the set of nodes V' = {vy,vs,...,v,} into two subsets. We will use
x; € {—1,1} to describe such partition: if z; = x; for some i # j, then v; and
v; belong to the same part. Indeed, this rule yields two equivalence classes
that partition the set of nodes V. Let x denote a column vector consisting of
Z;.

The model we use employs the graph Laplacian, that is, matrix L =
D — A, where A = (a(v;,v})); je[n] is the (symmetric) adjacency matrix and
D = (d(vi,v)))ijem = diag(Al) is the diagonal matrix with d(v;,v;) =
deg(v;) = 2?21 a(v;,v;). Our objective is to find a partition (vector x) that
minimizes the number of edges between the two clusters. Using the fact that
(z; — xj)2 = 4 if the two corresponding nodes belong to two different clusters
and otherwise (z; — z;)? = 0, this number can be conveniently written as:

L= 3 a(w(i), o) — 2;)/4 = xTLx/s.

i=1 j=i+1

Let us note, however, that the number of edges between the clusters (and
so equivalently the formula above) is trivially minimized when all nodes are
assigned to a single cluster (that is, all x;’s are equal to 1 or all are equal
to —1). Therefore, we insist that both clusters have sizes which are as close
to being equal as possible, which can be expressed as | Y., z;| <1 (that is,
the sum is equal to 1 or —1 if n is odd, and equal to 0 if n is even).

Unfortunately, minimizing L(x) subject to |, @;| < 1 when z; are
restricted to be in {—1,1} is a difficult combinatorial problem. Therefore,
we transform it to a simpler problem that can be solved more easily and
then round its solution to get the desired values of x;. The relaxation that
we do is to allow z; to be any real number. This auxiliary problem can be
written as finding the minimum of L(x) subject to 17x = 0 and xTx = n
in real numbers (note that when z; € {1,—1} we have that x”x = n). The
rounding procedure is simple: each solution of the auxiliary problem is rounded
to 1 or —1 whichever is closer; for completeness, if x; = 0, then 1 or —1 is
assigned randomly (note that in practice vector x is computed numerically
and it is extremely unlikely that xz; = 0 for some). Let us note that this
operation is equivalent to taking a sign of the solution obtained from the
relaxed optimization problem.

Note that the solution that we have found satisfies z; € {—1,1} but does
not have to satisfy | Y ., ;| < 1. Moreover, in general, it does not have to

158 Community Detection

minimize L(x) subject to this condition. However, in practice, it is a reason-
able and good approximation. Alternatively, one may take this solution as a
starting point and pass it to some discrete optimization algorithm to improve
it but, in practice, this is rarely done.

Let us come back to the relaxed optimization problem. In order to solve
it, let us note that L is symmetric and semi-positive definite. As a result,
it has non-negative eigenvalues and its eigenvectors are orthogonal. Observe
that this matrix (since it is assumed that the graph is connected) has exactly
one eigenvalue equal to 0 with the associated eigenvector 1. This eigenvector
is associated with the trivial partition that we ruled out, that is, in which
all nodes fall into one part. However, observe that all other eigenvectors of L
are orthogonal to 1 so they satisfy the condition 172 = 0 and have a strictly
positive norm. Therefore, using the linear algebra theory on eigendecomposi-
tion of the matrix, we may take a properly scaled eigenvector associated with
the second smallest eigenvalue of L (which we know is strictly positive) and
it will be a minimizer of L(x) subject to 17x = 0 and x”x = n, as needed.
The vector x we have just found is often called the Fiedler vector and the
second smallest eigenvalue of L is called the Fiedler value.

In summary, the Spectral Bisection Method (Fiedler, 1975) is con-
ducted in three steps. First, one needs to find matrix L; note that in practice
we do not have to fully materialize it as it is most likely very sparse. Next,
one needs to find the eigenvector corresponding to the second smallest eigen-
value. Finally, signs of the entries of this eigenvector yield the assignment of
nodes to the two communities. Note that this procedure can be then applied
recursively to find a more fine grained clustering.

Let us point out a few properties of the Spectral Bisection Method.
Note that it is an example of a wider class of community detection proce-
dures in which one first finds an embedding of nodes of a graph (we discuss
embeddings in Chapter 6) and then clustering is performed using one of the
traditional machine learning algorithms. As a practical comment, let us note
that the second smallest eigenvalue does not have to have a unique eigenvector
associated with it, that is, its multiplicity might be greater than 1. In such case,
any linear combination of these vectors is a minimizer of the relaxed problem;
fortunately, since graphs are large and have irregularities in their structure,
such undesired situation is highly unlikely in practice. Let us also note that
the optimization we performed is quite similar to modularity except that we
restricted ourselves to two parts and we insisted that they are well balanced.
If one wants to find parts with similar volumes instead of similar number of
nodes, then in the optimization procedure one should insist that 17Dx = 0
(instead of 17x = 0). Such approach would use one-dimensional Laplacian
Eigenmaps embedding (LEM) as a solution to the relaxed problem and we
describe it in Section 6.4.

Finally, in order to see the reason one might not want to ignore the degrees
of nodes in the partitioning, let us consider the following example. Take suf-

A Few Other Methods 159

ficiently large even value of n and consider two complete graphs on n nodes;
graph G has nodes labelled gi,92,...,9, and graph H has nodes labelled
hi,ha, ..., h,. Take their union and additionally add edges g;h; and g;h,_;
(i € [n]). Finally, add n nodes g; that are connected only to g; and hj that
are connected only to h; (i € [n]). There are two partitions that minimize the
number of edges between parts. The first one puts all g; and h; nodes in one
cluster and all g/ and A} into the second cluster. The second partition puts
all g; and g} nodes in one cluster and all h; and h} into the second cluster.
Intuitively, the first partition is very bad while the second partition is good.
If the volumes are considered instead of part sizes, the latter cluster would be
preferred. Fortunately, in this particular case, Spectral Bisection Method
as well as one-dimensional LEM recover the desired clustering as preferred
one (so, actually, in this case the relaxation helps since embedding nodes on
R captures the similarity of nodes better than embedding on {—1,1}).

Infomap

The next community detection algorithm uses yet another approach to detect
communities. It uses concepts taken from the information theory and hence its
name Infomap (Rosvall, Axellson, and Bergstrom, 2009). Having said that,
the optimization framework is very similar to what is done in the Louvain
algorithm discussed in Section 5.4. As in the original Louvain algorithm, one
starts with a trivial partition of the set of nodes and tries to optimize the well
defined quality function (in this case, the entropy function that we will define
soon) using similar heuristic optimization strategies.

Let us consider a relatively long random walk performed on a given undi-
rected graph G = (V| E). The sequence of nodes that are visited by the walk
preserves important information about the structure and the topology of the
network. In particular, since there are more edges within ground-truth com-
munities and relatively fewer edges between them, a random walk on a graph
with strong community structure often gets trapped within one community,
staying there for a long time before moving to the next community where it
gets stuck for a while again.

Using this intuition, one may benchmark a given partition A =
{A1, Ag, ..., Ay} of the set of nodes V as follows. The goal is to uniquely
represent the sequence of nodes visited by the random walk by a sequence of
zeros and ones. In this process, we need to label nodes in G but we are also
allowed to use two additional labels assigned to each community A;: the entry
label indicating that the walk entered A; and the exit label indicating that
the walk left A;. Each label (assigned to nodes, entry, and exit labels) is a
bit sequence and labels do not have to have the same length. In particular, if
some node within a community is visited very often by a random walk, then
it should get a shorter label than some other node in this community that is
visited less often. The benefit of using entry and exit labels is to allow the
same label to be assigned to many nodes as long as they belong to different

160 Community Detection

communities. As a result, the encoding of the walk should be shorter, provided
that there is some strong community structure in the network, as one has to
“pay” the cost of encoding entry and exit labels. The exit label needs to be
distinct from the node labels within the same community but it can be the
same as label of some other nodes or exit/entry labels, as long as there is no
ambiguity in reconstructing the random walk.

In order to build an intuition how codes that vary lengths of labels work,
let us pause our discussion on clustering for a moment and consider the UTF-
8 encoding of characters!. In this encoding, each character is encoded using
1, 2, 3, or 4 bytes. Regular ASCII characters use only 1 byte, and have the
first bit always set to 0. This means that we can encode 128 characters this
way following the pattern Ozrzzxrxx, where x is either 0 or 1. Characters that
are encoded on two bytes follow the pattern 110zxxxx 10xxzrzz. Note that the
first bit of the sequence is 1 and so there is no risk that a two byte encoded
character will be confused with one byte encoded character. Similarly, three
and four byte characters are encoded as 1110xxxx 10rzrrrr 10rrrrrr and,
respectively, as 11110zzz 10zzrrrr 10rrrrrr 10rrrrre.

One might wonder why non leading bytes of the encoding use 10 prefix.
Indeed, more compression could have been achieved if this restriction were not
imposed. However, the benefit of this approach is that UTF-8 encoded string
has a property of being more resistant to errors in communication. If we see
a byte starting with 70, then we know that it is not a start of a character
so we are sure we will not start decoding an UTF-8 string from an incorrect
position.

Observe also that the encoding rules make sure that when we see the start
of the character, we immediately can identify the length of the encoding. It
is then natural to use shorter encodings for characters that are encountered
more often in the texts and longer encodings to characters that are rare. As a
result, typical texts that mostly use ASCII characters and only sporadically
non-ASCII characters are represented compactly.

Let us now come back to Infomap. The main assumption behind this algo-
rithm is that good partitions (that is, those that are close to the ground-truth)
have the property that there exists a short representation of the random walk
from the family of possible representations we have described above. From the-
oretical point of view, the length of a shortest representation is well defined
but finding it might be computationally challenging. Fortunately, one may use
results from information theory, in particular, the fundamental and classic re-
sult known as the Shannon’s source coding theorem that establishes the
limits to possible data compression. This result implies that a shortest pos-
sible bit-string representing the random walk has the average number of bits
per one step of the walk equal to the corresponding entropy function that in

Isee en.wikipedia.org/wiki/UTF-8

Ezxperiments 161

this case is given by the following map equation:

¢
L=LA)=q HQ)+ Zpi - H(P). (5.7)

In equation (5.7), ¢ is the fraction of time steps the walk spends moving
between parts, and p; is the fraction of time steps it spends within part A; and
leaving it. The quantities H(Q) and H (P;) are information-theoretic entropies.
The entropy of a sequence R of r objects is given by

H(R) = — Z Rilog,(R;),

where R; is the fraction of times that object ¢ appears in the sequence. (Al-
ternatively, one may define the entropy for the corresponding discrete random
variable with r possible outcomes.) In equation (5.7), H(Q) is the entropy
of the sequence of entry labels and H(P;) is the entropy of the sequence of
node labels and the exit label of part A;. Hence, indeed, one may benchmark
a given partition A without actually assigning any labels to nodes. Similarly,
we do not even need to generate a random walk as one may compute ¢ and
pi’s simply by analyzing the structure of graph G. Finally, let us mention that
one can perform all the required steps quickly and so the running time of
Infomap is in practice comparable to the one of Louvain.

5.7 Experiments

Let us start with the Zachary karate club graph that we already experimented
within this chapter. The ground-truth of this small graph consists of two com-
munities which we illustrate in Figure 5.2. Many graph clustering algorithms,
including the ones based on the modularity function, often find a large num-
ber of communities as the optimal split and so are typically far away from the
truth.

Given the two ground-truth communities, let us first verify if those com-
munities satisfy the definitions of weak and strong communities introduced in
Section 5.2. In order to check whether the two communities form strong com-
munities, we need to compare the internal degree and external one for each
node. In doing so, we find that every node satisfies the strong community con-
dition except two nodes: node 2 has both internal and external degrees equal
to 5 whereas node 9 has exactly one neighbour in each community. On the
other hand, if we consider the total degree for each community, we find that
one community has the total internal degree 66 and the external degree 10
while the other community has the total internal degree 70 and the external
degree 10. Hence, both clearly qualify as weak communities.

162 Community Detection

®
® @
® @@
® ©
@@®@
®
e 4 ®
® ® @ ®
® 0® @
®
FIGURE 5.2

Zachary karate club graph with the ground truth communities.

We can also characterize the role of each node in the Zachary graph as
described in Section 5.2. We computed the normalized within-module
degree z(v) for every node v, as well as the participation coefficient
p(v), both based on the two ground-truth communities. Given the terminol-
ogy introduced in Section 5.2, there are three types of nodes in this graph:
(i) provincial hubs (z(v) > 2.5,p(v) < 0.3), (ii) peripheral non-hubs
(2(v) < 25,0.05 < p(v) < 0.62) and (iii) ultra-peripheral non-hubs
(z(v) < 2.5,p(v) < 0.05). In Figure 5.3(a), the provincial hub nodes are
displayed as squares, the peripheral nodes as white circles, and the ultra-
peripheral nodes as darker circles. Two nodes are of special interest: node 33
is the club’s president and node 0 is the instructor; recall that the two ground-
truth communities are due to the split of the club with members following one
of those two individuals. In Figure 5.3(b), we plot the nodes with respect to
the z(v) and p(v) scores. Nodes 0 and 33 appear as strong hubs, while node
32 is close to the boundary between hubs and non-hubs.

Hierarchical Clustering

Next, we consider the Girvan—Newman hierarchical clustering algorithm.
Recall that this algorithm produces a hierarchy of node partitions, and the
best one is chosen according to some external criterion, such as the modularity
function, of a pre-selected number of parts. This is often summarized using
a visual representation called dendrogram which we show in Figure 5.4 (the
node indices are represented on the left).

Ezxperiments 163

®
® ©
® @@
® [o]
@@@@
®
(®) @
@ ®
@ ® Ble
® @®®
(@)

(a) Zachary karate club graph with hubs shown as squares and
ultra-peripherial nodes in darker colour.

[1Y A
N provincial hubs
node 33/ \

node 0

2 node 32 —g
peripheral non-hubs

N node 1 e

-

[— node 3 L] (]
ultra peripheral non-hubs

normalized within module degree (z)

°

0.2 0.3 0.4 0.5
participation coefficient (p)

(b) 2(v) vs. p(v).

FIGURE 5.3
Two different views of the node roles as characterized by the z(v) and p(v)
scores.

Regardless whether we use a divisive algorithm (such as Girvan—
Newman) or an agglomerative one (such as Ravasz), the dendrogram can
be always read in two ways. Going from left to right in Figure 5.4, we start
from a partition in which each node belongs to its own community and we

164 Community Detection

FIGURE 5.4
Dendrogram obtained with the Girvan—Newman hierarchical clustering al-
gorithm performed on the Zachary graph.

gradually merge communities; for example, nodes 32 and 33 are merged first,
then node 29 is added to this cluster, etc. We may also look at the dendrogram
from right to left. In this case, we start with a single community consisting
of all nodes and break this community up into two parts each time we reach
a fork. For example, the first split divides the nodes in two parts (top and
bottom group of nodes), and the next split isolates node 9 that forms its own
community.

Each hierarchical clustering algorithm returns n partitions, and it might
be the case that the whole dendrogram is of interest. However, if one asks for a
single partition, then by default the Girvan—Newman algorithm returns the
partition from the dendrogram that yields the largest modularity function. As
it is illustrated in Figure 5.5, in the case of the Zachary graph this optimum is
achieved with a partition into 5 communities. Alternatively, one may simply
choose the partition that yields some preselected number of clusters.

In many practical cases, choosing the partition with the largest modularity
is a good and reasonable choice. Since the ground-truth is usually unknown,
this is the best one can do in an unsupervised setting. However, we do have the
ground-truth in this case and so we may compare the quality of different parti-
tions using, for example, the Adjusted Mutual Information (AMI) score.

Ezxperiments 165

0.4

0.3 4

modularity
o

°©
S
L

0.0 1

0 5 10 15 20 25 30 35
number of clusters

FIGURE 5.5

Modularity function is often used to determine the number of clusters. Here
we show the results for the Zachary graph for which the modularity function
is maximized for 5 clusters.

In Figure 5.6, we show the resulting communities when we cut the dendro-
gram to have two communities (as with the ground-truth), or five communities
(that maximizes the modularity). In the case of two communities, shown in
Figure 5.6(a), the modularity is ¢ = 0.36 and AM I = 0.83. In fact, only node
2 is placed in a wrong community in comparison to the ground-truth. With 5
communities, we get ¢ = 0.40 but AMT = 0.55. In Figure 5.6(b), we colour the
nodes with respect to the ground truth, and the label on each node indicates
its community when we consider highest modularity. Other than breaking up
each ground-truth community into two parts, node 2 is mislabelled and node
9 is disconnected from the rest and forms its own community. As we observed
at the very beginning, those are exactly the two nodes that do not satisfy the
strong community condition, that is, not having strong association with their
respected ground-truth communities.

We repeat the above experiment on a small ABCD graph with 100 nodes.
This graph has three ground-truth communities and so we can compare the
AMI score and the corresponding modularity for each possible cut of the
dendrogram. In Figure 5.7, we see a very strong correlation between the two
scores; in fact, in this case, the largest modularity is achieved with three com-
munities and the obtained communities are exactly the same as the ground
truth (so that AMT = 1). While three communities yield optimal value of
the modularity function, there is a small difference, for example, when one in-

166 Community Detection

o @ © 6@y ©
® ® @ @ ©
® - ® -~
o ®® °© ° ®©
©e @ o ©0 o @ o
> N ° ® @ °
@ @ @ ® ® ® ®
® ® ® @ @ ® ® ® ®® ®
® ®
(a) 2 communities (b) 5 communities
FIGURE 5.6

Clustering the Zachary graph with the Girvan—Newman algorithm. In (a),
we show the result when we force 2 communities. In (b), we force 5 commu-
nities and use the clusters as labels while colouring the nodes with respect to
the ground-truth.

sists on having 4 communities: modularity drops slightly from 0.480 to 0.476,
and we get AMI = 0.95. In Figure 5.8, we show the ABCD graph with
the dendrogram cut to get 4 communities. In this example, we see a com-
mon behaviour of many graph clustering algorithms that recover many of the
ground-truth communities but, say, one of them is split into two. In this case,
the larger nodes that form a triangle are put into a separate community. As
usual, we direct the reader to the notebook for more details.

Community-based measures

We consider a small ABCD+-o0 graph with the same characteristics as the one
shown in Figure 5.8, but with 10 outlier nodes. (Recall that there is an option
in ABCD benchmark, where one can have some nodes that do not belong to
any community.) We computed some measures using the communities found
with the Leiden algorithm, namely, community distribution distance (cdd),
community association strength (cas), and participation coefficient (pc). Re-
sults are shown in Table 5.9, where we report the range from the first to the
third quartile for the three ground-truth communities and for the remaining,
outlier nodes.

We see that outlier nodes tend to have smaller values for cdd and cas,
and larger values for the pc. Thus, such measures can be useful to discover
nodes that are not strongly associated with a particular community. We also
illustrate this in Figure 5.10, where the nodes are coloured with respect to
their ground-truth communities; outlier nodes are shown in black, and node
sizes are inversely proportional to the community association strength (cas)
for each node. We see that most outlier nodes have smaller cas values.

Ezxperiments 167

1.01 —e— modularity
—e— AMI

0.8 1

0.6

0.4

modularity or AMI

0.2 4

0.0

T

0 20 40 60 80 100
number of clusters

FIGURE 5.7
Clustering an ABCD graph with the Girvan—Newman algorithm. We com-
pare AMI scores with the corresponding modularities.

One can perform a similar experiment on a real graph that depicts games
played between American college football teams? (Girvan and Newman, 2002).
There are 115 teams in this dataset, and the teams are divided into 12 confer-
ences which constitute the communities. Most teams play a majority of their
games within their own conference, but there are a few exceptions, namely 14
out of 115 teams do not follow this rule. We show this graph in Figure 5.11
using a Fruchterman-Reingold layout. Different communities are plotted
with different shades of grey, and the anomalous nodes are shown as triangles.
A colour version of this figure as well as more background details can be found
in the accompanying notebook.

We computed the same community-based features for this graph, showing
the resulting values in Figure 5.12, using the communities obtained with the
ECG algorithm. We see very good separation for each measure between the
anomalous and non-anomalous nodes.

Quality Measures

In this chapter, we saw several measures of quality for clusterings, and we
concluded that adjusted versions should be used in general. Let us illustrate
here why this is recommended by doing the following simple experiment. We
generated a graph G using the ABCD model with the following parameters:

2yww-personal .umich.edu/~mejn/netdata/

168 Community Detection

°)
) °
() o © [] o q O o
N o o ?
@ (6} ® ® o %0 4)
°
e o °
° e _® o 2 o e
(o} o o °
°o o 7 o) \
o
° & o 5 © = =08
e R oo 0
° o
° e ° o 5/ o °
* o_0o /
° X7 a2 d/
o) 7 [——
Ooo/ © o °
o ©
o
FIGURE 5.8

Clustering an ABCD graph with 3 ground-truth communities when the al-
gorithm is forced to find 4 communities. One of the ground truth community
is split and its smaller component, shown with larger nodes, form a triangle.

the number of nodes n = 1,000, the degree distribution exponent v = 2.5 with
degrees in the range [5,50], the community size exponent 7 = 1.5 within the
range [75, 150], and the mixing parameter £ = 0.1. The obtained graph consists
of 10 ground-truth communities. Next, we generated random partitions into
s parts, for 2 < s < 20. For each choice of s, we randomly generated 100
such partitions and computed different quality scores against the ground-truth
partition.

Since those partitions are all random, assuming we wanted to compare the
scores between partitions of different sizes, one should not expect much differ-
ences in the corresponding scores as we vary s. Moreover, it would be natural
to expect that the scores should all be close to zero. We summarize our results
in Figure 5.13. On the left plot, we compare the three variants of the mutual
information scores: the original one (MI), normalized (NMI) and adjusted
(AMI). We clearly see that MI and to a lesser extend NMI grow as a function
of s, thus leading to the false conclusion that having 20 random clusters is bet-
ter than having 2 random clusters. On the other hand, AMI is not influenced
by the value of s and remains close to 0 for all values (as it should). In the
right plot, we compare the RAND index (RI) and its adjusted counterpart
(ARI). The difference here is even more pronounced, with large RI values
that increase with s, while the ARI remains close to 0. We also compare the
results with some recently proposed graph-aware measures, where the com-

Ezxperiments

TABLE 5.9

Comparing the range from the first to the third quartile values
for the community-based measures on a small ABCD+o graph

with three communities plus some outlier nodes.

169

community cdd cas pc
1 (0.580, 0.647) (0.468, 0.532) (0.238, 0.320)
2 (0.589, 0.769) (0.472, 0.639) (0.071, 0.320)
3 (0.587, 0.827) (0.481, 0.682) (0.000, 0.333)
outliers (0.307, 0.392) (0.197, 0.280) (0.515, 0.577)

parison is restricted to the pairs of nodes sharing an edge. We show results for
the graph-aware RAND index (GRI) and its adjusted version (AGRI).
Such measures tend to behave in a manner that is the opposite of their non
graph-aware counterparts when the number of clusters varies, as we see on the
plot for the non-adjusted measures. The conclusion is the same as before: we
strongly recommend using adjusted measures such as AMI, ARI or AGRI
when comparing results obtained by clustering algorithms.

Modularity and Resolution Limit

Several graph clustering algorithms rely on optimizing the modularity func-
tion. As already mentioned earlier, this approach is known to have some draw-
backs, one of them is well illustrated by considering rings of cliques. A ring
of cliques is a graph that consists of £ complete subgraphs (cliques) of size s,
with exactly one edge between cliques ¢ and 7 + 1 for 1 <4 < ¢, and one edge
between clique £ and clique 1. Hence, there are n = £s nodes and m = (;)E +/
edges in this graph. We illustrate an example of such graph in Figure 5.14(a),
with ¢ = 10 cliques of size s = 3 (triangles).

In Figure 5.15, we consider the Leiden algorithm where the objective
function is to optimize the modularity. We investigated the resulting number
of communities when considering the ring of cliques with s = 3 and 3 < £ < 48.
We see that such algorithms often yield the number of communities that is
much smaller than the number of cliques. This is due to the fact that the
optimal value of the modularity is achieved by clumping contiguous cliques
into the same community, as we illustrate in Figure 5.14(b). This can be
improved by increasing the resolution parameter of the modularity function
(see (5.6)), or by using an ensemble methods such as ECG, as we see in
Figure 5.15.

Nodes of Interest: k-hops vs. Community

Graph clustering is a useful unsupervised tool to study the structure of a
graph and look for dense communities. However, there are other uses for such

Community Detection

170
o
p o
] ooo o o
o 0 o !
o (@]
OO o o) o
TN ®, °
o o o © 00 o
(@] o (©]
° OO (@] o . ® P (¢]
e
T SV ® °
¢ (e} o (5} (©)
o @ (6] (6}
o ® 0k)
o oo (0} o) ®
o ® ® e ©
(@] Q@ ...
o e © e e
@ o o (5}
(6}
o ©
FIGURE 5.10

Three ground-truth communities and 10 outlier nodes (shown in black) of
ABCD+o0 graph. Node sizes are inversely proportional to their community

association strength (cas).

o)
R AR ° o
e © (o) A 1) (@) @
e o o < e
2 oo g0 - P o
<3 A O e o
-2 2 o0 o o o
o o ©° A o)
o S o
% ° XS g
V. ¥ ° o® o © o
°
0°, "0 ® o
[] [ORN) ‘
i oo o o °
e © ° e o
" 2 ® L
¥ o e v °
® o
FIGURE 5.11

The American college football graph with communities shown in different
shades of grey. Anomalous nodes are shown as triangles.

Ezxperiments 171

anomaly

0.8 . * X False
B True

0.7 1 :

0.6

Value
o
(6]

0.4+

0.3 .

0.2

pc cas cdd
Measure

FIGURE 5.12

Distribution of community-based features for the American college football
graph. We see very good separation between anomalous and non-anomalous
nodes.

algorithms and we illustrate one of them here. Our goal is to answer the
following question. Given a large graph and some node of interest v, how do
we sample the graph in order to restrict ourselves to the subgraph of nodes
with the most interactions with node v7 One possibility is to look at v’s
ego-net, that is, the subgraph obtained by considering only node v and its
immediate neighbours, set N(v) U {v}. This can be extended to include nodes
within distance k from node v. A disadvantage of this approach is that it can
quickly yield large subgraphs and does not take edge density into account.
Another approach one may want to consider is to perform graph clustering,
and consider the cluster containing node v. With hierarchical clustering, one
may additionally vary the level at which the dendrogram is cut to control the
size of the subgraph containing v. With ECG, one may filter with respect
to the induced edge weights (the number of votes) to control the size of the
subgraph.

We illustrate this process using the airport graph which we already con-
sidered in Section 3.7. For simplicity, we ignore edge weights and directions.
In Figure 5.16(a), we look at the ego-net for airport MQT (Marquette, MI)
which has degree 11. In Figure 5.16(b), we look at the 2-hop neighbourhood
of the same airport that already contains 221 nodes! The node of interest is
shown in black and we always restrict ourselves to the 2-core of the subgraph.
In Figure 5.16(c), we show the resulting community consisting of 46 nodes

172 Community Detection

——- NMI 0.8

0.6

N e RI

0.04 1\ === GRI

: o4 \ —— ARI/AGRI
N

0.02 S e 021 ~

0.00 0.04

25 5.0 7.5 10.0 125 15.0 17.5 20.0 25 5.0 7.5 10.0 125 15.0 17.5 20.0
number of random clusters number of random clusters

(a) mutual information (b) RAND index

FIGURE 5.13
Comparing various quality measures for random partitions with varying num-
ber of parts.

this node falls into when the ECG algorithm is applied. We may reduce this
subgraph by only considering the edges with a large number of votes in the
ensemble; in this case, we keep edges with ECG induced weight above 0.85,
and we consider only the connected component containing the node of inter-
est. As we see in Figure 5.16(d), as a result we find a tight subgraph consisting
with 18 nodes, which contains 11 airports from MI, 6 from WI, and 1 from
MO; of course, this may exclude some nodes from plot (a).

Comparing Clustering Algorithms

Let us illustrate a typical approach to compare graph clustering algorithms
using benchmark graphs. We use the ABCD benchmark model with the fol-
lowing parameters: n = 1,000 nodes, node degrees between 10 and 50 with the
power law exponent 2.5, and community sizes between 50 and 100 with the
power law exponent 1.5. The mixing parameter £ in the ABCD benchmark
controls the level of noise: at £ = 0 we have pure communities (no inter-
community edges) and at the other extreme, £ = 1, we have a random graph
with no community structure.

In Figure 5.17, we show the resulting AMI values for 4 graph clustering
algorithms: Leiden, ECG, Infomap and Label Propagation. We gener-
ated ABCD graphs with the above parameters and the mixing parameter in
the following range: 0.3 < £ < 0.8. For each value of £, we independently gen-
erated 30 graphs. The curves in Figure 5.17 are obtained by taking the mean
AMI values over those 30 graphs. As expected, all algorithms are very good
at recovering the ground truth communities for small values of £, which corre-
spond to dense communities with a small number of inter-community edges.
As we increase &, we see that the performance of Label Propagation quickly
decays; the other algorithms seem to be able to tolerate a slightly higher level

Ezxperiments 173

° o
o o
e © o o © o
® e ° © o o
e o ® o
o ° ® o7 °
(6] ® o o
° " ® o ©
e o . ® o
6] @ & o
° o
° °
° o © ° o °
° o
(a) 10 3-cliques (b) modularity-based clusters
FIGURE 5.14

Example of a ring of ten 3-cliques (a) and resulting communities with
modularity-based algorithm (b).

of noise. Such studies can be done with various types of benchmark graphs
and clustering algorithms.

Finally, let us have a look at the stability of those results from two different
angles. In Figure 5.18(a), we plot the standard deviation of the AMI values
we reported in Figure 5.17. From that plot we see a similar pattern for each
algorithm: the standard deviation is relatively small until the results start to
degrade (which happen at different values of £ for each algorithm), and it goes
down again for large values of £ (where AMI values are low). Note that with
Label Propagation and Infomap, the values we obtain for the AMI score
are almost flat zero for large values of £, thus the low variability.

In Figure 5.18(b), we plot the mean AMI values we obtain when we run
each algorithm twice on the same graph and compare the two corresponding
partitions, a process which we repeated 30 times for each choice of £&. We
see that the Infomap algorithm is almost deterministic, and so is Label
Propagation up to the noise level where it starts to degrade. Note that both
algorithms are stable for graph with high level of noise, albeit with very low
AMI as we saw in Figure 5.17. The modularity-based algorithms (Leiden and
ECG) show more variability for graph with high level of noise, as they tend to
recover various “parts” of the community structure (as seen in Figure 5.17),
but with some degree of variability.

174 Community Detection

50
- Leiden
-+o- Leiden (res.=5)
—— ECG
40
kel
c
>
L
w
T 30
2
(%]
=)
©
[t
o
i 209
fe)
€
>
c
10 A
10 20 30 40 50
number of 3-cliques
FIGURE 5.15

Modularity-based algorithms such as Leiden applied on the ring of cliques
graph often merge cliques thus resulting in a smaller number of communities
compared to the ground-truth. Ways to improve the result include setting
higher resolution parameter (we show the results with v = 5 instead of the
default v = 1), or using an ensemble algorithm such as ECG.

5.8 Practitioner’s Corner

Graph clustering is a useful tool for mining graphs with a number of pos-
sible applications including finding communities, focusing on smaller, dense
subgraphs around a given node (or a set of nodes) of interest, and visualiza-
tion. Graph clustering is an unsupervised tool and, unless we are considering
some synthetic benchmark model with embedded community structure (such
as ABCD, LFR or BTER), there are no known “ground-truth” communi-
ties. To that effect, definitions such as weak or strong communities are useful
to assess the value of the communities we obtain; this is important in unsu-
pervised conditions since true dense communities may simply not exist in a
given graph.

Hierarchical clustering algorithms allow us to consider several granularities
for the communities which may be useful in practice. Other graph clustering
algorithms, such as Louvain or CNM, often try to optimize the modularity
function. The modularity is usually correlated with the ground-truth (at least
for benchmark graphs) but the communities we find are often split or merged
versions of the ground-truth.

Practitioner’s Corner 175

o) o
o
o
® o
o
o]
. O
o o
o
o / pe
o
o © o
(a) (b)
o o)
o o o
o o ©°
o o
o
o o o
o °
o © o o
o o
o
o Z ©o © o o
o A ° o
s o ») *
o o o
o}
o ©
o o0 O o
o o © o o o
o o
o o
(c) (d)
FIGURE 5.16

Various ways to look at subgraphs around the node corresponding to MQT
(in black) in the airport graph. In (a) and (b), we consider respectively the
1- and the 2-hop ego-nets. In (c) we keep the ECG cluster containing MQT,
and in (d) we filter this cluster keeping only edges with large number of ECG
votes.

176 Community Detection

One known issue with modularity based algorithms is the resolution limit
problem; for example, merging natural and strong communities such as cliques
sometimes leads to higher modularity. One way to reduce this problem is
to increase the resolution parameter in the modularity function or use an
ensemble learning approach such as ECG that also allows to quantify the
strength of each edge of being “within” a community. Finally, let us stress it
again that the ground-truth is usually not available for real graphs, so strong
conclusions should generally be avoided and graph clustering should be used
mainly as an EDA tool.

5.9 Problems

In this section we present a collection of potential practical problems for the
reader to attempt.

1. Run various clustering algorithms (ECG, Leiden, Louvain, In-
fomap, Label Propagation, Girvan-Newman, and CNM) for
the karate club graph. For each algorithm tested, compare the par-
tition found by the algorithm with the ground-truth (two commu-
nities) by computing the AMI score.

104 remm———
0.8
0.6
=
<<
0.4
0.24 — ECG
——- Leiden
—-= Infomap
0.04 Label Prop.
0?3 0?4 OjS 0r6 0?7 018
ABCD noise (&)
FIGURE 5.17

Comparing resulting communities vs. ground-truth for ABCD graphs with
varying noise parameter &.

Problems 177

' — ECG

i --- Leiden

i —-= Infomap
~++ Label Prop

o

0.8

Standard Deviation (AMI)

— ECG
-=- Leiden
—-= Infomap .
e LabelProp. Tseoll

AMI between successive runs

0.0

03 04 05 06 0.7 038 03 0.4 05 06 07 08
ABCD noise (&) ABCD noise (&)

(a) different graphs (b) same graphs

FIGURE 5.18

Comparing the stability of clustering algorithms in two ways: (a) standard
deviation of the AMI values over different ABCD graphs, and (b) mean
AMI when running each algorithm twice over the same graph and comparing
their community structures.

2. Run various clustering algorithms (ECG, Leiden, Louvain,
Infomap, Label Propagation and CNM (Girvan-Newman
might be very slow but you can give it a try anyways) on the GitHub
ml graph. Which algorithms produce similar results? In order to an-
swer this question, for each pair of algorithms, find the AMI score
between the two results.

3. Re-do the experiment used to generate Figure 5.17 but addition-
ally include the CNM algorithm. That is, for each graph tested,
run the CNM algorithm and use it for comparison to the ground-
truth (AMI). (If the experiment is slow, then generate less than 30
graphs.)

4. Similarly to the experiment used to generate Figure 5.17, indepen-
dently generate 30 copies of the ABCD graph with varying noise
parameter &’s, and run the Leiden algorithm to obtain different
partitions that represent communities. For each partition compute
the average ratio deg™(v)/deg®(v) over all nodes in the graph
(see the definition of strong community). Plot the average of the
average ratios for all partitions over 30 graphs. Independently, for
each partition compute the fraction of communities forming a weak
communities, and plot the average fraction over 30 graphs.

5. Take the ABCD graph we used to test quality measures (see Fig-
ure 5.13). Check node roles. Compute how many nodes we have in
each family (recall that there are 4 families of non-hubs and 3 fam-
ilies of hubs). Plot the (z(v), p(v)) scores for all nodes as we did in
Figure 5.3 for the karate club graph.

6. Compare time complexities of various clustering algorithms (ECG,

178 Community Detection

Leiden, Louvain, Infomap, Label Propagation, Girvan-
Newman, CNM) using an ABCD synthetic graph with differ-
ent number of nodes, say, n = 100, 200, 400, 800, 1600, Which
algorithm is the slowest, which one is the fastest?

7. Re-do the experiment with the ring of cliques (Figure 5.15) but
instead of using s = 3 (triangles), check s =5 (K35) and s = 7 (K7).

8. Consider the 100-node ABCD graph shown in Figure 5.8 (see the
notebook for details on how to generate it).

a. For each node, compute the community-based measures in-
troduced in this chapter (normalized within-module degree,
participation coefficient, community association strength and
community distribution distance). Use the ground-truth com-
munities.

b. Compute the Pearson’s correlation coefficients between the
vectors obtained in part a. What do you observe and why?

c. Find the 5 nodes with the smallest community association
strength and plot the graph highlighting those 5 nodes. What
do you observe?

5.10 Recommended Supplementary Reading

e F. Radicchi, C. Castellano, F. Cecconi, V. Loreto, D. Parisi. Defining and
identifying communities in networks. PNAS (2004), 101:2658-2663. (Com-
munities)

e R. Guimera, L.A.N. Amaral. Cartography of complex networks: modules and
universal roles. J. Stat. Mech.-Theory E. 2005 (2005), P02001. (Node Roles)

o J. Leskovec, A. Krevl. SNAP Datasets: Stanford Large Network Dataset
Collection (2014). http://snap.stanford.edu/data (SNAP)

e P.W. Holland, K.B. Laskey, S. Leinhardt. Stochastic blockmodels: First steps.
Social Networks 5 (1983) 109-137. (Stochastic Block Model)

e A. Lancichinetti, S. Fortunato, F. Radicchi. Benchmark graphs for testing
community detection algorithms. Phys. Rev. E, 78 (2008), 046110. (LFR
Model)

e B. Kaminski, P. Pratat, F. Théberge. Artificial Benchmark for Community
Detection (ABCD) — Fast Random Graph Model with Community Struc-
ture. Network Science 9(2) (2021), 153-178. (ABCD Model)

Recommended Supplementary Reading 179

MEJ Newman, M. Girvan. Finding and evaluating community structure in
networks. Phys. Rev. E. 69 (2004), 026-113. (Graph Modularity)

A. Clauset, M.E.J. Newman, C. Moore, Finding community structure in
very large networks. Phys. Rev. E 70 (2004), 066111. (CNM Algorithm)

V.D. Blondel, J.-L. Guillaume, R. Lambiotte, E. Lefebvre. Fast unfolding
of communities in large networks. Journal of Statistical Mechanics: Theory
and Experiment (2008), P10008. (Louvain Algorithm)

V.A. Traag, L. Waltman, N.J. Van Eck. From Louvain to Leiden: guarantee-
ing well-connected communities. Scientific reports 9(1) (2019), 5233. (Leiden
Algorithm)

S. Aref, H. Chheda, M. Mostajabdaveh. The Bayan Algorithm: Detecting
Communities in Networks Through FExact and Approximate Optimization
of Modularity. arXiv (2023), https://arxiv.org/abs/2209.04562. (Bayan
Algorithm)

G. Gilad, R. Sharan. From Leiden to Tel-Aviv University (TAU): explor-
ing clustering solutions via a genetic algorithm. PNAS Nexus, 2(6), 2023,
pgad180. (TAU Algorithm)

V. Poulin, F. Théberge. Ensemble Clustering for Graphs: Comparison and
Applications. Applied Network Science 4 (2019), 51. (ECG Algorithm)

S. Fortunato, M. Barthelemy. Resolution limit in community detection. Proc.

Natl. Acad. Sci. USA. 2007: 104: 36-41. (Resolution Limit)

E. Ravasz, A.L. Somera, D.A. Mongru, Z.N. Oltvai, A.-L. Barabési. Hierar-
chical organization of modularity in metabolic networks. Science 297 (2002),
1551-1555. (Ravasz Algorithm)

M. Girvan, M.E.J. Newman. Community structure in social and biological
networks. P. Natl. Acad. Sci. USA 99 (2002), 7821-7826. (Girvan—-Newman
Algorithm)

U.N. Raghavan, R. Albert, S. Kumara. Near linear time algorithm to detect
community structure in large-scale networks. Phys. Rev. E 76 (2007), 036106.
(Label Propagation Algorithm)

M. Fiedler. A Property of Figenvectors of Nonnegative Symmetric Matrices
and its Application to Graph Theory. Czechoslovak Mathematical Journal
25(4) (1975) 619-633. (Spectral Bisection Algorithm)

M. Rosvall, D. Axellson, C.T. Bergstrom. The map equation. The European
Physical Journal Special Topics 178 (2009), 13-23. (Infomap)

180 Community Detection

e V. Poulin, F. Théberge. Comparing Graph Clusterings: Set partition mea-
sures vs. Graph-aware measures. IEEE Transactions on Pattern Analysis
and Machine Intelligence 43(6) (2021), 2127-2132. (Graph-aware measures
for comparing partitions)

e G.M. Slota, J. Berry, S.D. Hammond, S. Olivier, C. Phillips, S. Raja-
manickam. Scalable generation of graphs for benchmarking hpc community-
detection algorithms. IEEE international conference for high performance
computing, networking, storage and analysis (SC) (2019). (BTER)

e C.L. Staudt, M. Hamann, A. Gutfraind, I, Safro, H. Meyerhenke. Generating
realistic scaled complex networks. Applied network science 2(36) (2017), 1-
29. (ReCoN)

e T.J. Helling, J.C. Scholtes, F.W. Takes. A Community-Aware Approach for
Identifying Node Anomalies in Complexr Networks, In: Aiello, L., Cherifi, C.,
Cherifi, H., Lambiotte, R., Li6, P., Rocha, L. (eds) Complex Networks and
Their Applications VII. COMPLEX NETWORKS 2018. Studies in Compu-
tational Intelligence, vol 812. Springer, Cham, 2019. (Anomaly score)

e B. Kaminski, P. Pralat, F. Théberge, S. Zajac. Predicting properties of nodes
via community-aware features, Social Network Analysis and Mining 14(117)
(2024). (Community association strength, community distribution distance)

e N.X. Vinh, J. Epps, J. Bailey. Information Theoretic Measures for Cluster-
ings Comparison: Variants, Properties, Normalization and Correction for
Chance. Journal of Machine Learning Research 11 (2010), 2837—-2854. (AMI)

e L. Hubert, P. Arabie. Comparing partitions. Journal of Classification 2(1)
(1985), 193-218. (ARI)

The Karate Club dataset introduced in this chapter originates from:

o W.W. Zachary, An Information Flow Model for Conflict and Fission in
Small Groups, Journal of Anthropological Research, (33) 452-473 (1977).

The college football graph was first introduced and analyzed in:

e M. Girvan, M.E.J. Newman, Community structure in social and biological
networks, PNAS 99(12), (2002) 7821-7826.

6
Graph Embeddings

6.1 Introduction

The goal of many machine learning applications is to make predictions or
discover new patterns using graph-structured data as feature information.
For example, one might want to better understand a person’s role within
the collaboration network, similarity between users interacting on Amazon
or Yelp, a protein’s behaviour in a biological interaction network, or make
recommendations to users of some social media platform.

In order to extract useful structural information from graphs, one might
want to try embedding it in a geometric space by assigning coordinates to
each node such that nearby nodes are more likely to share an edge than those
far from each other or are similar. In particular, in the case of link prediction,
a good embedding should have the property that most of the network’s edges
can be predicted from the coordinates of the nodes. We will refer to such em-
beddings as classical node embeddings. On the other hand, in the case of
node classification, one might want to include information about the global
position of a node in the graph or the structure of the node’s local graph
neighbourhood. Such embeddings will be called structural node embed-
dings. Other applications might require different properties to be preserved.
Hence, unfortunately, in the absence of a general-purpose representation for
graphs, very often graph embedding requires domain experts to craft features
or to use specialized feature selection algorithms.

The very first graph embedding techniques from the early 2000’s were
designed as dimension reduction methods for non-relational data. Such data,
possibly living on a manifold, can be represented as a graph in several ways.
For example, each data point can be mapped to a node in a graph, and edges
are built via some affinity-graph transformation such as k-nearest neighbours
(for a given node v corresponding to a data point, one adds an edge between v
and its k-nearest neighbours) or e-ball (simply one adds edges between points
at distance at most €). Since then, embedding algorithms evolved and now
are commonly used for datasets already represented as a graph. In order to
produce an embedding, one needs to assume that some proximity measure
between the graph’s nodes is provided. With a clear objective at hand, there
are still various possible techniques and approaches that one may try to utilize

181

182 Graph Embeddings

to generate the desired embedding. Hence, it is not uncommon that the user
is left with several embeddings of its nodes in some multidimensional spaces
(possibly in different dimensions) and tries to decide which one should be used.
Fortunately, there are some unsupervised tools that may be used to evaluate
these embeddings.

As an illustration of the topics covered in this chapter, we consider a
Twitch gamers social network (Rozemberczki and Sarkar, 2021).> The graph
consists of 168,114 nodes representing users and 6,797,557 (undirected) edges,
where an edge between two users indicates mutual followers. With such a
large graph, visualization is challenging and a vector space representation of
nodes obtained with some embedding algorithm becomes useful. We illustrate
this in Figure 6.1, where we show the result of an embedding of the Twitch
graph using Node2Vec algorithm (this algorithm will be discussed later in
the chapter), followed by a mapping in 2-dimensions with UMAP (Mclnnes
and Healy, 2018) for visualization purpose. There are over 20 different la-
belled languages for the users. We highlight a few of those, showing that the
embedding tends to group the users posting in the same language. Note that
English is the most widely used language, making the bulk of the nodes in
the central cluster. More plots using colour representations can be found in
the accompanying notebook. Such a representation of the nodes is useful for
various tasks such as clustering (unsupervised learning), classification (when
some node labels are known) and link prediction, to name a few.

This chapter is structured as follows. After highlighting the fact that there
are two types of node embeddings (classical and structural) (Section 6.2), we
first introduce a few proximity measures between nodes that a good embed-
ding algorithm might want to preserve (Section 6.3). Then, we highlight a
few techniques to achieve it, including algorithms that use linear algebra, are
based on the theory of random walks, and the ones which use deep learning
(Section 6.4). Because of the abundance of various algorithms, it is important
to be able to select the best embedding from a large collection of embeddings
to choose from (or at least, to ignore the bad ones). We present one unsuper-
vised framework to benchmark embeddings (Section 6.5). We tried to focus on
the most important aspects of embeddings, but clearly there are many other
interesting directions in this area that the readers might want to explore (Sec-
tion 6.6). As usual, we finish the chapter with experiments (Section 6.7) and
provide some tips for practitioners (Section 6.8).

Finally, let us mention that in this chapter we concentrate on embedding
nodes of a given graph. Embedding graphs that belong to some family of
graphs is separately discussed in Chapter 9.

'https://snap.stanford.edu/data/twitch_gamers.html

Classical and Structural Node Embeddings 183

Twitch dataset embedding

French Spanish German

Other

FIGURE 6.1
An example of an embedding of nodes of the Twitch graph into a two-
dimensional space. A few of the languages used are highlighted.

6.2 Classical and Structural Node Embeddings

As already mentioned in the introduction to this chapter, we distinguish two
families of node embeddings: classical node embeddings and structural
node embeddings. The first family is very rich with already over 100 al-
gorithms proposed in the literature. Informally speaking, classical node em-
beddings fall into broad and diverse family of embeddings that try to assign
vectors in some high dimensional space to nodes of the graph that would al-
low for its approximate reconstruction using such encapsulated information.
Different classical embedding algorithms use different approaches to achieve
this task. Some of them, in order to extract useful information from graphs,
try to create an embedding in a geometric space by assigning coordinates to
each node such that nearby nodes are more likely to share an edge than those
far from each other. Some other approaches postulate that pairs of nodes that
have overlapping neighbourhoods (not necessarily intermediate ones) should
have similar representations in the embedded space. Independently, the tech-
niques to construct the desired classical embeddings can be broadly divided
into the following three groups: linear algebra algorithms, random walk based
algorithms, and deep learning methods.

184 Graph Embeddings

Classical embeddings work well for machine learning tasks such as link
prediction but they do not guarantee good performance, for example, in tasks
such as community labeling that can be viewed as a classification task or role
detection. The reason is that in these machine learning problems, when do-
ing inference, it is important to preserve structural characteristics of nodes.
Informally speaking, by structural characteristics of nodes we mean the struc-
ture of nodes’ ego-nets (that is, induced subgraphs of given nodes and their
neighbourhoods up to some fixed depth) but disregarding node labelling. The
simplest form of one-dimensional structural embeddings are node features such
as degree or local clustering coefficient. For example, two nodes might both
have large and comparable degrees or similar pageranks (and, as a result, end
up close to each other in the embedded space) but be distant from each other
in terms of concrete neighbours (and so they would be far apart in classical
embeddings). The family of structural node embeddings is much smaller but
it is expected to grow in the near future.

6.3 Problem Formalization

Let G = (V, E) be a weighted graph on the set of nodes V' = {vy,v9,...,v,}.
For simplicity, we first deal with undirected graphs before briefly commenting
on how one can deal with directed graphs. An embedding is a function
£:V — R*, where k is much smaller than n. In other words, the embedding
represents each node as a low-dimensional feature vector. The goal of the
function £ is not only to decrease the dimension but to also preserve pairwise
proximity between nodes as best as possible. In this section, we introduce a
few natural proximity measures to be preserved in the embedded space. Each
of them produces a matrix S = (s(v;,v;)); je[n], Where s(v;, v;) measures the
proximity between nodes v; and v; as a non-negative real number. Since the
distance between two points in R* is symmetric, it is desirable for matrix S
to be symmetric (though not all proximity measures guarantee this property).
If S is not symmetric, then it is left for the embedding algorithm to interpret
this and come up with a good function £. Note also that the diagonal of S
has a special role. Various methods produce different values on the diagonal
but, in general, these values should be ignored by embedding algorithms.

Problem Formalization 185

The first-order proximity is the local pairwise similarity between nodes
connected by an edge. Two nodes are simply more similar if they are connected
by an edge with larger weight.

Let G = (V, E) be any graph on the set of nodes V- = {vy,va,...,0,}.
The first-order proximity si(v;,v;) between node v; and node v; is
the weight of the edge v;v;, that is, s1(vi,v;) = a(vi,v;), where A =
(a(vi,v5))i jen) is the adjacency matrix.

The second-order proximity compares the similarity between the neigh-
bourhoods of the nodes. The more similar two nodes’ neighbourhoods are,
the larger the second-order proximity value between them is.

Let G = (V, E) be any graph on the set of nodes V- = {vy,va,...,u,}.
The second-order proximity ss(v;,v;) between node v; and node v; is
a similarity between v;’s neighbourhood

s1(vi) = (s1(vi, v1), 81(vi, v2), - - -, 81(Vi, Un))
and v;’s neighbourhood
sl(vj) = (Sl(vj7v1)7 Sl(vjav2)’ B Sl(vj’vn))'

This similarity can be measured, for example, using the cosine similarity
metric, which is a standard measure of similarity between two non-zero
vectors. It is defined as the cosine of the angle between them which is the
same as the inner product of the corresponding normalized vectors, that
is,

n
s1(vi,vp) s1(vsi,v
Sg(vi,vj) _ 25:1 1() e) 1(VK e)

V510,002 /Yy s1(vs, 002

These definitions naturally generalize to higher-order proximities. For any
k € N\ {1, 2}, the kth-order proximity sj(v;,v;) between node v; and v; is
the similarity between v;’s (k—1)st neighbourhood s;_1(v;) and v;’s (k —1)st
neighbourhood sg_1(v;).

There are many other possible ways to measure proximity between nodes.
Alternatively, one may want to use some centrality measure such as the Katz
Index, Personalized PageRank, Common Neighbours, or Adamic-Adar. The
first definition builds on the Katz centrality measure discussed in Section 3.2
(Katz, 1953). It tries to capture the relative influence of a node within a
network by considering walks of any length but penalizes longer walks by
introducing the attenuation factor a.

186 Graph Embeddings

Let G = (V, E) be any graph on n nodes. Fix any « such that 0 < a <
min{1,1/|A|}, where X\ is the leading eigenvalue of adjacency matrix A.
The Katz Index S5 is defined as follows:

Sfl(atz _ i(a . A)z _ (I/OZ _ A)_lA,
=1

The next centrality measure, personalized PageRank, is inspired by the
well-known PageRank centrality measure. Personalized PageRank depends on
two parameters: the jumping constant a and the seed node s € V. In this
variant, which is commonly used by web search engines to find the most rele-
vant pages to a given request, a random walk continues with probability a and
goes back to the seed node s with probability 1 — «. The original definition of
PageRank centrality measure is the special case of its personalized counter-
part where each time the teleportation takes place, a seed is uniformly sampled
from V. The personalized PageRank proximity matrix is then constructed by
combining the n columns, each of length n, generated by considering all nodes
as seeds for the personalized PageRank procedure described above (Berkhin,
2005).

Let G = (V,E) be any graph on n nodes. Fix any 0 < a < 1. The
Personalized PageRank SEPR is defined as follows:

1
SPPR — (1 —a) (I - aAT))
where matrix A is defined in (3.6).

Let us mention that SEFR is usually not symmetric. We will encounter the
same problem for directed graphs. As mentioned above, this can be dealt with
at the level of the embedding algorithm. Alternatively, one may apply some
natural transformation to make the matrix symmetric. We will come back to

this at the end of this section.

In the next definition, we simply count the number of nodes that have
both v; and v; as their neighbours. As mentioned earlier (see, for example,
equation (3.4)), the element (v;,v;) of A* is equal to the number of walks of
length %k from node v; to node v;. Using this observation, we get the follow-
ing definition that is closely related to the topological overlap matrix we
discussed in Section 5.5.

Problem Formalization 187

Let G = (V, E) be any graph on n nodes. Given adjacency matrix A, the
Common Neighbours SN is defined as follows:

SN = A2,

The next proximity measure is a variant of the common neighbours mea-
sure. This time given two nodes, the proximity measure between them is the
sum of the reciprocals of the logarithms of the degrees of their common neigh-
bours. As a result, the fact that two nodes are common neighbours of some
nodes that have very large neighbourhoods is less significant (Adamic and
Adar, 2003).

Let G = (V, E) be any graph on the set of nodes V' = {vy,va,...,0,}.
The Adamic-Adar S** is defined as follows:

1
544 (v, v5) = Z In(deg(vy))’

g €N (v;)NN (v;)

for i # j and s44(v;, v;) = 0.

Let us now turn our attention to directed graphs for which matrix A might
not be symmetric. There are various methods proposed within the literature
to handle this situation. The simplest ones are either to ignore it and compute
S using the original adjacency matrix A, or to consider (A + AT)/2 instead,
that is, to transform the graph to its undirected counterpart by replacing two
directed edges between v; and v; (in both directions) with a single undirected
edge which has a weight equal to the average weight of the two corresponding
directed edges. However, even after implementing such an averaging opera-
tion, some proximity measures might still produce an asymmetric proximity
matrix S. If this happens, then one may leave it for the embedding algorithm
to deal with. Some algorithms such as Local Linear Embedding (LLE)
and High Order Proximity preserving Embedding (HOPE), which
are mentioned in the next section, are explicitly designed to handle this situ-
ation. Alternatively, one may simply pass a symmetric matrix (S + S7)/2 to
an embedding algorithm in lieu of S.

The last proximity measure that we would like to mention, SimRank,
can be used to explicitly compute S for directed graphs. The idea behind it
is similar to other second-order proximity measures but it does not require
the neighbouring nodes of the considered pair of nodes to be identical; it is
enough if they are similar (Jeh and Widom, 2002).

188 Graph Embeddings

Let D = (V,E) be any directed graph on the set of nodes V =
{v1,v2,...,v,}. The SimRank SSR is defined as follows: 9B (v;,v;) = 1,
s9R(v;,v;) = 0 if in-degree of v; is equal to 0 or in-degree of v; is equal
to 0. For the remaining pairs of nodes, the following recurrence relation
should be satisfied:

C n n

SR SR

s° (v, v5) = —= = g ga(vk,vi)ﬂ(ve,v')'s (vk, ve),
7 deg™ (vy) deg™ (vy) = '

where C' € [0,1] is a universal normalizing constant.

It is easy to see that the SimRank is uniquely determined for any normal-
izing constant C' € [0,1]. The simplest method of approximating S is to start
with a diagonal matrix I and iteratively apply the above recurrence relation
to it. As a consequence, the entries of S matrix belong to the interval [0, 1]
and larger similarity scores correspond to pairs of nodes whose in-neighbours
are on average also similar.

6.4 Techniques

In this section, we discuss various methods for embedding the nodes of a graph
in a vector space. The goal is not to create an exhaustive list of embedding
algorithms with all details of their implementations carefully explained, but
rather to build an understanding of possible approaches and techniques to
construct the desired embeddings. We start with a few classical node em-
beddings; see Section 6.2 for a brief discussion about the difference between
classical and structural node embeddings.

Linear Algebra Algorithms

Local Linear Embedding (LLE), see Roweis and Saul (2000), is a simple
instance of matrix factorization which uses the (weighted) adjacency matrix A
whose elements a(v;, v;) represent the weight of an edge v;v;. This algorithm
works for both undirected and directed graphs so, in order to cover both
scenarios, we do not assume that A is symmetric but it might be. Recall that
for any node v; € V, N°“'(v;) C V denotes the set of out-neighbours of v;. In
what follows, we assume that for all nodes v; the set N°“!(v;) is non-empty.
Let e; = £(v;) be the embedding of node v;. For convenience, let E be the
k x m matrix consisting of vectors e; that form the columns of E. It will be

Techniques 189
useful to denote by (v, v;) elements of matrix A defined in (3.6), that is,
a(u,v) = a(u,v)/ deg®* (u)

(recall that deg®*(u) > 0).
With LLE, our goal is to locally and linearly approximate e; by a weighted
sum of the embeddings of its neighbours, that is, e; should be close to

n
E a(v;, vy)e E a(v;, vy)e
vjENUt(v;) Jj=1

We may rewrite it conveniently in a matrix form as a task of minimizing the
following optimization function:

o)~ o aw],

where |[|-|| z is the Frobenius norm that is a natural extension of the Eu-
clidean norm to matrices in R™*™: for any B = (b j)ic[m],je[n) € R"*™,

Since clearly B, = HBTH , we may alternatively express the objective
F

function as

@(E):H((I—A)ET)THF:HE(I—A)TH :HE(I-AT)HF. (6.1)

F

We immediately note that, for example, E = 0y, is a valid solution
to unconstrained problems of this sort. Therefore, it is natural to add some
additional conditions that will allow us to find a non-degenerate embedding
matrix E. First, note that A1 = 1 by construction of matrix A. Therefore,
®(E) = ®(E + x17) for any k-dimensional vector x. Indeed, in order to see
this observe that

I-A)x" =1x" —A1xT =1xT —1x" = 0.

Therefore, we assume that E1 = 0, that is, we insist that rows of E are centred
around the origin. In order to further constrain the admissible solution space,
we require that rows of E have equal norms and are mutually orthogonal. This
condition is typically expressed as EET /n = I, which together with E1 = 0,
means that rows of E have a unit covariance. The interpretation is that if we
know one dimension of embedding E, it provides no information about the
missing dimensions; the linear prediction of the missing values for any node
is equal to 0. Given these conditions, the solution is still identified only up

190 Graph Embeddings

to the rotation. Indeed, for any rotation matrix R (that is, R” = R™! and
det(R) = 1), we get that

RE1 = R0=0
RERE)"/n = REE'R’/n=RIR" =RR"=RR' =1,

and, since it is known that the Frobenius norm is invariant with regards to
rotations, we get that

O(RE) = HRE(I - AT)HF - HE(I - AT)HF — ®(E);
in the formulas above we used the alternative definition of ® where the em-

bedding matrix is the first term in the product under the Frobenius norm—
see (6.1).

In order to minimize the objective function ®(E), it is convenient to rewrite
it as tr(B(I — A)T(I — A)ET), where the trace tr(C) of a square matrix C
is defined to be the sum of elements on the main diagonal of C. Now, since
M = (I— A)T(I— A) is symmetric and semi-positive definite (z7 Mz > 0
for any vector z € R™) we know that M has non-negative eigenvalues. Note
then that 0 is its smallest eigenvalue and is associated with an eigenvector
1 which we ruled out earlier. Since M is symmetric, all of its eigenvectors
are orthogonal. It follows that, with the exception of the disallowed 1 vector,
they meet the condition of being centred in the origin if we consider their
inner product with 1 eigenvector, which is equal to 0. A final observation
is that tr(E(I — A)T(I — A)ET) is minimized for E whose rows are the k
eigenvectors corresponding to the smallest eigenvalues of (I — A)T(I — A),
excluding the smallest eigenvalue that is equal to 0 (which produces a non-
centred eigenvector as discussed above). Note that, when normalized, these
eigenvectors meet the desired condition EE? /n = I, as they are orthogonal.

In summary, in order to minimize ®(E) one needs to find the k + 1 eigen-
vectors of the n x n matrix (I — A)T(I — A) corresponding to the smallest
k+ 1 eigenvalues and discard the eigenvector 1 that corresponds to the small-
est eigenvalue that is equal to 0 (recall that k is much smaller than n). From
a numerical perspective, let us mention that there exist algorithms that allow
one to find these eigenvectors without evaluating the product (I—A)7(I—A).
Finally, when we take an interpretive perspective, we observe that LLE tries
to find an embedding such that the vector e; corresponding to node v; is close
in the embedded space to vectors that are associated with nodes that are ad-
jacent to node v;—this brings to mind the first-order proximity mentioned in
Section 6.3.

The Laplacian Eigenmaps algorithm (LEM), see Belkin and Niyogi
(2001), uses the graph Laplacian matrix L = D — A, which assumes that A is
symmetric and D = (d(vi,v5))i jeln = diag(A1) is the diagonal matrix with
d(vi,v;) = deg(v;) = Z?=1 a(v;,v;). This time our goal is to minimize the

Techniques 191

following optimization function:

OE)= > e —¢l* avi,v;) = tr(ELE”),
(vi,vi)EV?

that is, points that are connected by heavily weighted edges should be close
to each other in the embedded space.

Similarly as for LLE, we see that 0 is a solution to this equation that we
rule out. As before, we insist that ED1 = 0 and EDE” = I with the same
interpretation as for LLE; the only difference is that this time we also weigh
the nodes by their degrees. Denoting E' = ED/2, we see that our problem
is equivalent to minimizing tr(E'D~'/2LD~/2E'") subject to E'ET = L
Therefore, we may apply the same sort of reasoning that we applied to LLE
to conclude that the problem can be solved by computing the eigenvectors of
the normalized Laplacian matrix D~'/2LD~!/2 corresponding to its smallest
k + 1 eigenvalues (excluding the eigenvalue equal to 0, which we ruled out
above; note that the 0 eigenvalue always exists and has multiplicity of one,
provided the graph is connected).

From an interpretive perspective, similarly to LLE, LEM tries to find
an embedding such that the vector e; representing node v; is close in the
embedded space to vectors that represent adjacent nodes. In both methods,
the goal is to locally and linearly approximate the location e; of node v; by
a weighted sum over all locations of its outgoing neighbours. The difference
is that in LLE the weights are normalized to one for each node whereas in
LEM nodes that have many and/or heavy adjacent edges get more weight in
the objective function. Finally, note that in this procedure one can replace A
by any proximity measure S as long as it is symmetric. As a result, one can
easily apply these techniques to some other proximity measure instead of the
first-order proximity.

The last approach we would like to highlight that uses linear algebra to
find a suitable embedding minimizes the following loss function

P(E)=|S- ETE||F,

where S is some proximity measure matrix and, as usual, the columns of
matrix E are the embeddings. This amounts to keeping the inner product of
the embedding vectors of two given nodes as close as possible to the similarity
between the nodes in the graph. This is a general approach in which any
proximity measure, including these that we discussed in Section 6.3, can be
used. In particular, let us mention about the HOPE algorithm (Ou et al.,
2016) which is an interesting instance of this approach aimed at embedding
nodes in directed graphs. For every node v;, we define two embeddings, e ;
and e; ;, the source and, respectively, the target embedding. Let E; and E;
be the corresponding matrices of the source and the target embeddings. The
loss function for HOPE for a given similarity matrix S, is defined as follows:

O(E,,E¢) = ||S—EIE,..

192 Graph Embeddings

Depending on the application at hand, one might later utilize E; or E, for
further analysis. Alternatively, one may vertically concatenate both embed-
dings to capture the differences between the roles that nodes play as sources
and targets within the graph (at the cost of increasing the dimensionality of
the resulting embedding).

As usual, let us make some general comments about this approach. Im-
plementations of algorithms from this class of embeddings involve performing
a singular value decomposition of matrix S. From the perspective of inter-
preting the embedding we can make the observation that if two nodes v; and
v; are embedded close to each other, then they have similar values in the
corresponding columns of matrix S.

Finally, let us note that this setting is quite flexible. In particular, one
can easily adjust the objective function to satisfy any desired property that
can be specific to an application at hand. For instance, the HS — ETEHF is
sensitive to the values on the diagonal of matrix S, and one might want to add
a correction in order to avoid this potentially undesired behaviour. Similarly,
regularization of matrix E is often considered and results in a higher quality
outcome.

Algorithms Based on Random Walks

Random walk based node embedding methods are derived from the
Word2Vec algorithm (Mikolov, 2013) for word embedding commonly used
in Natural Language Processing (NLP). Word2Vec is based on the as-
sumption that “words are known by the company they keep.” For a given
word, an embedding is produced by forming context windows from sentences
containing the word. A context window for a given word typically consists of
(up to) ¢ preceding and ¢ following words in a sentence. We assume that we
have a set of words W and each word is uniquely associated with a number
in [w], where w = |W]|.

The Word2Vec implementation we consider uses a model known as Skip-
Gram to learn the embedding. For example, consider a context window of
size 5 (that is, we take £ = 2) and the sentence: “Graph embedding maps
nodes to vector space.” The model is trained to predict the words in italics
given the word “nodes” as input. Similarly to HOPE which we discussed
earlier, SkipGram associates two embedding vectors with each word. Let E;
and E; be the respective matrices of all “source” and “target” embeddings.
These two matrices try to capture relationships between the input words and
the words that they aim to predict and vice versa. In both matrices, the i-
th columns (denoted respectively as es; and e;;) are associated with word
1 € [w]. As a result, these matrices have dimension k x w, where k is the
desired dimension of the embedding.

Techniques 193

Given a word i € [w], the probability p; ; that we see word j € [w] in its
neighbourhood is approximated by the softmax function ¢; ; as follows:

7 exp(ef jes.i)
Tij = W —) (6.2)
0=1 SXP\€; ¢€s,i

The model is trained using maximum likelihood estimation.

In order to adapt such word-based techniques to graphs, we need to find
analogous notions of words, sentences, and nearby words that apply to graphs,
and adjust the objective function that needs to be optimized. The main chal-
lenge is that for typical empirical graphs the number of nodes is much larger
than the size of the corpus of words in the typical setting wherein NLP tech-
niques are applied. In order to highlight techniques used in this area, we
concentrate on two selected algorithms, Deep Walk and Node2Vec, and
describe their respective approaches to this task.

The common and general idea is as follows. The words are simply the nodes
of a graph, and we generate sentences (sequences of nodes) via random walks
on a graph. The exact procedure of how one performs such random walks
differs for the two algorithms. We perform the random walk for a pre-defined
number of steps and then “extract” the sentences from it. For example, if
we consider a tiny directed graph in Figure 6.2, then some possible walks of
length 4 are: A—-B—~C—+B,B—-D—-C—B,andC —>B—D—C.

FIGURE 6.2
Random walks on directed graphs.

In the Deep Walk algorithm (Perozzi, Al-Rfou, and Skiena, 2014), the
family of walks is sampled by performing random walks on G, typically be-
tween 32 and 64 per node, and for some fixed length. The walks are then used
as sentences. Depending on the size of the context window, it is therefore
possible to explore node’s neighbourhood beyond its first- and second- order
proximity. Now, for each node v;, the algorithm tries to find an embedding e;

194 Graph Embeddings

of v; that maximizes the approximated likelihood of observing the nodes in the
context windows obtained from the generated walks, assuming independence
of observations.

Let us mention briefly some important complexity challenges that affect
the algorithm. In practice, it is not possible to use the model given in (6.2)
to make the predictions since, as mentioned above, the number of nodes is
usually much larger than the number of words in the typical NLP applica-
tion. The denominator in (6.2) is very expensive to compute and potentially
numerically unstable. Therefore, the procedure uses a predictive model called
hierarchical softmax. In this approach, each node in the graph is repre-
sented as a leaf in a binary tree, and a binary classifier is fitted at each split of
this binary tree. Each of these classifiers takes the embedding of source nodes
as its input and then approximates the probability of observing a target node
as a product of the approximated probabilities produced by the classifiers from
root to leaf in the binary tree. Note that in this way we only need to evaluate
O(Inn) classifiers (where n is the number of nodes), whereas the complex-
ity of evaluation of (6.2) is much larger, namely, ©(n)). Finally, let us note
that in this approach the embedding e; that is learned corresponds to es; in
Word2Vec.

Node2Vec is another popular algorithm (Grover and Leskovec, 2016;
Abraham, 2020). In Node2Vec a parameterized random walk is considered.
Depending on the parameterization, the random walks are respectively biased
towards the following two extremes:

e Breadth-First Search (BFS): walks tend to stay near the initial node,
mimicking the BFS algorithm, or

e Depth-First Search (DFS): walks tend to move away from the initial
node, mimicking the DF'S algorithm.

The DFS walks tend to preserve the macro-view neighbourhood of a node
while BF'S aims at preserving the micro-view. The user may smoothly move
between these two extremes by changing the parameters of Node2Vec, as
required by a given application. In this algorithm, the approximation of prob-
abilities follows (6.2) with two adaptations. It is assumed that E, = E;. More-
over, in order to solve the problem of ©(n) complexity of evaluation of (6.2),
a negative sampling approximation procedure is applied. In short, the main
idea is that when using maximum likelihood estimation to approximate the
denominator in (6.2) in each step of the optimization, instead of considering
all nodes in the graph, we simply restrict ourselves to all nodes observed in
the context window and sample only nodes that are not observed (hence the
word negative in the name of the procedure).

Techniques 195

Deep Learning Algorithms

There are several deep learning methods that have successfully been used
to produce node embeddings. These algorithms are quite complex so we will
not provide fully detailed explanations. Our goal is merely to provide a brief
overview of a few of those algorithms to give the reader a taste of this flavour
of graph embeddings.

The first algorithm is an autoencoder, a type of artificial neural network
that is a commonly used in deep learning to represent complex objects such as
images. The goal is to provide a low dimension representation that allows for
the original object to be reconstructed as accurately as possible from its low
dimensional representation. The aim of an autoencoder is to train the network
to ignore signal “noise.” The reductionary element is learnt at the same time as
the reconstructionary element while the autoencoder tries to generate from the
reduced encoding a representation that resembles its original input as closely
as possible. Autoencoders are trained to minimize reconstruction errors (such
as squared errors), which is often referred to as the loss function.

Structural Deep Network Embedding (SDNE) belongs to this family
of algorithms (Wang, Cui, and Zhu, 2016). It aims to preserve both the first
and the second order proximity. Recall that the first order proximity is derived
directly from weights of the edges while the second order indicates similarity
between nodes’ neighbourhoods—see Section 6.3 for formal definitions. In the
case of SDINE, the autoencoder takes the node’s adjacency vector as input
and tries to learn its embedding. As usual, let k& be the dimension of the
embedding. Formally, the encoder E: R" — RF is an /-layer neural network
that takes n-dimensional input and produces a k-dimensional embedding. On
the other hand, the decoder is a function D: R* — R™. The two functions, F
and D, together form the autoencoder. If one denotes the adjacency vector
corresponding to node v; with a; (if the adjacency matrix A is symmetric,
then a; is its i-th row or column), then e; = F(a;) is the desired embedding.
As mentioned above, the goal of the autoencoder is to get D(F(a;)) as close
to a; as possible, which assures that the embedding correctly captures the
graph’s second-order proximity. It is left to define what exactly is meant by
close in this context.

Let us define a diagonal matrix B;, which has 1 in position b; ; if a; ; =0
and b; ; = 8 for some parameter 3 > 1if a; ; > 0. The quality of an embedding
for node v; is then measured by the following function ||(a; — D(E(a;)))B;]|.
As a result, more weight is put on dimensions of the embedding where there
is a link between nodes. Now, in order to ensure that the embedding also
preserves the first-order proximity, we use the approach of LEM and addi-
tionally require that tr(ELET) is small. Therefore, in order for an embedding
to simultaneously preserve the first and the second order proximity, we find

196 Graph Embeddings

functions £ and D that minimize the following loss function:

> @i — D(E(ai))Bil|* + a - tr(ELE") + Ly,

i=1

where parameter o controls the relative importance of the first and the sec-
ond order proximity measures as determined by the user, and L., is a penalty
function applied to parameters of neural network autoencoder to prevent over-
fitting.

The next embedding algorithms that we highlight are structural node em-
beddings. They typically use a similar approach to the Recursive Feature
Extraction (ReFeX) procedure in which features are computed for all
nodes, followed by aggregation of the neighbours’ features for each node, a
process that can be repeated for several rounds (Henderson et al., 2011; Hen-
derson et al., 2012). This is a fairly general approach and we will concentrate
on providing a high-level perspective on the intuitions behind the algorithm.

Initially, each node in a graph has some set of values assigned to it, which
can be some external metadata or some property of the node such as its de-
gree, clustering coefficient, etc. Let f° denote these initial features associated
with node v;, and let f° be the corresponding vector of such features (so fY is
a vector of vectors). In each step of the algorithm, we first perform an aggre-
gation using some function a, typically the mean or the sum. Formally, in step
s € N, we compute f7 = a({fjsf1 17 € N(v;)}) to get f* (again, it is a vector
of vectors). Next, we perform a process of feature pruning. In the extreme
case, one may use the complete set of feature vectors for each node, that is,
the set {f7 : j € [s] U {0}}. However, it is better to select some subset I* of
features that provide information which is not redundant; for example, if two
features f® and f° are very similar, only one of them is retained using some
rule. The algorithm terminates after some predefined number of steps t, or
when at step t we have It C U;;é 17, that is, no new features are retained in

step t. After termination, vectors from the set U;:O I7 are taken to form rows
of a matrix E, for example, by concatenation of vectors contained in them.
As a particular application of this general approach, the i-th column of E can
be seen as an embedding of node v;.

The idea of recursion and aggregation described above is used in deep learn-
ing embedding algorithms such as Graph Convolution Network (GCN)
and GraphSAGE. Their general procedure is akin to the following approach.
We fix the initial embedding e? for node v; to be some node attributes provided
by the user such as node metadata or some graph statistics. For each node v;,
the algorithm performs the following operation K times. In step s € [K], the
following is computed:

eN() = as ({ej_l RS N(vi)}),

Techniques 197

where a, is some aggregator function. Next, new knowledge learnt in this
step is incorporated by computing c(ef‘l7 ef\,(i)), where ¢ is some combine
function. The result is fed to layer Lg of a dense neural network that makes a
non-linear transformation of the input and, at the same time, constrains the
dimensionality of the output. As a result, the embedding of node v; for step
sis el = Ls(c(ef_l,e%(i))) and, finally, ef is normalized. The result of the
iterative application of this process, e, is taken as the final embedding of
node v;.

In this general procedure, functions as, ¢ and Ls may have various param-
eters that can be tuned to increase the quality of the final embedding. In an
unsupervised setting, they are typically optimized to reconstruct a pairwise
similarity matrix S supplied by the user. However, note that exactly the same
model architecture can be used in a supervised context. In this case, for each
node v;, the final embedding e/ can be used as a predictor of some feature of
node v; (known in the training sample; for example, some label of the node)
and the parameters of the functions as, ¢ and L, are chosen to maximize the
quality of this prediction. The concrete implementations of this general proce-
dure, such as GCN (Kipf and Welling, 2017) and GraphSAGE (Hamilton,
Ying, and Leskovec, 2017), differ in how functions as, ¢ and Ly are defined.

In GCN, each layer, transforming input e® into output e**?, is of the form
e5+1 — J(D71/2AD71/268W5),

where A is the adjacency matrix of an undirected graph G augmented with
ones on the diagonal, D is the diagonal matrix with row sums of A, and W*
is the trainable matrix of weights for this layer. Function o() is the activation
function, a popular choice being ReLU(-) = max(0,-), and € is the initial
matrix of node features. As mentioned earlier, this architecture can be used
for semi-supervised learning, where a subset of nodes have some known label
(on top of all nodes having some features), and the GCN is trained by using
those labels to classify the unlabeled nodes. A GCN can also be trained
without node labels (but with node features) to provide an embedding of the
nodes. We illustrate both of these scenarios in Section 6.7.

Methods such as GCIN do not scale easily for very large graphs where
some node degrees can be enormous. GraphSAGE is one of the first models
to address this issue by using sampling of each node’s neighbourhood. For a
given node u, let Ni(u) by a sample of size k of N(u), the neighbours of w.
For a given GraphSAGE embedding layer, the first step is to compute

esz'\;,:tu) =aggs+1({e; ; v € Ni(u)}),

an aggregation of the previous layer’s embeddings of the sampled neighbour
nodes using the aggregation function aggs41. Examples of the aggregator func-

tion include weighted sums, mean-pooling and max-pooling. In the second
step, this aggregation is used along with an embedding of node u from the

198 Graph Embeddings
previous layer, to obtain the updated embedding, namely,

ez-i-l =0 (WS-i-l - concat(e;, 67\;;%”))))
where o is an activation function such as ReLU, and concat indicates the
concatenation operation. As for the weights, the parameters for the aggregator
functions are learned and, as such, another advantage of GraphSAGE is
that it can be applied to unseen data (induction) while other methods such
as GCN require all nodes to be present during the training.

Note that, in comparison to the embedding algorithms discussed earlier,
the deep learning based approaches can have four kinds of advantages, depend-
ing on details of their implementations: (1) because of the recursion used, they
consider deep rather than shallow structure around each node, (2) they can
take into account node attributes passed explicitly by the user, (3) some mod-
els can be applied outside the training set, which is important, for example, in
the context of evolving networks, (4) the learning process can be supervised
so that the embedding is optimized to maximize its predictive power.

Miscellaneous Algorithms

There are over 100 algorithms proposed in the literature for node embeddings.
Most of them fall into one or more of the categories defined above but some
propose a different approach. One such algorithm is LINE (Tang et al., 2015),
which explicitly defines two functions to encode the first and the second order
proximity. In order to capture the first order proximity, the joint probability
distribution is defined for a pair of nodes based on their embeddings:

1
Wy o) =
Pl) = T (=)

under the constraint that Y 7 >0, (v, v;) = 1. This probability distri-
bution is to be compared with a probability distribution based on the adja-
cency matrix A:
a(v;, vj)
pa(vi,vj) = .
U Y Y alviyvg)

Our goal is to find an embedding that minimizes the Kullback-Leibler di-
vergence (sometimes called relative entropy) between the distributions p(gl)
and p4 that is a standard measure of how one probability distribution is dif-
ferent from a second, reference probability distribution. After simplification,
this divergence can be expressed as follows:

= > avi,v)In (pV (v, ;).

ViV (S

Note that if two nodes have similar embeddings, then they lead to a similar
reconstruction of row/column of matrix A.

Unsupervised Benchmarking Framework 199

The method can be adjusted to measure the graph’s second order proxim-
ity. In this case, each node v; is assigned source and target embedding vectors,
es; and e;;, and the conditional probability distribution is considered for a
target of a random edge sampled from the set of edges having one endpoint
in v;:

exp(ezjes’i)

22;1 eXp(ez:ges,i) -

This time, our goal is to select the source and the target embeddings in a way
that minimizes the divergence between all n such distributions computed for
a graph, and their counterparts for the two embeddings. There are many ways
to specify the analytical formula for this procedure. In a special case, if one
considers Kullback-Leibler divergence again and puts a weight deg(v;) to
a distribution associated with node v;, then it can be shown that the optimized
objective function has the form:

_ Z a(vi, v;) In (p{ (vj]0:)).-

ViU (S

p?

(vjlvi) =

As optimization of the objective function for both the first-order and the
second-order approaches of the LINE algorithm is computationally challeng-
ing, in both cases negative sampling is used in practice. A similar technique
was described above for the Node2Vec algorithm.

6.5 Unsupervised Benchmarking Framework

In the previous section, we mentioned various embedding algorithms using dif-
ferent tools to preserve various proximity measures between nodes, including
those mentioned in Section 6.3. However, this is just the tip of the iceberg;
there are many more algorithms and the list constantly grows. Moreover, many
of these algorithms have various parameters that can be carefully tuned to gen-
erate embeddings in different dimensions. Finally, many of the algorithms are
randomized which means that even if they are ran with the same parameters
and on the same network, the outcomes might be drastically different. As a
result, a data scientist is often left with many node embeddings of the same
network choose, possibly in incomparable dimensions. The main question we
try to answer in this section is: how do we evaluate these embeddings? Which
one is the best and should be used?

It is not so easy to answer these questions since embeddings are widely used
for various distinct tasks such as node classification, community detection,
link prediction, anomaly detection, and other applications are still being ex-
plored. As an attempt to address these issues, we propose a general framework
that assigns “divergence scores” to each embedding which, in an unsupervised

200 Graph Embeddings

learning fashion, distinguishes good from bad embeddings. The framework as-
signs two scores, local and global, to each embedding that measure the quality
of an evaluated embedding for tasks that require good representation of local
and, respectively, global properties of the network, see Kaminski, Pralat, and
Théberge (2020) and Kaminski, Pralat, and Théberge (2022).

In order to benchmark embeddings, we generalize the Chung-Lu random
graph model we saw in Section 2.5 to incorporate geometry. Let us start with
this model. For simplicity, we present the model for undirected and unweighted
graphs but appropriate adjustments can be done to deal with directed as well
as weighted graphs.

Geometric Chung-Lu Model

In the Geometric Chung-Lu model we are not only given the expected
degree distribution of a graph G on the set of nodes V = {vy, va,...,v,},

w = (w1, Wa,...,w,) = (dega(v1),...,dega(vn)),

but also an embedding of nodes of GG in some k-dimensional space, expressed
as a function £ : V — R*. In particular, for each pair of nodes, v, v, we
know the distance between them:

di)j = diSt(g(Ui), 5(1}7))

This framework assumes that good embeddings should allow us to recon-
struct edges of graph G in an unbiased way. Therefore, it is desired that the
probability that nodes v; and v; are adjacent to be a function of d; ;, that
is, to be proportional to g(d; ;) for some function g. The function g should
be a decreasing function as long edges should occur less frequently than short
ones. There are many natural choices such as g(d) = d~? for some 3 € [0, c0)
or g(d) = exp(—vd) for some v € [0,00). We use the following, normalized
function g : [0,00) — [0,1]: for a fixed « € [0, 00), let

d— dmin “
d)=(1--——"mn
g() (dmax - dmin) ’

where

dmin = min{dist(E(v), E(w)) : v,w € V,v # w}
dmax = max{dist(£(v),E(w)) :v,w € V}

are the minimum, and respectively the maximum, distance between nodes in
embedding £. Clearly, g(dmin) = 1 and g(dmax) = 0 (see Figure 6.3); in the
computations, we can use clipping to force g(dmin) < 1 and/or g(dmax) > 0 if
required.

Let us make some observations about the parameter of the model, o €
[0,00). Note that if o = 0 (that is, g(d) = 1 for any d € [0,00) with

Unsupervised Benchmarking Framework 201

9(dmax) = 0° = 1), then we recover the original Chung-Lu model as the
pairwise distances are neglected. Moreover, the larger parameter «, the larger
the aversion to long edges.

1.0 1

0.8 1

0.6 1

g(d)

0.4 1

0.2 1

0.0 1

FIGURE 6.3
Function g(d) for dmin = 1, dmax = 10, and parameter a € {0.5,1,2}.

The Geometric Chung-Lu model is the random graph G(w, &, «) on
the set of nodes V' = {v1,...,v,} in which each pair of nodes v;,v;,
independently of other pairs, forms an edge with probability p; ;, where

pij = i%;9(d;,;)

for some carefully tuned weights x; € R,. The weights are selected such
that the expected degree of v; is w;; that is, for all i € [n]

wi= Y pg=w Y, wg(dig).
J€E[n].j# J€[n],j#i

Additionally, we set p; ; = 0 for i € [n].

It is possible to show that the selection of weights is unique, provided that
the maximum degree of G is less than the sum of the degrees of all the other
nodes. Since each connected component of G can be embedded independently,
we may assume that G is connected and so the minimum degree of G is at

202 Graph Embeddings

least 1. As a result, this very mild condition is trivially satisfied unless G is a
star on n nodes.

Framework

Suppose that we are given a graph G = (V, E) on n nodes with degree distri-
bution w = (wq, wa, ..., w,) and an embedding of its nodes to k-dimensional
space, £ : V. — R¥. The proposed framework is multi-purposed, that is, it
independently evaluates embeddings using two approaches: global and local.

We start with a global approach that looks at the network and the as-
sociated embeddings “from the distance”, trying to see a “big picture”. It
evaluates the embeddings based on their ability to capture global properties
of the network, namely, edge densities. Indeed, in a good embedding, one
should be able to predict most of the network’s edges from the coordinates
of the nodes. Formally, it is natural to expect that if two nodes, say u and v,
are far away from each other (that is, dist(€(u), £(v)) is relatively large), then
the chance that they are adjacent in the graph is less than another pair of
nodes that are close to each other. But, of course, in any real-world network
there are some sporadic long edges and some nodes that are close to each
other yet are not adjacent. In other words, we do not want to pay attention
to local properties such as the existence of particular edges (this is the mi-
croscopic point of view) but rather evaluate some global properties such as
the density of some relatively large subsets of nodes (this is the macroscopic
point of view). One can think of this approach as the goodness-of-fit test for
the provided embedding, rather than simply checking its predictive power.
Relating it to classical binary classifiers in machine learning, its aim is similar
to the well-known Hosmer-Lemeshow test for logistic regression. So, the
question is: how can we evaluate if the global structure is consistent with our
expectations and intuition without considering individual pairs?

The approach we take is as follows. We identify dense parts of the graph by
running some stable graph clustering algorithm. The clusters that are found
will provide the desired macroscopic point of view of the graph. Note that for
this task we only use information about the graph Gj; in particular, we do not
use the embedding £ at all. We then consider the graph G from a different
point of view. Using the Geometric Chung-Lu model, based on the degree
distribution w and the embedding £, we compute the expected number of
edges within each cluster found earlier, as well as the expected number of
edges between them. The embedding is scored by computing a divergence
score between these expected number of edges and the actual number of edges
present in G. This approach falls into a general and commonly used method of
statistical inference, in our case applied to the Geometric Chung-Lu model.
With these methods, one fits a generative model of a network to observed
network data, and the parameters of the fit tell us about the structure of the
network in much the same way that fitting a straight line through a set of
data points tells us about their slope.

Unsupervised Benchmarking Framework 203

Let us now formally describe an algorithm. Our goal is to assign a global
(density based) “divergence score” to the embedding £ : V — R* of G. The
lower the score, the better the embedding. This will allow us to compare
several embeddings, possibly in different dimensions.

Step 1: Run some stable graph clustering algorithm on G to obtain a partition
C of set V into £ communities C1,...,Cy. For this purpose, we use ECG
discussed in Section 5.4 for unweighted graphs, and Louvain for weighted
graphs, but other algorithms can be used instead.

Step 2: For each i € [{], let ¢; be the proportion of edges of G with both
endpoints in C;. Similarly, for each 1 <1 < j </, let ¢; ; be the proportion of
edges of G with one endpoint in C; and the other in Cj. Let

¢]

= (c1,2---,C1,6,€23,---,C20,-..,Co—1¢) and
— (o) 63)

o>

be two vectors with a total of (g) +{= (%1) entries which together sum to

one. These graph vectors characterize the partition C from the perspective
of the graph G.

Step 3: For a given parameter o € R, and the same partition of nodes C, we
consider G(w, &, a), the Geometric Chung-Lu model. For each 1 <1i < j <
¢, we compute b; ;, the expected proportion of edges of G(w, &,) with one
endpoint in C; and the other one in C;. Similarly, for each i € [¢], let b; be the
expected proportion of edges within C;. That gives us another two vectors

Bg(a) = (b172,...,b17g,b273,...,b27g,...,bg_17g) and
be(a) = (b1,...,bs) (6.4)

with a total of (%1) entries which together sum to one. These model vectors

characterize the partition C from the perspective of the embedding £.

Step 4: In order to measure how well the model G(w, £, @) fits the graph G,
compute the distance A, between the concatenated vector consisting of ¢ and
¢, and the one consisting of bg(a) and bg(a). Recall that both concatenated
vectors have (“2'1) entries that sum to one. We used the Jensen—Shannon
divergence which can be viewed as a smoothed version of the Kullback-
Leibler divergence we mentioned earlier in this chapter.

Alternatively, in order to change the relative importance of internal and
external edges, one may independently compute the distances between the
two pairs of vectors, that is, between ¢ and bg (), and between ¢ and bg(a).
In this case, we let A, to be a weighted average of the two distances.

Step 5: Select & = argmin, A, and define the global (density based)
divergence score for embedding £ on G as AL(G) = As.

Of course, not all embeddings proposed in the literature try to capture a
distribution of edges. Some algorithms indeed try to preserve edges whereas

204 Graph Embeddings

others care about some other structural properties; for example, they might
try to map together nodes with similar functions. To provide a complementary
test, the second approach we propose looks at the network and embeddings
“under the microscope”, trying to see if a local structure of a graph G is well
reflected by the associated embedding. The local score will be designed in
such a way that it is able to evaluate if the embedding is a strong predictor
of adjacency between nodes in the network. In general, this property could be
easily tested using any strong supervised machine learning algorithm. How-
ever, our objective is to test not only predictive power but also explainability
of the embedding (sometimes referred to as interpretability). Namely, we as-
sume that the adjacency probability between nodes should be monotonically
linked with their distance in the embedding and their in and out degrees. This
approach has the following advantage: embeddings that score well should not
only be useful for link prediction but they should perform well in any task
that requires a local knowledge of the graph.
Formally, the algorithm continues as follows.

Step 6: We let ST and S~ to denote the set of edges and non-edges, re-
spectively: ST = FE and S™ = (‘2/) \ E. For a given parameter o € R, we
again consider the Geometric Chung-Lu model G(w, &, a). Let p(u,v) be
the probability of an edge uv to be present under this model.

The ROC (Receiver Operating Characteristic) is a curve showing the per-
formance of a classification model at all classification thresholds (for the edge
probabilities in the present context). The AUC (area under the ROC curve)
provides an aggregate measure of performance across all possible classification
thresholds which can be interpreted as the probability that a randomly chosen
positive sample (here, a pair of nodes connected by an edge) is ranked higher
that a negative sample (a pair of nodes without an edge). Thus, the AUC
can be expressed as follows:

Pa = z:stes+ ZUAJES* ﬂ{p(s’t) > p(uav)}
: [S*]- 157

As a result, the AUC measures how much the model is capable of distinguish-
ing between the two classes, ST and S™. In other words, it may be viewed as
the probability that p(s,t) > p(u,v), provided that an edge st and a non-edge
uv are selected uniformly at random from St and, respectively, S—. (Slightly
more details about ROC and AUC are provided Section 6.7.) In practice,
there is no need to investigate all |S™|-|S™| pairs of nodes, as p, may be easily
and accurately approximated by sampling. We denote this approximation by
Pa-

Step T: Select & = argmin, (1 — p,), and define the local (link based)
divergence score for embedding £ on G as A%(G) =1 — pg.

Since most of the applications one needs to deal with require preserving
(global) edge densities or (local) strong prediction of edges, the framework

Unsupervised Benchmarking Framework 205

favours embeddings that do a good job from both perspectives. In order to
compare several embeddings for the same graph G, we repeat steps 3-7 above
and compare the divergence scores (the lower the score, the better). Let us
stress that steps 1-2 are done only once, so we use the same partition of the
graph into ¢ communities for each embedding. Similarly, we need to tune the
weights (x;) in the Geometric Chung-Lu model only once and use it for
computing both the global and the local divergence scores.

How do we select the best embedding to be used from a large family
of embeddings (£;)? First note that both AZ (G) and Ag (G) are in [0,1].
However, since they might have different orders of magnitude (and typically
they do), the corresponding scores need to be normalized. A normalization
by minimum is chosen based on the fact that it is not uncommon that most
of the embeddings score poorly in both dimensions; if this is so, then they
affect for example the average score but they ideally should not influence the
selection process. On the other hand, the minimum clearly is not affected by
bad embeddings. In particular, the normalization by the minimum allows us
to distinguish the situation in which two embeddings have similar but large
scores (indicating that both embeddings are bad) from the situation in which
two embeddings have similar but small scores (one of the two corresponding
embeddings can still be significantly better). Reassuming, one may look at the
following composition of the two scores:

(AZ,(G) +€) (AL, (G) +¢)
min; e (Agj (G)+e) minje[m](A‘éj (G)+e€))’

to make a more informative decision. The small constant € is added to avoid
potential numerical issues when one of the two scores is close to zero.

In order to see the framework “in action”, we generated a small ABCD
synthetic network on 100 nodes and 3 communities. For this network, we
generated 16 embeddings and each of them was independently evaluated to
get the corresponding pair of global and local divergence scores (see Fig-
ure 6.4(a) for the results). Embeddings were generated using LEM, HOPE,
and Node2Vec, using different parameters. For visualization, we use UM AP
to map the results into 2-dimensional representation of higher order embed-
dings. (See Section 6.7 for a brief description of UMAP.) An embedding
with the best global divergence score is presented in Figure 6.4(b). We see
that the communities are well separated, explaining the decision made by
the framework. Indeed, global properties are well preserved: members of each
community are close to each other and so the fact that communities induce
denser subgraphs is confirmed by the null-model. On the other hand, this em-
bedding might not perform well for tasks such as link prediction that require
preserving local properties: typical distance between nodes in two different
communities is much larger than typical distance between nodes within the
same community, making it difficult to predict where particular edges are.
The other extreme is presented in Figure 6.4(c) where an embedding with

206 Graph Embeddings

N

$

N

o "

2
Global divergence score (normalized)

N
.

Local divergence score (normalized)
~

b3

(a) Looking at both divergence scores (b) Low global divergence
902 e O »
0.. . .. 0...:¢ (]
°
e® %o ®o0° e @ o (]
P ‘.~ e Py
o © e o8° & 0\ %
090 o o, o, o, R o
Ooo o o o °
& op0 © Ooo OOOO Bo

Q o
oeg, 0
@, 3 %%p,,
€ o
(c¢) Low local divergence (d) Both divergences high

FIGURE 6.4

Results of the framework on a 100-node ABCD synthetic network with 3
communities.

the best local divergence score is shown: edges have a better chance to be
predicted but distinguishing communities seems to be more challenging. Fi-
nally, an embedding that scores badly from both points of view is presented
in Figure 6.4(d).

Approximated but Scalable Implementation

Let us briefly mention complexity issues associated with the framework. The
main bottleneck is the process of tuning weights z;, i € [n], in the Geometric
Chung-Lu model. It requires ©(n?) steps and so it is not feasible for large
graphs. Fortunately, one may modify the algorithm slightly to obtain a scalable
approximation algorithm that can be efficiently run on large networks.

The main idea behind the approximation algorithm is quite simple. The
goal is to group together nodes from the same part of the partition C obtained
in Step 1 of the algorithm that are close to each other in the embedded space.
Once such refinement of partition C is generated, one may simply replace each
group by the corresponding auxiliary node (that we call a landmark) that is

Other Directions 207

placed in the appropriately weighted center of mass of the group it is associ-
ated with. Such auxiliary graph has O(vnlnn) auxiliary nodes and so tuning
weights can be done fast. The running time of the approximated algorithm
is O(nInn) which is sufficient in practice and matches the complexity of the
clustering algorithm used in Step 1.

6.6 Other Directions

It should be clear by now that embedding graph is a complex task and here we
only scratch the surface. In this section, we briefly mention other directions
that are important from a practical point of view.

Directed Graphs

The main difference when considering directions of edges is that while distance
between nodes in the embedded space is symmetric, the probability of an edge
may vary depending on the choice of the source and the target node. One of
the key applications of embeddings of directed graph is link prediction. As a
result, several algorithms embed nodes with a concatenation of two vectors
that reflect the source and, respectively, the target roles of that node, allow-
ing for asymmetric edge probabilities between the two corresponding nodes.
HOPE, which we have already used for undirected graphs, is an example of
such an algorithm that can handle directed graphs. Another family of algo-
rithms aims at learning two objects: the spatial embedding of the nodes, but
also a vector field in embedded space that indicates the dominant direction of
edges depending on the spatial position.

Signed Graphs

A signed graph is a graph G = (V, E) in which each edge has a positive
or negative sign, that is, the set of edges F is partitioned into two sets, F
and E_. Many complex networks are signed graphs by definition. Indeed,
relations between users on social media sites often reflect a mixture of positive
(friendly) and negative (antagonistic) interactions. For example, a social news
website Slashdot.org (often abbreviated as /.) that originally billed itself
as “News for Nerds. Stuff that Matters.”, allows their users to specify other
users as friends or foes. Epinions. com (currently Shopping.com) allows users
to mark their trust or distrust to other users on product reviews. There are
some embeddings, such as Signed Network Embedding (SNE), that are
crafted to deal with such networks (Suhang et al., 2017).

208 Graph Embeddings

Embedding Edges

In contrast to node embedding, edge embedding aims to represent an edge as
a low-dimensional vector. However, it is not obvious how to naturally define
edge-level similarity as an edge consists of a pair of nodes. In particular, an
edge can be directed and, if this is the case, then the direction should be taken
into account. Moreover, a good embedding algorithm should incorporate the
importance of edges when embedding them into R*¥. Embedding nodes is a
relatively well-established field now but embedding edges requires more work.
Having said that, there are two natural approaches that can be used.

For tasks such as link prediction, where a classifier needs to be trained on
both positive (existing) and negative (not existing) edge representations, in
order to embed a pair of nodes uv (again, representing edge or non-edge), one
may simply use some aggregation function such as the average of £(u) and
E(v). However, since node embedding algorithms inherently focus on nodes,
using such aggregations may not generate good results. Alternatively, one may
consider the line graph of an undirected graph G = (V, E) that is another
graph L(G) that represents the adjacencies between edges of G. Formally, the
set of nodes of L(G) is E, and two nodes ey, es are adjacent in L(G) if the
corresponding edges are incident in G. In order to embed edges of G one may
simply use the embedding of nodes in L(G).

Multi-Layered Graphs

In some applications, we are provided with ¢ graphs G; = (V;, E;), i € [¢], with
overlapping sets of nodes. In particular, when V3 = V5, = ... = V}, we may
view it as one graph on the set of nodes V' consisting of multiple “layers.” For
example, in protein-protein interaction networks derived from different tissues
(say, from brain and liver tissues), some proteins occur across multiple tissues.

A good embedding algorithm should embed one of the layers taking into
account information coming from other layers. For example, OhmNet algo-
rithm (Zitnik and Leskovec, 2017) introduces a penalty term that tries to tie
the embeddings across layers. The loss function can be augmented as follows:

L'=L+X > €, (v) = Ea)l

veViNVs

where £ is the original loss function, A is the regularization strength, and
Ec; (v) is the embedding of v in layer 3.

Moreover, quite often there is some natural hierarchy between layers. For
example, in protein-protein interaction graphs derived from various tissues,
some layers correspond to interactions throughout large regions whereas other
ones are more detailed and fine-grained. In such situations, embeddings can
be obtained by recursively applying the regularization equation following the
hierarchy between layers.

Other Directions 209

Hyperbolic Spaces

Graph Convolutional Neural networks (GCNs), which we discussed ear-
lier, embed nodes in Euclidean space. Such embedding algorithms applied
to some real-world graphs with scale-free or hierarchical structure produced
outcomes that incur a relatively large distortion, that is, the graph distances
between pairs of nodes could not be accurately estimated based on the Eu-
clidean distances between the corresponding pairs of embeddings. Initial ex-
periments show that embeddings in hyperbolic geometries produce smaller
distortion and so they offer a possible alternative for such families of graphs.
The Hyperbolic Graph Convolutional Neural Network (HGCN) is
the first inductive hyperbolic counterpart of GCN that leverages both the
expressiveness of GCNs and hyperbolic geometry to learn inductive node
representations for hierarchical and scale-free graphs (Chami et al., 2019).

Embedding Heterogeneous Networks

Most of the work on embeddings focused on representation learning for homo-
geneous networks—representative of singular types of nodes and relationships.
However, many networks are heterogeneous in nature, involving various types
of nodes and/or relationships between them. For example, a collaboration
network could be represented with multiple types of nodes corresponding to,
say, authors, papers, venues, organizations, etc. Consider two authors in this
network who have never published papers in the same venue (for example, the
first one published 10 papers all in NIPS and the other one has 10 publications
all in ICML). Standard embedding algorithms such as Node2Vec might have
a problem with detecting that these authors are similar. For such heteroge-
neous networks, one might want to try Metapath2Vec (Dong, Chawla, and
Swami, 2017), which formalizes meta-path-based random walks to construct
the heterogeneous neighbourhoods of nodes and then leverages a heteroge-
neous skip-gram model to perform node embeddings.

Embedding Graphs

Graph embedding is a technique that aims to map the entire graph to a point
in a vector space. Graph embedding methods can be vaguely divided into two
different categories: explicit graph embeddings and implicit graph embeddings,
which are also known as graph kernels. As the name indicates, explicit graph
embeddings provide algorithms that return embeddings € : F — R¥, where
F =A{G,; = (V;,E;) : i € [n]} is a family of graphs we wish to embed. Such
algorithms might be randomized or deterministic but the resulting embedding
is immediately usable. On the other hand, implicit graph embeddings only
provide a pairwise similarity measure between graphs. This might be enough
for the application at hand, but in case it is not one can try to use pairwise
distances to find an embedding that preserves them as much as possible.

210 Graph Embeddings

The first family includes graph probing, which measures the frequency of
specific substructures in graphs which tries to capture both the content and
topology of the network. In particular, we might want to count the num-
ber of graphlets, that is, small connected non-isomorphic induced subgraphs
present in a large network. Another approach is based on spectral graph the-
ory and aims to analyze the structural properties of graphs in terms of the
eigenvectors/eigenvalues of their adjacency or Laplacian matrices. The third
class of methods is inspired by dissimilarity measurements. For example, we
might want to estimate the distance from a given graph to a number of care-
fully pre-selected prototype graphs. Motivated by the recent advancements in
deep learning and neural networks, one may want to utilize neural networks
to obtain a representation of graphs as vectors.

The second family uses graph kernels to evaluate the similarity between
a pair of graphs G and G’ by recursively decomposing them into atomic sub-
structures (for example, random walks, shortest paths, graphlets, etc.). Then,
one may define a similarity kernel function over the selected substructures
(for example, counting the number of common substructures across G and
G') and use it as a similarity measure. Subsequently, a typical approach is to,
for example, apply some kernel method such as Support Vector Machines
(SVMs) to perform classification or clustering, depending on the application
at hand.

One may try to combine the two approaches. For each graph that is to be
embedded, one may first extract some important classical features of nodes or
simply use some node embedding algorithm. Such family of clouds of n points
can then be used to measure the similarity between graphs. Embedding graphs
this way is similar to the context of document embedding, where each word
is represented by a vector (obtained via some word embedding algorithm),
and each document is a “bag of word vectors”. Once this is done, one may
define some reference distribution (for example via averaging the vectors),
and find the optimal transport plan from each graph’s “bag of vectors” to this
reference distribution. This process is known in the literature as linear optimal
transport (LOT) problem. These ideas are implemented in NEExT, Network
Embedding Exploration Tool, which we will use in Chapter 9 for embedding
collections of graphs via user-defined node features.

Yet another approach, represented by the Graph2Vec algorithm
(Narayanan et al., 2017), is to use a neural embedding framework to create
graph embeddings in an unsupervised manner. We do not discuss this ap-
proach in this book. Interested readers are directed to the following selected
references that review graph embedding approaches: Cai, Zheng, and Chang
(2018), Goyal and Ferrara (2018), Hamilton, Ying, and Leskovec (2017), and
Zhang et al. (2020).

Ezxperiments 211

Graph Neural Networks

The ideas behind graph convolution networks (GCN) that we described in
this chapter are applicable to a wider domain of applications. The domain
has developed to use a name Graph Neural Networks (GNNs) that aim
to generalize deep learning concepts to data that is connected using a graph
structure. In this way neural networks can be used to perform analysis using
the attributes of objects and their relation to other objects, where this re-
lation is described using a graph. One of the popular frameworks that allow
for performing such analysis is PyTorch Geometric (PyG) library (Fey and
Lenssen, 2019; Fey et. al, 2025).2 The typical tasks that can be performed
using GNNs are the following:

e node embedding;

e node classification and regression;

graph classification;

edge prediction;
e cdge classification and regression.

One can find a set of tutorials how PyG can be used to perform these tasks
in example Colab Notebooks that are part of its documentation.3

6.7 Experiments

In this section, we highlight several applications of graph embedding algo-
rithms. Of course, the list is not intended to be complete and there are many
other important potential applications one might want to explore.

For graph visualization, we use the well-known and small Zachary karate
club data set that we already used a number of times in this book (see Sec-
tion 5.2 for more details). For other experiments, we consider synthetic graphs
generated with the ABCD framework (see Section 5.3), as well as the air-
port graph we introduced in Chapter 3. Using synthetic graphs produced by
the ABCD framework has the benefit that we know exactly how the graph
was generated (“ground truth” is discussed in Section 5.2) so it is possible to
precisely assess to what extent the goal of a given task was achieved.

2https://github.com/pyg-team/pytorch geometric
3pytorch-geometric.readthedocs.io/en/2.6.1/get_started/colabs.html

212 Graph Embeddings

Visualization

One very common application of graph embedding is visualization. There
exists several specialized algorithms for visualizing graph data in two (some-
times three) dimensions. Such algorithms are often called layout algorithms
and can be considered to belong to a special family of embedding algorithms.
In igraph, for example, there are over 15 such algorithms provided. One class
of such algorithms are the force-directed layouts in which edges can be
seen as “springs” applying force to keep adjacent nodes close to each other.
Examples of such layout algorithms include the Kamada-Kawai and the
Fruchterman-Reingold algorithms. Another class consists of layouts with
some specific pattern such as a grid, circle, sphere, or a tree. There are other
possible layout algorithms including multi-dimensional scaling and random
layout. We illustrate a few of these algorithms in Figure 6.5 for the famous
Zachary karate club graph. Recall that the graph represents external interac-
tions between 34 members of a karate club that, due to a conflict that arose
between the administrator and the instructor, eventually split into two groups.
In our figures, we represent the two groups via different node shades of grey.

e ®© ©® o o o
[] [o (o] [e]
Ce g o © o
° . o
° o o
© 0 o e » o s
(o] [] o o
o o ° o o O e o °
°
o . o ° °
] o o) ° & ®e °
° °)
[] [)
o °
(a) Kamada-Kawai (b) Fruchterman-Reingold
[] e © 0 o
o ® .
° °
[X NN N X) Ceeeeoeecooo [L]
° °
° °
e0cO0 @ 0 O ° o
° o
o o
000000000 o o
° . 0 ©
o © 0 o e0?°
(c) Tree (d) Circle
FIGURE 6.5

The Zachary karate club graph presented using various layout algorithms.

Ezxperiments 213

General node embeddings algorithms can also be used for graph visualiza-
tion. Since nodes can be associated with real-valued vectors in k-dimensional
space, one might use any of the various scalable techniques for visualizing high-
dimensional points in 2D that are widely available. These generic dimension-
ality reduction techniques include the well-known Principal Component
Analysis (PCA) and t-Distributed Stochastic Neighbour Embedding
(t-SNE) techniques, but there are many other approaches available. We per-
sonally recommend Uniform Manifold Approximation and Projection*
(UMAP), which is a manifold learning technique for dimension reduction. It
provides a practical scalable algorithm that applies well to real world datasets.
Finally, as good visualizations require as few long edges as possible, it is rec-
ommend to test various embeddings and various parameters and select the one
that scores well with the benchmark framework we mentioned in Section 6.5. In
Figure 6.6, we show two different embeddings for Zachary karate club graph,
using UMAP to project the embedding into two dimensions. Thise corre-
spond respectively to embeddings with low and high global divergence scores
as described in Section 6.5.

LY []
o °
o ° ° o
° ° o ° ° [] o o
o .
0 o °0° o ®e o
[e} o
o e ° ° ‘.O
o hd %%
° 9
° >
[] o
(a) low divergence embedding (b) high divergence embedding
FIGURE 6.6

Two-dimensional projections of embeddings with (a) low and (b) high diver-
gence scores for the Zachary karate club graph.

Node Classification

Node classification is an example of a semi-supervised learning algorithm
where labels are only available for a small fraction of nodes and the goal is to
label the remaining set of nodes based on this small initial seed set. This is a
situation often observed in complex networks. For example, in social networks
labels might indicate a user’s interests, beliefs, or demographic characteristics.
There could be many reasons for labels not to be available for a large fraction
of nodes. For example, coming back to our example of social networks, a user’s

4nttps://pypi.org/project/umap-learn/

214 Graph Embeddings

demographic information might not be available to protect their privacy. Our
task is to infer missing labels based on the small set of labelled nodes and the
structure of the graph.

Since embedding algorithms can be viewed as the process of extracting fea-
tures of the nodes from the structure of the graph, one may reduce the problem
to a classical machine learning predictive modelling classification problem for
the set of vectors. There are many algorithms, such as logistic regression,
k-nearest neighbours, decision trees, support vector machine, etc., for any po-
tential scenario that one might be interested in, including binary, multi-class,
and multi-label classifications.

In order to show a practical example of the problem of node classifica-
tion, we performed the following experiment using a synthetic ABCD graph
G. The graph consists of n = 1,000 nodes partitioned into 12 communities
(having sizes ranging between 50 and 150) and m = 8,327 edges that exhibit
relatively weak community association (£ = 0.6). We consider an embedding
& of this graph in 48-dimensional space obtained using the HOPE algorithm
(see Section 6.4) together with the Personalized PageRank proximity mea-
sure (see Section 6.3). This embedding was chosen as it gives low divergence
score when using the framework presented earlier (see Section 6.5), but as
detailed in the companion notebook, several other choices give similar good
results.

The community of each node of this graph is its ground-truth community.
Each node is represented by its 48-dimensional embedding, which can also be
seen as its feature vector in machine learning terminology. We partition the
set of nodes randomly into a training set (with 25% of the nodes) and a test set
(with the remaining 75%). We trained a random forest classifier (ensemble
learning method for classification, regression, and other related tasks that
operate by constructing a multitude of decision trees) on the training set, and
applied the model to the remaining nodes. The overall accuracy was found
to be 90.9% which is quite good in comparison to a random classifier which
yielded accuracy under 9%.

To provide a more detailed picture of multi-class classification, one often
summarizes the results using the confusion matrix C = (c;;); je[n) Where
¢i,j is the number of nodes in community 4 classified as being in community
j. We illustrate this matrix below; in particular, the proportion of weight on
the diagonal is the overall accuracy (again, 90.9%).

Ezxperiments 215

(78 1 4 0 0 2 3 0 3 0 1 0
o 77 o0 1 1 0 O 1 0 0 0 O
1 0o 717 0 1 0 0 O 3 0 0 O
11 1 64 0 1 0O 1 1 0 0 O
1 0 2 1 77w o0 0 1 0 1 0 O

C— o 0 o0 1 1 54 0 1 0 0 0 O
11 0 0 1 3 5 3 2 0 0 O

o 0 o 1 1 0 0 42 0 0 0 O

o 0 o0 o 1 1 0 1 45 0 0 O

1 0 0 0 0 1 0O 0 1 4 0 O

o 0 0 O O O O 0O 0o 0 42 0
111 0 0 4 2 2 1 0 0 35

Finally, let us point out that in this approach one can easily combine an
embedding based on graph structure with additional information available in
node metadata to achieve better predictions. Also, as we noted earlier, some
methods such as GCN or GraphSAGE can be directly adjusted to find
embeddings that maximize the classification accuracy and take into account
the metadata of nodes and their neighbours. We provide some examples using
GCN later in this section.

Node Clustering and Community Detection

In Chapter 5, we discussed various techniques and algorithms for detecting
communities at length. Node embeddings provide an alternative tool for clus-
tering related nodes. Indeed, since each node can be associated with a real-
valued vector embedded in k-dimensional space, one may alternatively ignore
the initial graph and apply some generic clustering algorithm to the set of
associated vectors. Clustering points seems to be a much easier task and is a
well-studied area of research with many scalable algorithms, such as k-means,
DBSCAN or HDBSCAN, that are easily available for use. Finally, one may
want to combine the two clustering techniques which presumably should give
better results as node embeddings provide some additional information about
the functions or roles of particular nodes, something that is not available
with graph clustering alone. To illustrate the power of such approach, we will
experiment with one simple way of combining k-means with Leiden.

Using the same ABCD graph G and the embedding £ as in the pre-
vious experiment, we compare the results we get from two graph clustering
algorithms (namely, Leiden and ECG discussed in Section 5.4), and two clus-
tering algorithms using the embedding as feature vectors (namely, k-means
and DB-scan). For k-means, we use the correct number of clusters (12) as
well as two under-estimations (6 and 9) and two over-estimations (15 and
24). We also run Leiden after initialization with k-means with a large value
k = 100 (which we refer to as k-Leiden). Results from 30 runs for each of the

216 Graph Embeddings

three graph clustering algorithms and the classical k-means for the number
of clusters k € {6,9,12,15,24} are given in Figure 6.7. In order to compare
the results with the ground-truth community structure, we use Adjusted
Mutual Information (AMI) which we introduced in Section 5.3.

We see that we get good results with graph clustering algorithms, in par-
ticular with ECG and k-Leiden. With k-means, good results are obtained in
embedded space, provided that the correct number of clusters (12) is supplied.
With DBSCAN, the clustering is learned using hyperparameter tuning, af-
ter reducing to 16 dimensions with UMAP (a common practice when dealing
with high dimensional data in vector space). Since this algorithm is determin-
istic, we do not add it to the boxplot and only report that the AMI value is
equal to 0.67 for all nodes, and 0.88 if outliers are identified by the algorithm
and then excluded. We got similar results with HDBSCAN.

1.0
= =
<
g %
S %}
© 0.8
£
S
£
T 0.7
5
=
]
3 0.6 1
B
2
<
0.5
© o) D A9 N e e« ©
PR B R €
'S 'S @ VS

FIGURE 6.7
The comparison of clustering in vector spaces (via embedding £ of graph G
and k-means algorithm) with three graph clustering algorithms (k-Leiden

refers to the Leiden algorithm initialized with the outcome of k-means, here
with k£ = 100).

As a practical note, observe that some algorithms have a learning phase
that is stochastic. It means that the results from a single run of them can be
unreliable, as may be observed in Figure 6.7. Therefore, it is standard practice
for such algorithms that the best result is carefully selected based on several
independent runs of them based on some quality measure such as modularity.

Ezxperiments 217

Link Prediction and Missing Links

Node embeddings can also be used to predict missing links or to predict links
that are likely to be formed in the future. Networks are often constructed from
the observed interactions between nodes, which may be incomplete or inac-
curate. In particular, the situation of missing links is typical in the analysis
of biological networks in which verifying the existence of links between nodes
requires experiments that are expensive and might not be accurate. More-
over, a task that is closely related to link prediction is the main ingredient
of recommendation systems. The goal might be to predict missing friendship
links in social networks or to recommend new friends. Another task might
be to predict new links between users and possible products that they may
like. On the other hand, since networks that we typically mine are dynamic,
one might be interested in predicting which links will become inactive; for
example, which users on Instagram a given user might want to un-follow in
the near future. A natural guess would be to pick nodes that are far in the
embedded space as it indicates that the nodes are dissimilar. Investigating
such behaviour of users is an active area of research of social scientists and is
known as homophily and aversion.

Once nodes are embedded in k-dimensional space (assuming that the em-
bedding tries to reflect the probability of edge being present between a pair of
nodes), we represent node pairs as vectors via some binary operator applied
to the embeddings of the nodes. Examples of binary operators include the L,
and Lo distances, and the Hadamard operator. Those vector representations
of node pairs can then be used to train a model for link prediction.

For the next experiments, we continue using the same ABCD graph G.
We randomly select 10% of the edges of G and remove them, thus forming
a new graph G’. From this smaller graph, we consider all pairs of adjacent
nodes (the positive class) as well as a random subset of pairs of non-adjacent
nodes (the negative class). Both classes have the same number of pairs of
nodes (equal to m’, the number of edges of G’) so that the training set is
balanced. Note that it may happen that some pairs that are selected for the
negative class are non-adjacent in G’ but adjacent in G but in this case it is
intentional as in practice we often need to deal with such noisy training sets.
Using an embedding algorithm that yielded a low local divergence score
using the framework presented in Section 6.5, we recomputed the embedding
&’ using graph G’ and then used binary operators to combine embeddings of
node pairs into feature vectors to be used for model building and prediction.
For the classification, we used the logistic regression model in which the
output is an estimation of the probability for the positive class in the training
data set. We trained our model on all data from graph G’ (that is, on 2m’
pairs of nodes coming from the two classes), and applied it to the edges deleted
from graph G as well as a random sample of pairs of non-adjacent nodes in G.
We got 61% accuracy on this graph which is just slightly better than random.
However, let us point that graph G is very noisy since it was generated with

218 Graph Embeddings

parameter £ = 0.6. As a result, majority of edges are actually noise edges, and
so link prediction is an extremely challenging problem for this graph.

We re-ran the same experiment with another ABCD graph generated with
the same parameters except that & = 0.2, so most edges are now community
edges. In Figure 6.8(a), we show results (accuracy) using 24 different em-
beddings, namely, Node2Vec, HOPE, and LEM, with different parameter
settings. The size of each ball is proportional to the accuracy of the classifi-
cation as described earlier. We see that both divergence scores correlate with
accuracy (negative correlation), but the local divergence score appears to be
a better predictor. Indeed, computing the Kendall’s 7 correlation between the
divergence and the accuracy, we got —0.19 for the global divergence, and —0.68
for the local divergence. In Figure 6.8(b), we show the Receiver Operating
Characteristic curve (ROC curve) for the embedding with lowest local
divergence score.

In order to draw an ROC curve, only the true positive rate (also known
as recall) and false positive rate (also known as fall-out) are needed (as func-
tions of some classifier parameter). The best possible prediction method would
yield a point (0,1) in the upper left corner, representing 100% sensitivity (no
false negatives) and 100% specificity (no false positives)—perfect classifi-
cation. A random guess would give a point along a diagonal line—line of
no-discrimination. Points above the diagonal represent good classification
results (better than random) whereas points below the line represent bad re-
sults (worse than random).

The Area Under the ROC Curve (AUC) provides a measure of sep-
arability as it tells us how capable the model is of distinguishing between the
two classes. Indeed, AUC is bounded from above by 1 and can be interpreted
as the probability that a random positive observation has a higher predicted
probability than a random negative observation. Also note that even though
we did class rebalancing for model building, both ROC and AUC are unaf-
fected by rebalancing of the classes. The accuracy is now 0.83 and the AUC is
0.85, much better than random. Moreover, the ROC curve presented in Fig-
ure 6.8(b) is quite steep at the beginning indicating that most of the highest
scoring node pairs are truly edges.

Embedding and Supervised Learning

So far, we illustrated several applications of node embeddings for which we
selected the embedding to be used based on the unsupervised framework pre-
sented in Section 6.5. While the framework generally selects good embeddings
for a variety of applications, in the case of supervised learning, we can often do
better by carefully selecting the embedding based on the true objective func-
tion for the task at hand. This is typically done by dividing the labelled data
into training, validation, and test sets. We use the training and the validation
set to select the best model and parameters; in this case, the best embedding.
The error rate is then obtained by applying the selected model to the test set.

Ezxperiments 219

EY
.

0.8

“
.
[}

IS
@
°

o

o

w
°
=

J

test set accuracy

Local divergence score (normalized)
[)
True Positive Rate

® 83% o —— Logistic Regression (AUC = 0.85)

1.00 1.01 1.02 1.03 1.04 1.05 0.0 0.2 0.4 0.6 0.8 1.0
Global divergence score (normalized) False Positive Rate

(a) Accuracy vs divergence scores (b) Low local divergence embedding

FIGURE 6.8
Results of link prediction on the 1,000 nodes ABCD graph with £ = 0.2.

We illustrate this process on the same ABCD graph used before (with
noise parameter £ = 0.6). We begin by partitioning the set of nodes into three
bins, with 25% of nodes in the training set, 25% in the validation set, and 50%
in the test set. We trained 40 different embeddings: we used HOPE with the
4 different proximity measures presented in Section 6.3 (Katz Index, Personal-
ized PageRank, Common Neighbours, Adamic-Adar), LEM, and Node2Vec
with 3 different combinations of the parameters p and ¢ (corresponding to bias
toward breadth-first or, respectively, depth-first walks). We also considered 5
choices of dimensions ranging from 2 to 32 in each case. For each embedding,
we trained the random forest classifier using the training data and computed
the accuracy on the validation data.

In Figure 6.9(a), we compare the accuracy with both divergence scores for
every embedding. We see that the global divergence score is a better predic-
tor of accuracy. Indeed, computing the Kendall’s 7 correlation between the
divergence scores and the accuracy on the validation set, we got respectively
—0.76 for the global score and —0.44 for the local score.

In Figure 6.9(b), we show the results for the top-10 models obtained via
supervised learning using the accuracy score on the validation set. We also
present results for the top-10 models based only on the divergence scores
from the framework. For the divergence scores, we ranked the embeddings
independently with the local and, respectively, the global scores, and we kept
the average ranking. For both scenarios, the final accuracy score is computed
for the test set. Based on the figure, we conclude that we obtain the best
results when we use the true objective function and are given labelled data
(here, the accuracy), while the results using the unsupervised framework are
also very good. For the embeddings we considered, the accuracy ranged from
14% to 96% (for reference, a random classifier gave us under 9% accuracy).

Another way to compare the results is presented in Figure 6.10, where we
compare the accuracy score on the test set with the ranking based on the

220 Graph Embeddings

o TE T

test set accuracy

]
°
°

5

o
®

>

IS
°
S

Test set accuracy

o 65%
® 9%

Local divergence score (normalized)
Py

~
°ie ¢@

0
20 40 60 80 100 Top-10 validation set accuracy Top-10 divergence score
Global divergence score (normalized)

(a) Accuracy vs divergence scores (b) top-10

FIGURE 6.9

Accuracy of classification using (a) all embeddings considered, and (b) top-10
results on the ABCD graph. For the left plot in (b), we use the (supervised)
accuracy on the validation set to select the best models. For the right plot in
(b), we used the (unsupervised) local and global divergence scores from the
framework, taking the average ranks.

accuracy on the validation set (supervised) and, respectively, based on the
divergence score (unsupervised). While they both show negative correlation,
it is clearer in the supervised context.

Structural Embedding and GCNs

In previous experiments, we were interested in embeddings that preserve the
proximity of adjacent or nearby nodes, thus preserving communities. For the
next example, we consider a different type of objective where we try to group
nodes that have similar roles within the graph, that is, an example of a struc-
tural embedding. We learn an embedding of the Zachary karate club graph
using GCN and some simple features for each node, namely, its degree and the
number of edges inside its ego-net. We trained a GCIN with a single hidden
layer and 3-dimensional output layer, the dimension of the desired embed-
ding. Given this embedding, we applied the k-means algorithm to partition
the nodes into 3 communities. The results are presented in Figure 6.11. In the
left plot, we show the resulting embedding after reduction to two dimensions
using UMAP. The node colours correspond to the k-means clusters, and we
see a good separation of the clusters. There are many long edges which con-
firms that the embedding does not aim to keep all neighbours close to each
other. The meaning of the clusters becomes clear when we show the graph
using a force-directed layout in the right plot. We see that that the embed-
ding finds respectively the central, intermediate, and peripheral nodes as its
clusters.

Ezxperiments 221

°

©
° °
Y o

Test set accuracy
°
=

Test set accuracy

0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
Rank Rank (divergence score)

(a) Ranking with respect to the accuracy (b) Ranking with respect to the divergence
score scores

FIGURE 6.10

Comparing test set accuracy with (a) the accuracy (supervised) score on the
validation set, and (b) the divergence (unsupervised) scores from the frame-
work for the ABCD graph.

In the accompanying notebook, we show a few more experiments with
this graph. First we train a GCN model to obtain a 1-dimensional structural
embedding, which yields a natural ordering of the nodes with respect to their
centrality in the graph. Next we use the ground-truth labels to train a GCN
model for semi-supervised learning. More specifically we hide 1/3 of the labels
(the test set) and train the GCN using the remaining 2/3 of the labels (the
training set). Applying this model to the test set, we get almost 90% accuracy
in recovering the hidden labels. The labels are associated with the two ground-
truth communities from the karate club graph which we described earlier.

@@ ® .
® ® ® »
® ® %) ® @ @ @
©
® » > 2 ° ° ° ®®
@ @ ® ®
®
© o¢° ® o @
® @ @)
® ® ® ®
o © o
®@ © ®
(a) GCN Embedding (b) Using force-directed layout
FIGURE 6.11

GCN embedding of the Zachary karate club graph followed by k-means clus-
tering with k£ = 3; we show (a) 2-dimensional mapping of the embedding via
UMAP and (b) Fruchterman-Reingold (force-directed) layout. Node colours
correspond to the three k-means clusters.

222 Graph Embeddings

6.8 Practitioner’s Corner

The most common usage of graph embedding is to learn a mapping from the
set of nodes V' into some k-dimensional vector space, where typically k < |V].
This can be viewed as the process of learning feature vectors for each node.
It is motivated by the fact that mining data in vector spaces is often easier
to perform due to the availability of tools and techniques. It is also easier to
obtain a representative sample of the data in vector spaces, something that is
non-trivial to do for graphs.

Most of the node embedding algorithms aim to preserve the proximity
of adjacent or nearby nodes; we called them classical node embeddings. A
smaller family of node embeddings, structural ones, aim to group nodes to-
gether that play similar role within the network. We saw that most classical
node embedding algorithms roughly fall into three categories: those based on
linear algebra (mainly applied to the adjacency matrix), those based on ran-
dom walks, and more recent methods based on deep learning. As there are
many methods proposed in the literature, the user is usually faced with the
challenge of selecting the most appropriate one for the problem at hand.

As with most machine learning techniques and tools, problems in graph
mining can be grouped into two categories: unsupervised and supervised, and
the recommended procedure for selecting an appropriate embedding depends
on which category the problem belongs to. The first category refers to unsu-
pervised learning, which includes applications such as visualization, clustering,
and community detection. For visualization, mainly in two dimensions, there
exist several good specialized layout algorithms but one may also use an em-
bedding algorithm and then reduce the dimension to 2 or 3 using UMAP. It
is generally difficult to assess the performance of unsupervised algorithms due
to a lack of “ground-truth” data. This includes visualization that can be eval-
uated by mere eyeballing but, of course, this cannot be done for hundreds of
embeddings. To that effect, the framework based on the Geometric Chung-
Lu model can be efficiently used (see Section 6.5). This framework produces
two scores: a global score that evaluates how well the embedding preserves
community structure, and a local score that looks at the local (edges) struc-
ture of the ego-nets around nodes. The scores are to be used, in a relative
way, to compare various embeddings and help decide with one(s) to retain.
The second category of problems are supervised in the sense that at least some
notion of ground-truth information is available; this includes problems such
as link prediction and node classification. For such problems, the choice of
embedding should be guided by an objective function tuned for the problem
at hand and the ground-truth data.

Finally, let us mention that graph embedding is a very recent and active
research area; this chapter mainly covered node embedding techniques but
there are several other related topics such as edge embedding and embedding

Problems 223

whole graphs. We will briefly cover the latter in part II of the book, namely,
in Chapter 9.

6.9 Problems

In this section, we present a collection of potential practical problems for the
reader to attempt.

1. Generate an ABCD graph on n = 1,000 nodes with v = 2.5,
7 = 1.5, and £ = 0.2. Pick 2 of your favourite embedding algo-
rithms, with at least one of them being non-deterministic. For each
algorithm and each dimension (2,4, 8,16, 32, 64):

a. independently generate k = 30 embeddings,

b. evaluate the quality of each embedding by computing the
global divergence score (see the unsupervised benchmarking
framework),

c. compute the mean score (over 30 embeddings) and standard
deviation.

Which dimension produced the best embeddings (according to the
framework) and which one is the most stable?

2. For the best and the worst embedding (based on the unsupervised
benchmarking framework evaluating all embeddings that were gen-
erated in the previous problem), run the k-means algorithm using
the known number of communities from the ABCD graph (ground
truth). Compare the quality of the embeddings using AMI, ARI,
and AGRI.

3. Take a ring of cliques (Figure 5.14). For each algorithm you picked
in the previous problems, and each dimension:

a. independently generate k = 30 embeddings,

b. evaluate the quality of each embedding by computing the
divergence score (see the unsupervised benchmarking frame-
work).

Select the best embedding and the worst embedding (according to
the framework - you need to save the edgelist and communities
to files in order to run the framework) from all embeddings you
created, reduce the dimension to 2 using UMAP, and plot both of
them highlighting the cliques with colours.

224 Graph Embeddings

4. Repeat the above experiment (plotting the best and the worst em-
bedding) for the giant component of the subset of the European
Grid network used to generate Figure 1.2. Additionally,

a. find communities of that graph using your favourite algorithm
and colour the nodes accordingly,

b. for each pair of nodes, compute the distance in the embedded
space and the geographical distance and create a scatter plot,

c. partition all pairs of nodes into 10 buckets of equal size based
on their distance (that is, the first bucket consists of pairs of
nodes that are close to each other and the last one pairs of
nodes that are far from each other); compute the number of
edges that fall into each bucket. What can you conclude?

5. Consider the undirected, unweighted version of the Airport graph
that was used previously. Run a GCN embedding as we did for the
Zachary karate club graph, splitting the nodes into 3 classes based
on the generated embedding. Compare the distributions of degrees
and the pagerank centrality amongst the 3 groups. What can you
conclude?

6.10 Recommended Supplementary Reading

o L. Katz. A new status index derived from sociometric analysis, Psychome-
trika 18(1):39-43, 1953. (Katz Index)

e P. Berkhin, A survey on PageRank computing, Internet mathematics 2.1
(2005), 73-120. (Personalized PageRank)

e L.A. Adamic, E. Adar. Friends and neighbors on the web, Social networks
25.3 (2003), 211-230. (Adamic-Adar)

e G. Jeh, J. Widom, SimRank: a measure of structural-context similarity, In:
KDD ’02: Proceedings of the eighth ACM SIGKDD international conference
on Knowledge discovery and data mining (2002), 538-543. (SimRank)

e S.T. Roweis, L.K. Saul. Nonlinear dimensionality reduction by locally linear
embedding, Science 290(5500):2323-2326, 2000. (LLE, Local Linear Embed-
ding)

e M. Belkin, P. Niyogi. Laplacian eigenmaps and spectral techniques for embed-
ding and clustering, In Nips, volume 14, pages 585-591, 2001. (LEM, Lapla-
cian Eigenmaps)

Recommended Supplementary Reading 225

e M. Ou, P. Cui, J. Pei, Z. Zhang, W. Zhu. Asymmetric Transitivity Preserving
Graph Embedding, in KDD (2016). (HOPE)

e T. Mikolov. Distributed representations of words and phrases and their com-
positionality, Advances in Neural Information Processing Systems (2013).
(Word2Vec)

e A. Grover, J. Leskovec. Scalable Feature Learning for Networks, in ACM
SIGKDD International Conference on Knowledge Discovery and Data Min-
ing (KDD), 2016. (Node2Vec and link prediction)

e 1. Abraham, fastnode2vec, github.com/louisabraham/fastnode2vec,
2020. (Node2Vec implementation)

e B. Perozzi, R. Al-Rfou, S. Skiena. Deep Walk: Online learning of social rep-
resentations, in KDD, 2014. (Deep Walk)

e D. Wang, P. Cui, W. Zhu. Structural deep network embedding, in Proc. ACM
SIGKDD, 2016, 1225-1234. (SDNE)

e K. Henderson, B. Gallagher, L. Li, L. Akoglu, T. Eliassi-Rad, H. Tong, C.
Faloutsos, It’s who you know: graph mining using recursive structural fea-
tures, in Proceedings of the 17th ACM SIGKDD international conference on
Knowledge discovery and data mining, August 2011 pp. 663-671. (ReFeX)

e K. Henderson, B. Gallagher, T. Eliassi-Rad, H. Tong, S. Basu, L. Akoglu, D.
Koutra, C. Faloutsos, L. Li, RolX: structural role extraction and mining in
large graphs, in Proceedings of the 18th ACM SIGKDD international confer-

ence on Knowledge discovery and data mining, August 2012, pp. 1231-1239
(RolX)

e T.N. Kipf, M. Welling. Semi-supervised classification with graph convolu-
tional networks, in Proc. of ICLR, 2017. (GCN)

e W.L. Hamilton, Z. Ying, J. Leskovec. Inductive representation learning on
large graphs, in Advances in Neural Information Processing Systems 30:
Annual Conference on Neural Information Processing Systems 2017, 2017,
1024-1034. (GraphSAGE)

e J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, Q. Mei. Line: Large-scale
information network embedding, Proceedings 24th International Conference
on World Wide Web, 2015, 1067-1077. (LINE)

e B. Kaminski, P. Pralat, F. Théberge. An Unsupervised Framework for
Comparing Graph Embeddings, Journal of Complex Networks 8(5) (2020),
cnz043. (Unsupervised Benchmarking Framework)

e B. Kaminski, P. Pratat, F. Théberge. A Scalable Unsupervised Framework
for Comparing Graph Embeddings, Proceedings of the 17th Workshop on

226 Graph Embeddings

Algorithms and Models for the Web Graph (WAW 2020), Lecture Notes in
Computer Science 12091, Springer, 2020, 52-67. (Unsupervised Benchmark-
ing Framework)

e B. Kaminski, L. Krainski, P. Pratat, F. Théberge. A Multi-purposed Unsu-
pervised Framework for Comparing Embeddings of Undirected and Directed
Graphs, Network Science 10(4) (2022), 323-346. (Unsupervised Benchmark-
ing Framework)

e W. Suhang, T. Jiliang, A. Charu, C. Yi, L. Huan. Signed Network Embedding
in Social Media, SDM 2017: 327-335. (SiINE, Signed Network Embedding)

e M. Zitnik, J. Leskovec. Predicting multicellular function through multi-layer
tissue networks, Bioinformatics 33(14), (2017) 190-198. (OhmNet)

e [. Chami, Z. Ying, C. Ré, J. Leskovec. Hyperbolic graph convolutional neural
networks, in Advances in Neural Information Processing Systems, volume
32, 2019. (HGCN, Hyperbolic Graph Convolutional Neural Network)

e Y. Dong, N.V. Chawla, A. Swami, metapath2vec: Scalable representation
learning for heterogeneous networks, in Proceedings of the 23rd ACM
SIGKDD international conference on knowledge discovery and data min-
ing 2017, 135-144. (Metapath2Vec)

e A. Narayanan, M. Chandramohan, R. Venkatesan, L. Chen, Y. Liu,
graph2vec: Learning distributed representations of graphs, MLG 2017, 13th
International Workshop on Mining and Learning with Graphs. (Graph2Vec)

e L. Mclnnes, J. Healy, UMAP: uniform manifold approximation and projec-
tion for dimension reduction, 2018, preprint available at
arxiv.org/abs/1802.03426. (UMAP)

e B. Rozemberczki, R. Sarkar, Twitch Gamers: a Dataset for Evaluating Prox-
imity Preserving and Structural Role-based Node Embeddings, 2021, preprint
available at arxiv.org/abs/2101.03091. (Twitch dataset)

e M. Fey, J.E. Lenssen, Fast Graph Representation Learning with PyTorch Ge-
ometric, 2019, preprint available at https://arxiv.org/abs/1903.02428.
(PyG)

e M. Fey, J. Sunil, A. Nitta, R. Puri, M. Shah, B. Stojanovi¢, R. Bendias,
A. Barghi, V. Kocijan, Z. Zhang, X. He, J.E. Lenssen, J. Leskovec, PyG
2.0: Scalable Learning on Real World Graphs, 2025, preprint available at
https://wuw.arxiv.org/abs/2507.16991. (PyG)

Graph embedding surveys:

e H. Cai, V. Zheng, K. Chang, A Comprehensive Survey of Graph Embedding:
Problems, Techniques, and Applications, IEEE Trans. on Knowledge & Data
Eng., vol. 30, no. 09, pp. 1616-1637, 2018.

Recommended Supplementary Reading 227

e P. Goyal, E. Ferrara, Graph embedding techniques, applications, and perfor-
mance: A survey, Knowledge-Based Systems, Vol. 151, pp. 78-94 (2018).

e W.L. Hamilton, R. Ying, J. Leskovec, Representation Learning on Graphs:
Methods and Applications, IEEE Data Eng. Bull. 40(3): 52-74 (2017).

e D. Zhang, J. Yin, X. Zhu C. Zhang, Network Representation Learning: A
Survey, IEEE Trans. on Big Data, vol. 6, no. 01, pp. 3-28 (2020).

7
Hypergraphs

7.1 Introduction

A hypergraph is a natural generalization of a graph in which hyperedges (coun-
terparts of edges in graphs) may consist of any number of nodes, not just two
as in the case of graphs. Many networks that are currently modelled as graphs
would be more accurately modelled as hypergraphs. This includes the collab-
oration network in which nodes correspond to researchers and hyperedges
correspond to papers that consist of nodes associated with researchers that
co-author a given paper. Another example that we used a few times in this
book is the GitHub hypergraph in which nodes correspond to users of the
platform and hyperedges correspond to repositories that link users who are
committed to them. Up to this point, we thought about this object as a graph
but, arguably, it is more natural to think of it as a hypergraph. In particular,
note that in the examples we have given above, a hypergraph representation
provides a lossless representation of data while using a graph entails the loss
of some important information. For example, if we see three researchers in
the collaboration network forming a triangle in a graph, then it is impossible
to tell if they jointly co-authored one paper or published three independent
papers co-authored by the three pairs of researchers.

Even though a myriad of problems can be naturally described in terms
of hypergraphs and the fact that they were formally defined in the 1960s
(and various realizations were studied long before that), the algorithms and
tools that work with hypergraphs are still patchy and often not sufficient to
deal with a given practical problem at hand. As a result, researchers and
practitioners typically create the 2-section graph of a hypergraph of interest
(that is, replace each hyperedge of size k with the complete graph on k nodes;
formal definition will be introduced soon). After moving to the 2-section graph,
one clearly loses some important information about hyperedges of size greater
than two, as explained above. Thus, a belief commonly persists that one can
do better by using the knowledge of the original hypergraph. This is an active
area of research in mining complex networks and there are no standard tools
yet. In order to highlight some recent developments, we decided to focus on
a few selected aspects often related to applications that the authors of this
book are personally involved in.

229

230 Hypergraphs

This Chapter is structured as follows. We first introduce some basic defini-
tions related to hypergraphs (Section 7.2). Then, we define a few random hy-
pergraph models that we will need later on (Section 7.3). In order to highlight
some recent attempts to mine hypergraphs, we introduce the generalization
of the modularity function for hypergraphs (Section 7.4), and we concentrate
on detecting communities in such structures (Section 7.5). Centrality mea-
sures generalized to hypergraphs are discussed next (Section 7.6), followed
by exposition of several hypergraph-specific properties (Section 7.7). Embed-
dings of hypergraphs are not as nearly well-developed as of graphs but they
are currently being introduced (Section 7.8). As usual, we finish the chapter
with experiments (Section 7.9) and provide some tips for practitioners (Sec-
tion 7.10).

7.2 Basic Definitions

A hypergraph H = (V| E) consists of V, the set of nodes, and F, the set
of hyperedges. Each hyperedge e € E is simply a subset of V, that is, e C V.
Hence, each graph G = (V| E) is a hypergraph in which each edge has size two,
that is, |e| = 2 for all e € E. Similarly as for graphs, we will usually assume
that the hypergraphs we work with are simple, meaning that no nodes are
repeated within one hyperedge and there are no parallel hyperedges. Having
said that, it will be convenient to deal with multi-sets when generalizing the
Chung-Lu model to hypergraphs. Moreover, let us mention that some authors
call a hyperedge e € E with |e]| = 1 a loop but it seems more natural (and
consistent with the counterpart for graphs) to call a loop an edge with one
node repeated twice. On the other hand, if a given application requires parallel
hyperedges, as it is done for graphs, one can usually deal with that by assigning
weights to hyperedges. A hypergraph is called k-uniform if each hyperedge
contains precisely k nodes. So a 2-uniform hypergraph is simply a graph, a
3-uniform hypergraph consists of a collection of unordered triples, and so on.

A node v € V is called isolated if it does not belong to any hyperedge,
that is, v € V '\ |J.cpe. Two nodes in a hypergraph are adjacent if there
is a hyperedge which contains both of them. Two hyperedges are incident
if their intersection is not empty. The star H(v) centered in node v is the
family of hyperedges containing v, that is, H(v) = {e € E : vNe # 0}
deg(v) = |H(v)| is the degree of v. If each node has the same degree, we say
that the hypergraph is regular, or d-regular if for every v € V, deg(v) = d.
As for graphs, the maximum degree of a hypergraph H is denoted by A =
A(H) = maxyey deg(v), and the minimum degree of a hypergraph H is
denoted by § = §(H) = min,cy deg(v). The rank r(H) of H is the maximum
cardinality of a hyperedge in the hypergraph, that is, r(H) = maxecg |el;
the minimum cardinality of a hyperedge is the co-rank cr(H) of H, that is,

Basic Definitions 231

cr(H) = mineeg |e|]. Note that if r(H) = cr(H) = k, then hypergraph H is
k-uniform.

Let us fix a pair of nodes, u,v € V. A sequence of nodes P = (u =
wo, W1, ...,wy = v) is called a path from u to v (of length ¢) if nodes
w;—1 and w; are adjacent for all ¢ € [¢]. Similarly to graphs, a connected
component of a hypergraph H is a maximal subgraph in which any two
nodes are connected to each other by a path. If H has precisely one connected
component, then we say that H is connected; otherwise, we say that H is
disconnected.

It will sometimes be convenient to represent hypergraphs as graphs al-
though the first two graph representations of hypergraphs defined below do
not preserve all of the information about the hypergraph, that is, one may
not be able to reconstruct hypergraph H from its projection to these graphs.

Let H = (V,E) be any hypergraph. The line graph of H is a graph
L(H) = (V',E’) such that V' = E and e;,e; € V' are adjacent if and only if
e;Ne; # 0, that is, e; and e; are incident to each other. Even though we lose
a lot of details about the original hypergraph, some of its properties can be
tested on the corresponding line graph. For instance, it is easy to show that
the hypergraph H is connected if and only if L(H) is.

Another useful graph is the 2-section of H (also known as the clique
expansion) which is the graph denoted by [H]s in which nodes are the nodes
of H and two distinct nodes u,v € V form an edge if they belong to the
same hyperedge in H. In fact, [H]s is often defined as a multi-graph (or,
alternatively, as a weighted graph) in which for each hyperedge e € FE with
le] > 2 and weight w(e), (I;\) edges are formed, each of them with weight of

w(e)/('<)). While there are other natural choices for the weights (such as the
weighting scheme w(e)/(Je] — 1) that ensures that the degree distribution of
the created graph matches the one of the original hypergraph H), this choice
preserves the total weight. As hyperedges in H usually overlap, this process
creates a multigraph. In order for Hyy to be a simple graph, if the same pair
of vertices appear in multiple hyperedges, the corresponding edge weights are
combined.

The last reduction to graphs we want to mention is not lossy, that is, one
may reconstruct the original hypergraph from the corresponding graph. The
incidence graph of a hypergraph H is a bipartite graph IG(H) = (V', E’)
with the set of nodes V' =V U E (V and E are the two bipartite sets), and
where v € V and e € F are adjacent if and only if v € e. By counting edges
in this bipartite graph that are incident to nodes in V' and, respectively, that
are incident to nodes in E, we get the following observation that holds for any
hypergraph H = (V, E):

Z deg(v) = Z le]. (7.1)

veV eckE

When H is a graph, the right-hand side of (7.1) is equal to 2|F| and the

232 Hypergraphs

“handshaking lemma” is recovered.

Finally, let us briefly mention some algebraic definitions that apply to
hypergraphs. Let H = (V,E) be a hypergraph with nodes and edges la-
belled as follows: V' = {v1,va,...,v,} and E = {ej,ea,...,em,}. Suppose
that H has no isolated nodes. Then, H has an n x m incidence matrix
B = (bij)ie[n],je[m] where b;; = 1 if v; € e;; otherwise, b;; = 0. The ad-
jacency matrix A = (a;j); je[n is @ n X n matrix defined as follows: a;;
is equal to the number of hyperedges that contain both v; and vj, that is,
a;j = |[{e € E : {v;,v;} C e}|. Note that the adjacency matrix of a hyper-
graph is equal to the adjacency matrix of the corresponding 2-section graph.
However, as mentioned above, reduction to the 2-section graph entails the
loss of some properties and the original hypergraph cannot be reconstructed
by looking at its adjacency matrix.

Readers interested in learning more about theoretical properties of hy-
pergraphs are referred to, for example, Bretto (2013). On the other hand,
Battiston et al. (2020) and Lee et al. (2024) are surveys on the higher-order
mining and architecture of real complex systems.

7.3 Random Hypergraph Models

As mentioned in Section 2.1, there are at least four reasons why one might
want to consider random models. So far, random hypergraphs have received
significantly less attention than random graphs. Moreover, they are almost
exclusively considered from a theoretical point of view (reason (i)), and re-
searchers mainly concentrate on asymptotic results obtained for random k-
uniform hypergraphs, where & > 3 is a fixed constant. We define a slightly
more general model below but it will be straightforward to restrict ourselves
to k-uniform hypergraphs.

Let P = (p1,p2,.--,pk) be a sequence of real numbers from [0, 1]. The
binomial random hypergraph #(n,P) can be generated by starting
with the empty hypergraph on the set of nodes [n] = {1,2,...,n}. For
each ¢ € [k] and each i-set of nodes e C [n], |e|] = i, we independently
introduce a hyperedge e in H with probability p;.

As for graphs, we note that p; = p;(n) may (and usually does) tend to zero
as n tends to infinity. For example, it is often assumed that p; = ¢;/ (:L__ll) for
some non-negative constant ¢; so that for any v € [n]

E deg(v) = kl <T.L N 1) = zk:c (7.2)

=1

Random Hypergraph Models 233

Let us also note that we formally defined the probability distribution over
a family of labelled hypergraphs on n nodes. Finally, as mentioned earlier,
the random k-uniform hypergraph H(n,p, k) is simply H(n,P) with P =
(p1,p2, - - -, k) such that p, = p and p; = 0 for ¢ € [k — 1]. On the other hand,
the binomial random hypergraph #(n,P) can be viewed as a union of k
independent random k-uniform hypergraphs H(n,p;, i), i € [k].

Many of the properties of G(n,p) have been generalized without too much
difficulty to H(n,p, k) but, of course, there are some properties that required
more advanced ideas (there are also a few famous examples where the corre-
sponding results for hypergraphs were actually easier to prove). Let us mention
some results that can be easily generalized from G(n,p). The following prop-
erty holds for a fixed k > 3 and p = ¢/(}~) for some constant ¢ € Ry. If
¢ < 1/(k — 1), then a.a.s. the largest component is of size O(Inn). On the
other hand, if ¢ > 1/(k — 1), then a.a.s. there is a unique giant component of
size ©(n) and all other components are of size O(Inn). In fact, the size of the
giant component can be obtained as follows. For ¢ > 1/(k — 1), let z = z(c)
be the solution in (0,1/(k — 1)) to

ze~k=1)T — co=(k=De, (7.3)

Then, a.a.s. the giant component has size asymptotic to (1 — (z/c)Y/*=D)n.

Let us also mention that the connectivity threshold for H(n, p, k) coincides
with the threshold for the minimum degree being at least one, and so the
behaviour is again the same as for G(n,p). Let

_lnn—|—c

RGN

Then,
0 if c = —o0
P(H(n,p, k) is Connected) ~Qe ¢ ifceR
1 if ¢ = oo.

In particular, we get the following corollary of this much stronger result. If

P (k_l) < (1—¢€)Inn for some € > 0, then a.a.s. H(n, p, k) is disconnected. On

the other hand, if p- (,",) > (14 ¢€) Inn for some € > 0, then a.a.s. H(n,p, k)
is connected.

Finally, let us present a very simple experiment which demonstrates that
we indeed lose some important information by restricting ourselves to 2-section
graphs. Consider the three hypergraphs depicted in Figure 7.1 which have
the same 2-section graphs. Suppose that the occurrence of, say, Hy in some
large hypergraph H indicates some anomalous behaviour whereas seeing H;
or Hj is perfectly normal. A natural approach to identifying anomalous sets
of four nodes would be to inspect the 2-section of H using standard tools for
graphs, finding all sets inducing graph H; in [H]2, and then investigating these

234 Hypergraphs

potentially anomalous sets after coming back to hypergraphs. Unfortunately,
it might be the case that one would find a large number of sets of potential
anomalies in [H] but none of them actually are.

FIGURE 7.1
These three hypergraphs have the same 2-section, which is precisely H;, but
which appear in H(n, P) with different probabilities.

In order to illustrate this potential problem, we consider hypergraphs on
n = 500 nodes. We fix po =c¢/(n — 1), ps = (8 — ¢)/((n — 1)(n — 2)) for some
real number ¢ € [0, 8], and with all other p;s equal to zero. This choice yields
constant expected degree in the corresponding 2-section graphs (with parallel
edges allowed). Indeed, since each hyperedge of size 3 consisting of node v
in the hypergraph yields two edges adjacent to v in the 2-section graph, it
follows from (7.2) that the expected degree of any node in the 2-section graph

is equal to
n—1 n—1
(1)p2+2~< 5 >p3=c+(8—c):8.

For each value ¢ € {0,1,...,8}, we generated 16 random hypergraphs and in
Table 7.2, we report the average number of sets of four nodes giving hyper-
graph motifs Hy, H> and H3 shown in Figure 7.1.

As expected, for small and large values of ¢, there are a lot of potentially
anomalous sets (based on the 2-section “footprint”) but very few of them are
actually anomalous. For such scenarios, it is advised to stay with hypergraphs
and try to detect motifs there. On the other hand, for average values of ¢
(say, ¢ = 5) almost all potentially anomalous sets actually are anomalous so
moving to the 2-section might not be a bad idea.

Finally, let us mention that from the computational point of view, in this
specific example finding a H, motif in a hypergraph should be a computa-
tionally easier task than finding a H; motif in the corresponding 2-section
graph. However, in general, whether it is faster to look for a given motif in a
hypergraph or in the corresponding 2-section graph depends on the motif and
implementation of the algorithm used to search for it.

Another reason to introduce random models we identified in Section 2.1 is
to create a synthetic graph that closely resembles a real-world network (reason

Random Hypergraph Models 235

TABLE 7.2
Average number of patterns depicted in Figure 7.1 in
random hypergraphs of size n = 500 with ps = ¢/(n — 1),

p3=8-¢c/((n-1)(n—2)).

C H1 H2 H3
0 0.0000 0.0000 16.3750
1 0.0000 2.7500 11.0000
2 0.0000 10.0000 8.4375
3 0.0625 22.1250 6.1250
4 0.3750 31.2500 3.3125
5) 2.0000 38.2500 2.1875
6 3.3750 38.8750 0.9375
7 10.0625 23.5625 0.1875
8 15.3125 0.0000 0.0000

(iii)). This is typically done in order to create a flexible laboratory for testing
various scenarios. Examples of such models include the LFR and ABCD
graphs we discussed in Section 5.3. In the context of community detection in
hypergraphs, we will be interested in modelling various levels of heterogeneity
of hyperedges. These synthetic networks with an engineered ground truth
will be used to evaluate the performance of various clustering algorithms.

The building blocks in the ABCD are flexible and may be adjusted to sat-
isfy different needs. As mentioned in Section 5.3, the model was adjusted to in-
clude potential outliers resulting in ABCD+o0. Adjusting the model to hyper-
graphs is more complex but it was done resulting in h—ABCD (hypergraph
Artificial Benchmark for Community Detection) model (Kaminski, Pralat,
and Théberge, 2023). We use this model for our experiments.

Let vy € [2,3], 7 € [1,2], and € € [0, 1] (& is called the mixing parameter).
Let L € N be the size of largest hyperedges, g4 € [0, 1] be the fraction
of hyperedges that are of size d (Zszl ga = 1), and w4 € [0,1] be the
fraction of community hyperedges of size d that have exactly ¢ within-
community nodes (for any d € [L], Zg:Ld/2j+1 Weq = 1).

The h—ABCD model H(v,T,&) generates random graphs with com-
munity sizes and node degrees following truncated power law distributions
with exponents 7 and 7y respectively. The mixing parameter £ controls the
fraction of edges that are between communities.

The h—ABCD model generates a hypergraph on n nodes. The degree
distribution follows the power-law with exponent v, minimum and maximum
value equal to § and, respectively, D. Community sizes are between s and S,
and also follow a power-law distribution, but this time with exponent 8. Pa-
rameter ¢ is responsible for the level of noise. If £ = 0, then each hyperedge is

236 Hypergraphs

a community hyperedge meaning that the majority of its nodes belong to one
of the communities. On the other extreme, if £ = 1, then communities do not
play any roles and hyperedges are simply “sprinkled” across the entire hyper-
graph that we will refer to as background hypergraph. Vector (¢1, ¢, .- .,q5)
determines the distribution of the number of hyperedges of a given size, where
L is the size of the largest hyperedges.

Finally, parameters w. 4 specify how many nodes from its own community
a given community hyperedge should have. We call a community hyperedge to
be of type (¢, d) if it has size d and exactly c of its nodes belong to one of the
communities. Note, in particular, that we require that a community hyperedge
must have more than a half of its nodes from the community. Therefore, w, 4
is defined for d/2 < ¢ < d, where d € [L].

The model is flexible and may accept any family of parameters w, q sat-
isfying specific needs of the users, but here is a list of three standard options
implemented in the code:

o majority model: w, 4 is uniform for all admissible values of ¢, that is, for any

d/2 <c<d,
1 1

(d—1d/2]) ~ Td/2]

o linear model: w. 4 is proportional to c for all admissible values of ¢, that is,
for any d/2 < ¢ < d,

We,d =

2c 2c
We,d = =

T (A [d/2] +1)(d = [d/2]) (d+ [d/2] +1)[d/2]

e strict model: only “pure” hyperedges are allowed, that is

wg,g=1and weq =0 for d/2 < c < d.

The proposed model is still rather simple but it captures the fact that
many real-world networks represented as hypergraphs exhibit various levels of
homogeneity or the lack of thereof. Moreover, some networks are noisy with
some non-negligible fraction of hyperedges consisting of nodes from different
communities. Such behaviour can be controlled by the mixing parameter £.
Thus, we have a tool to test the performance of our algorithms for various
scenarios. A good community detection algorithm should be able to adjust to
any scenario in an unsupervised way.

7.4 Hypergraph Modularity Function

Yet another reason for introducing random models that we discussed in Sec-
tion 2.1 is to use them to guide the optimization process of some algorithm

Hypergraph Modularity Function 237

of interest (reason (iv)). For example, we used the Chung-Lu random graph
model (see Section 2.5) as the null model in order to define the modularity
function that is then used by Leiden, Louvain, or ECG algorithms to de-
tect communities (see Section 5.4). In order to adjust these ideas and to define
hypergraph modularity for finding communities in hypergraphs, we will use
the generalization of the Chung-Lu model to hypergraphs (Kaminski et al.,
2019).

Chung-Lu Model

Consider a given hypergraph H = (V, E) with V' = [n], where hyperedges
e € E are subsets of V' with cardinality greater than one (we may ignore
hyperedges of size one as they do not affect the modularity function). Since
we are concerned with hypergraphs that are not necessarily simple, hyperedges
are multi-sets. Such hyperedges can be described using distinct sets of pairs
e ={(i,me(i)) : i € V = [n]} where m.(i) € NU{0} is the multiplicity of the
node ¢ in e (including zero which indicates that ¢ is not present in e). Then
le] = >, me(i) is the size of hyperedge e and the degree of a node i in H is
degp (i) = D> .cpme(i). When the reference to the hyperedge is clear from
the context, we simply use m; to denote m. (7). As for graphs, the volume of
a subset A C V is voly(A) = >, o4 degy(v).

Similarly to what was done for graphs, we define a random model on hyper-
graphs, H(H), where the expected degrees of all nodes are the corresponding
degrees in H. To simplify the notation, we omit explicit references to H in the
remaining of this section; in particular, deg(v) denotes degy(v), H denotes
H(H), E4 denotes the edges of H of size d and Hy = (V, E4). Moreover, we
use E’ to denote the edge set of H'. Finally, let Fy be the family of multi-sets
of size d; that is,

Fy; = {{(Lm,) NS [n]} : Zml :d} .

Now, we are ready to define a generalization of the Chung-Lu model to
hypergraphs.

238 Hypergraphs

Let H be any hypergraph on n nodes. We define H = H(H) = ([n], E)
to be the probability distribution of hypergraphs (including non-simple
hypergraphs) on the set of nodes [n]. The hyperedges are generated via
independent random experiments. For each d such that |E4| > 0, the
probability of generating the edge e € F is given by:

Py(e) = | Eql - (ml,..d.,mn)]j (fjﬁ%)m . (7.4)

Let (X 1(d), e ,Xr(ld)) be the random vector following a multinomial distri-
bution with parameters d, p3 (1),. .., px(n), where py (i) = deg(i)/vol(V) and

> ien) Pr(i) = 1; that is,

sule) == P((deg,.‘,X?(ld)) - (ml,...mn)) - (ml,..d.,m) ﬁ(pﬂ(z))mi.

=1

Note that this is the expression found in (7.4); that is, Py(e) = |Eq4| - su/(e).
As a result, alternatively, one can think about the following auxiliary process.
Select a random multi-set consisting of d nodes (counting possible repetitions);
in d independent rounds, node v; is selected with probability py (). Repeat this
experiment |Ey| times and use the expected number of times edge e occurred in
this process for the value of Py (e). An immediate consequence of this coupling
between the two processes is that the expected number of edges of size d is
|Eg|. Finally, as with the original Chung-Lu (graph) model, if Py(e) > 1,
then it should be regarded as the expectation and a multi-hypergraph should
be considered instead. However, as before, from the practical point of view it
is safe to assume that all Py (e) < 1.

In order to compute the expected d-degree of a node i € V' of some hyper-
graph H', note that

degH; (1) = Z me (1) - Lieerry,
eeFy

where Iy} is the indicator random variable for the corresponding event. Hence,
using the linearity of expectation, then splitting the sum into d 4+ 1 partial

Hypergraph Modularity Function 239

sums for different multiplicities of i, we get:

Epnsn (degp (1) = D me(i)- Py(e) = |Eal Y me(i) - sy(e)

ecFy ecFy
d
=[Ed Y m- > syle)
m=0 e€EF ;me(i)=m
d
= [Edl Y m-P(X[" = m)
m=0
d d
— B . N (1 — \\d—m
a3 m (7, o) i)
= |Ed| - d - pr(i).

The second last equality follows from the fact that we obtained the expected
value of a random variable with binomial distribution. One can compute the
expected degree as follows:

o) deg(i),

Eprn[degyy (1)) =)

d>2

since vol(V)) = > j~5d - |Eq4|. Hence, indeed, the model produces a random
hypergraph H with an expected degree distribution that is equal to the degree
distribution of H.

Modularity

Let us now generalize the modularity function that we introduced in Sec-
tion 5.4 for graphs to hypergraphs. For hyperedges of size greater than 2,
several definitions can be used to quantify the edge contribution of a given
partition A = {41, Ag, ..., A¢} of the set of nodes. As a result, the choice of
the hypergraph modularity function is not unique. The choice is dependent
upon how strongly one believes that a hyperedge is an indicator that some
of its nodes fall into one community. The fraction of nodes of a given hyper-
edge that belong to one community is called its homogeneity (provided it is
more than 50%). In one extreme case, all nodes of a hyperedge have to belong
to one of the parts in order to contribute to the modularity function; this
is the strict variant assuming that only the most homogeneous hyperedges
provide information about underlying community structure. In the other nat-
ural extreme variant, the majority variant, one assumes that edges are not
necessarily homogeneous and so a hyperedge contributes to one of the parts
if more than 50% of its nodes belong to it; in this case being over 50% is
the only information that is considered relevant for community detection. All
variants in between guarantee that hyperedges contribute to at most one part.
Alternatively, a hyperedge could contribute to the part that corresponds to

240 Hypergraphs

the largest fraction of nodes. However, this might not uniquely determine the
part and it is more natural to classify such edges as “noise” that should not
contribute to any part anyway. Once the variant is fixed, one needs to bench-
mark the corresponding edge contribution using the degree tax computed for
the generalization of the Chung-Lu model to hypergraphs that we discussed
above.

In order to unify all potentially useful definitions of modularity functions,
we put them into one common framework. This general framework is flexible
and can be tuned and applied to hypergraphs with hyperedges of varying ho-
mogeneity. In order to achieve our goal, we “dissect” the modularity function
so that each “slice” can be considered independently. For each hyperedge of
size d, we will independently deal with the contribution to the modularity
function coming from hyperedges of size d with precisely ¢ members from one
of the parts, where ¢ > d/2. For example, for d = 7 we get 4 slices correspond-
ing to various values of ¢, namely, ¢ € {4,5,6,7}.

Let H = (V, E) be a hypergraph on the set of nodes V' = {vy,vs,...,v,}
and the degree distribution d = (deg(v1),deg(vs),...,deg(v,)). Let A =
{41, As, ..., A¢} be any partition of V. The contribution q;}d(A) to the mod-
ularity function coming from the slice corresponding to a given pair (¢, d),
d/2 < ¢ < d, can be computed using the generalized Chung-Lu model as
the null-model. As for graphs, we try to capture the discrepancy between the
number of hyperedges of H of size d with exactly ¢ members in some part of A
and the corresponding expected value based on the generalized Chung-Lu
model H = H(H). It follows that

A = o X ()~ Enenlefi(4))])

A€EA
1 (doc . vol(4;)
= — ey (Ai) — |Eq| - P <B1n (d, =c]),
|E| i vol(V)
d,c

where €%;,°(A4;) is the number of hyperedges of size d that have exactly ¢
members in A;, and Bin(d, p) is the binomial random variable, that is,

P(Bin(d,p) = ¢) = (i)pc(l —p)ie.

In order to unify the definitions, the modularity function for hypergraphs
is controlled by hyper-parameters n.q € [0,1] (d > 2, |d/2] +1 < ¢ < d). For
a fixed set of hyper-parameters, we simply define

d
@A) =% S nea gil(A). (7.5)

d>2 c=|d/2]+1

This definition gives us more flexibility and allows us to value some slices more
than other ones depending on their size and homogeneity. However, there is a

Community Detection in Hypergraphs 241

natural family of hyper-parameters that one might consider, namely,

Ne = (¢/d)” (7.6)

for some constant T € [0,00). We will refer to the corresponding modularity
function as T-modularity function. This family has only one parameter to
tune, 7, but it still covers a wide range of possible scenarios. For example,
one might want to value all hyperedges equally (7 = 0; we will refer to this
specific variant as the majority modularity) or value more homogeneous
hyperedges more (7 > 0), including the extreme situation in which only fully
homogeneous hyperedges are counted (7 — oo; we will refer to this variant as
the strict modularity).

Let us note that the parameterizations of w4 in the h—ABCD model
and 7.4 in the definition of the hypergraph modularity function share the
same name but they are not equivalent and should not be confused with
one another. Parameters w, q determine the composition of hyperedges in the
generated synthetic graph whereas 7. 4 specifies the objective function that
the analyst decided to optimize against while looking for communities in the
hypergraph at hand.

7.5 Community Detection in Hypergraphs

As we saw in Chapter 5, detecting communities in graphs is a challenging
problem. Dealing with hypergraphs in this context is clearly much more diffi-
cult. As a result, researchers and practitioners often create the 2-section graph
[H]y of a hypergraph H of interest (recall that [H]s is obtained by replacing
each hyperedge of H with a clique). Given the 2-section graph representation,
one can directly apply some graph clustering algorithms such as Louvain and
Leiden (see Section 5.4). However, with the 2-section graph, one clearly loses
some information about hyperedges of size greater than two so there are some
recent attempts to deal directly with hypergraphs in the context of clustering.

This is an active area of research and there is no standard approach to deal
with hypergraphs in this context yet. Here we only mention two algorithms
that will be used in our experiments: Kumar and h—Louvain. In the algo-
rithm of Kumar (Kumar et al., 2020), the problem is still reduced to graph
clustering but the original hypergraph is used to adjust weights to encourage
some hyperedges to be included in some cluster but discourage other ones
(this process can be viewed as separating signal from noise).

Many of the successful graph clustering algorithms use the modularity
function to benchmark partitions to guide the associated optimization heuris-
tics (again, see Section 5.4). Since it is possible to extend the classical graph
modularity function to hypergraphs (see Section 7.4), such extension can po-

242 Hypergraphs

tentially be used by true hypergraph algorithms such as the recently intro-
duced h-Louvain (Kaminski et al., 2024).

The h—Louvain algorithm is quite complex but the main mechanisms are
the same as in the original Louvain algorithm. In both algorithms, some local
small modifications of partitions of the set of nodes (that can be evaluated and
implemented efficiently) are considered with the aim to greedily optimize the
modularity function. One of the main challenges with adjusting this approach
to hypergraphs is the fact that, when hyperedges of size two (edges) or three
are not present in the hypergraph, then the algorithm immediately gets stuck
in its local minimum. Indeed, the algorithm starts with a trivial partition in
which each node forms its own community. Merging two communities in this
initial partition into one community does not increase the edge contribution
of the modularity function but it does increase the corresponding degree tax.
Moreover, even if there are a few hyperedges of size two or three, the algorithm
may still get stuck almost immediately. More importantly, regardless of the
structure of the hypergraph, it often yields a solution that is heavily biased
toward small hyperedges and so the algorithm converges to a local optimum
that is of low quality.

In order to address these two problems, a method that works reasonably
well in practice is proposed in which one optimizes a weighted average of the
2-section graph modularity function and the hypergraph modularity function,
namely,

(A, a) :=a-qu(A)+ (1 —a)- qm,(A),

where a € [0, 1] is some tuneable weight. Initially, the weight is set to & = 0
but eventually o = 1. The importance of the hypergraph modularity function
increases during the optimization process. The pace of this weight change
(how often and by how much) is governed by two hyper-parameters of the
procedure, which are automatically tuned using Bayesian optimization.

Another challenge with using the modularity function to find communities
in hypergraphs is that it is controlled by hyper-parameters 7. 4 that affect
the quality of the final partition. Fortunately, restricting to the family of 7-
modularity functions controlled only by one hyper-parameter 7 gives enough
flexibility for the corresponding 7.4’s (see (7.6)). Still, selecting an appro-
priate 7 € [0,00) is an important part of the process. The choice depends
on how strongly one believes that a hyperedge is an indicator that at least
some fraction of its nodes fall into one of the communities. In some situations,
a reasonable assumption could be that not necessarily all members of that
hyperedge must be in a single community but majority should (in such situ-
ations, quadratic modularity function, 7 = 2, might work well). On the other
hand, some situations might have various underlying physical constraints that
make one believe that all members should belong to one community unless
such hyperedge is simply a noise (this time, strict modularity, 7 — oo, might
be the one to optimize). If an analyst has some reasonable assumptions about
the underlying process that created a given hypergraph at hand, then the de-

Centrality 243

cision which modularity function to use should be made based on this expert
knowledge.

In the absence of having the ground-truth available, it is recommended
to run a quick clustering algorithm (for example, Louvain or Leiden on the
2-section graph) as a part of Exploratory Data Analysis (EDA), and look at
the composition of hyperedge types: a hyperedge is of type (c,d) if exactly
¢ > d/2 members of that hyperedge belong to one community; otherwise it is
considered as noise. This process should help to decide on the value(s) of 7
one wants to use as the objective 7-modularity function for h—Louvain. In
general, there are two major possible scenarios that the user could consider.
Seeing mostly “pure” edges suggests using a large value of 7 (or strict mod-
ularity), while the opposite suggests using a smaller value of 7 such as 7 = 2
or 7 =3.

7.6 Centrality

Chapter 3 was devoted to various centrality measures defined for graphs.
Clearly, for a given hypergraph H at hand, one can still use these measures
for the corresponding 2-section graph [H]s but most of them can be easily
generalized to hypergraphs. To illustrate this process, we show a few exam-
ples, concentrating on measures that can be generalized in various ways. One
notion that has many natural extensions to hypergraphs is a notion of a walk.
We need a couple of auxiliary definitions to make them rigorous.

Let H = (V, E) be a hypergraph and H* be the corresponding dual hy-
pergraph, where the roles of nodes are hyperedges are swapped. Formally, if
V ={v1,...,un} and E = {ey,...,en}, then H* = (E*, V*) has the set of
nodes E* = {e},...,eX, } and the set of hyperedges V* = {v},...,v%}, where
v = {e; | vi € e}

In Figure 7.3, we show a toy hypergraph H (with nodes labelled with
letters A to G and hyperedges labelled with digits 0 to 7). We also show
the corresponding dual hypergraph H* and the 2-section graph [H]2. The
relation between H and H™* can be seen from the bipartite representation:
hyperedges in H correspond to the top row of nodes in the bipartite view
whereas hyperedges in H* are associated with the bottom row of nodes in the
bipartite view.

Edges in a simple graph can overlap only in one way; they can share one
node or be disjoint. On the other hand, hyperedges in a simple hypergraph
may overlap on many nodes. Depending on the application at hand, we may
require large enough overlap for the two hyperedges to be considered “inci-
dent” (Aksoy et al., 2020). Let s be a positive integer that will be used as
the required minimum overlap size. A sequence of edges e;, €, ,...,e; from
E is called an s-walk of length & if |e;,_, Ne;| > s and i;_1 # i; for ev-

244 Hypergraphs

(c) Bipartite representation (d) 2-section graph [H]2

FIGURE 7.3
A toy hypergraph H (a) with 7 nodes (represented with letters A to G) and
8 hyperedges (represented with digits 0 to 7), the corresponding dual hyper-
graph H* (b), the bipartite representation of H and H* (c), and the 2-section
graph [H]> (d).

ery 1 < j < k. The s-distance d,(e;, e;) between hyperedges e; and e; is
the length of a shortest s-walk between those, if it exists (otherwise, the dis-
tance is usually considered as infinite, and its inverse is set to zero). Note that
the existence of an s-walk between hyperedges yields an equivalence relation.
Therefore we can define an s-connected component as a maximal subset
Es C E of hyperedges with the property that there is an s-walk between
any pair e;,e; € E;. All s-connected components of a given hypergraph
H create a partition of its set of hyperedges E into equivalence classes. The
s-diameter of F; is defined as the maximum shortest path length between
all e;,e; € Es.

Other concepts using a notion of walks or paths can now be extended to
hypergraphs using s-walks. For example, for distinct hyperedges e;, e;,e; € E,

Centrality 245

if there is an s-walk e; — e; — ey, then we say that they form an s-wedge.
Similarly, if there exists an s-walk e; — e; — ex — €;, then we say that those
hyperedges form an s-triangle. Based on these definitions, one can define
the corresponding s-clustering coefficient as it was done for graphs in Sec-
tion 1.11.

So far, we were walking on hyperedges but the concepts can be easily
modified to walk on nodes. For nodes, an s-walk is a sequence of adjacent
nodes such that each consecutive pair of node in the walk shares at least s
hyperedges; all other definitions above follow directly. Let us note that a walk
on nodes in H corresponds to a walk on hyperedges in the dual hypergraph
H* (and vice versa).

In our toy hypergraph example H in Figure 7.3(a), with s = 2, the sequence
of hyperedges 1 — 2 — 0 is an s-path since hyperedges 1 and 2 share nodes A
and C, and hyperedges 2 and 0 share nodes A and B. By considering the
dual hypergraph H*, again with s = 2, the sequence of nodes in the original
hypergraph H (edges in the dual) D — F — F is an s-path since nodes D and F
are both part of hyperedges 3 and 4 in H, and nodes F' and F are both part of
hyperedges 3 and 5 in H. Another s-path (with s = 2) is C — A — B. Note that
for s = 1, s-walks simply correspond to walks on the (unweighted) 2-section
graph, while for s > 2, this only applies to hypergraphs. Coming back to the
case s = 2, we see several disconnected node pairs, so in this case, we have
several s-connected components: {A, B,C}, {D, E, F}, and {G} (that is, node
G is isolated).

With generalization of paths, etc., we may define various centrality mea-
sures that used such concepts in graphs. For a hypergraph H = (V, E), we
define the s-harmonic centrality for a hyperedge e; € E as follows:

1 1
|E] -1 2 ds(eirej)

ej € e;#e;

Recall that for s-disconnected hyperedges e;, e;, we set 1/ds(e;, e;) = 0. For
nodes, as before, the definition is identical using the dual hypergraph. For our
toy example, with s = 2, nodes {A, B, C'} form a connected connected compo-
nent as we saw earlier, the same for nodes {D, F, F'}. For the first connected
component, the distances are dz2(A,B) = d2(A,C) = 1 and d2(B,C)=2,
and so the harmonic centrality for A is 2/6 ~ 0.33, and for B and C it is
(3/2)/6 = 0.25. Results are similar for the other connected component. Node
G is isolated and thus has zero harmonic centrality. All results are summarized
in Table 7.4.

One can also define s-betweenness centrality, as it was done for graphs,
namely, for a hyperedge e; € E the corresponding centrality measure is equal

to
1 U(ej, ex,€;)
(B[= D(E]-2) 2 2 lej,ex)

ej€E\{ei} er€E\{eie;}

246 Hypergraphs

where {(e;,ex) is the number of shortest s-paths between e; and ey, and
l(ej, ek, e;) is the number of shortest s-paths between e; and ey that include
e;. As always, the fractions are set to zero when the denominator is zero.
Again, the definition is the same for nodes using the dual hypergraph. For the
toy example, with s = 2, the only nodes that are on shortest s-paths between
other nodes are node A (between B and C) and node F' (between D and E),
thus the results we see in Table 7.4.

TABLE 7.4

Two s-centrality measures with s = 2 for the toy
hypergraph depicted in Figure 7.3.

node harmonic betweenness
A 0.33 0.067
F 0.33 0.067
B 0.25 0.000
C 0.25 0.000
D 0.25 0.000
E 0.25 0.000
G 0.00 0.000

For both definitions above, one can alternatively define the s-centralities
separately for each s-connected component. Other distance-based centrality
measures can be defined for hypergraphs in the same way. We illustrate some
of those in the accompanying notebook.

|
7.7 Hypergraph-specific Properties

To summarize basic properties of a graph G, other than the number of nodes
and edges, a key characteristic is its degree distribution. One fundamental
difference between graphs and hypergraphs lies in the fact that edges can be
of arbitrary sizes in hypergraphs, and not restricted to size two as in graphs.
Thus, another key characteristic for hypergraphs is the distribution of hyper-
edge sizes. This gives rise to some questions that are specific to hypergraphs.
We look at a few of these in this section.

Degree-edge Size Correlation

We studied degree-degree correlation and assortativity for graphs in Sec-
tion 4.1. The same measures can be applied directly in the context of hyper-
graphs, since the same notion of node degree exists. However, for hypergraphs,
one can also study the relation between node degrees and hyperedge sizes. For

Hypergraph-specific Properties 247

example, is it the case that large hyperedges tend to contain nodes with a high
degree? Or perhaps the opposite holds, namely, large hyperedges consists of
nodes of low degree? To study such questions, one can define some measure
of correlation between the two (Kaminski et al., 2025).

Consider a hypergraph H = (V, E) on |V| = n nodes and |E| = m hyper-
edges. As we mentioned in Section 7.2, H can be represented via the incidence,
bipartite graph B which contains two types of nodes: (i) n nodes vy, ve, ..., v,
corresponding to the nodes in H, and (ii) m nodes ey, e, . . ., €, corresponding
to the hyperedges in H. There is an edge in B between nodes v; and e; if and
only if v; € e; in H, and there are no edges between nodes of the same type.
The degree of a node v; in B corresponds to the node degree in H, and the de-
gree of a node e; in B corresponds to the size of the corresponding hyperedge
in H. The total number of edges in B is s = ZejeE lejl =22, cv deg(vi).

In order to investigate the correlations between the hyperedge sizes and
the degree distribution of nodes that are part of the corresponding hyperedges,
let us represent the s distinct edges in B as

{(Ui1>€j1)> (Uiza ej2)7 IR (/Uis’ejs)}

and define the two vectors Dy = (degg(vi,),degg(vi,), ..., degg(v;,)) and
S = (degp(ej,),degp(e),), ..., degg(e;,)). We define the degree-edge size
correlation for hypergraph H as the Pearson’s correlation coefficient between
vectors Dy and Sy, that is, pp,. s, as defined in (1.2) (see Section 1.2).
A positive value is indicative that large hyperedges tend to contain nodes
with a large degree, while a negative value is indicative of the opposite.

Intersecting Hyperedges and Simpliciality

When dealing with simple graphs, there is only one possibility for edges to
overlap: edges may overlap on one node (and so are incident); otherwise, they
are disjoint. If non-simple graphs are allowed, then additionally loops can
overlap with edges or parallel edges can overlap on two nodes. The situation
is much richer (and thus more interesting) for hypergraphs, even if we restrict
ourselves to simple hypergraphs (Landry, Young, and Eikmeier, 2024; Barrett
et al., 2024). Indeed, for any pair of hyperedges e, ea, with |e1]| = s1, |ea| = s2,
and s1 < s9, we have 0 < |e; Nea| < s1 but the size of the intersection could
be any of the s; 4+ 1 values. One can then define the similarity between any
pair of hyperedges (ey, e3) in hypergraph H in various ways, such as:

e |e1 N ey, the number of nodes in common, or

e |e; Neal/ler U e, the Jaccard coefficient that is often used in statistics
for gauging the similarity and diversity of sample sets.

The definition of a simplicial complex in topological data analysis inspires
another interesting and related concept. In a nutshell, a simplicial complex
is a collection of simplices (similar to hyperedges in hypergraphs), but where

248 Hypergraphs

any subset of a simplex must also be in the collection. In hypergraph terms,
this property is equivalent to saying that every subset of a hyperedge in H
must also be a hyperedge in H. Formally, in a given hypergraph H, we say
that two hyperedges e1,es € H with |ej| = s1, |ea| = s2, and s1 < s9 form a
simplicial pair if e; C eg, that is, for all v; € e; we have that v; € es.

The concept of simplicial pairs is yet another illustration as to why hyper-
graph representation of data can be more expressive than a graph represen-
tation. For example, if we consider a collection of scientific papers from arXiv
or some journals, we will likely see several pairs of papers where the list of
authors in one of the papers is a subset of the list in the other paper. Such
richness in the data is lost if we use a graph representation where we replace
each hyperedge representing a paper with a two-section subgraph (clique).
Such graph representation would preserve information who collaborates with
who but many other important properties are lost.

Building on the definition of a simplicial pair, one can define various useful
measures of simpliciality for the entire hypergraph. In those definitions,
only hyperedges of size two or more are considered. Consider any hypergraph
H = (V, E) with the smallest hyperedge size m > 2. Let E4. C E be the subset
of hyperedges such that e € Ey. if and only if || > m + 1 and for all f C e
with |f| > m, we have that f € E. We say that such edges satisfy downward
closure. Moreover, for any integer k£ > m, let E}, C E be the subset of all
hyperedges of size k, and let E = {e C V | |e| > m and e C f for some f €
E}, which is the set of hyperedges E augmented with all subsets of size m or
more required so that each hyperedge satisfies downward closure. Finally, we
define E to be the set of maximal edges of size m + 1 or more. Note that in
practice, we often assume that m = 2.

With the above definitions in mind, we are ready to define our measures.
The simplicial fraction is defined as osp(H) = [Eqc|/ 1<, | Bk, the pro-
portion of hyperedges of size m + 1 or more that satisfy downward closure.
The edit simpliciality is defined as ogs(H) = (|E|— |E|)/(|[E| — |E|). Thus,
1 — ogs(H) is the (normalized) number of additional hyperedges needed so
that all hyperedges satisfy downward closure. Similarly, the face edit simpli-
ciality, written opgs(H), is the average edit simpliciality across all induced
subgraphs defined by maximal hyperedges (hyperedges not contained in other
hyperedges) of size m + 1 or more.

The above measures are useful to compute how far a given hypergraph
is to being a simplicial complex (excluding edges of size less than two), but
some care needs to be taken. For example, it could be the case that a hy-
pergraph possesses several simplicial pairs but, nevertheless, cgp = 0. This is
the case, for example, for the toy hypergraph shown in Figure 7.3(a). More-
over, if the hypergraph possesses some large hyperedges, those will severely
bias edit simpliciality measures toward zero. This is due to the fact that
for a hyperedge of a relatively large size k, in order to satisfy the property
of simplicial closure, the number of hyperedges that need to be present is

(’;) + (g) + ...+ (kfl) = 2% — k — 2 which grows quickly (exponentially)

Hypergraph-specific Properties 249

with k.

One way to address the above issues is to compare the number of simplicial
pairs in H with the expected number of such pairs in a random hypergraph
model such as the hypergraph version of the Chung-Lu model CL(H) we saw
in Section 7.3, where the degree and the hyperedge size distributions from H
are used.

Let sp(H) be the number of simplicial pairs in H, and let H ~ CL(H) be
the corresponding Chung-Lu distribution of hypergraphs, conditioned on H
being simple (that is, having no repeated hyperedges). Then, the simplicial
ratio of H is defined as follows:

osu (1) = P
E(sp(H))
if E(sp(ﬁ)) > 0, and osg(H) = 1 otherwise. Values above one indicate that
we observe more simplicial pairs than is expected by pure randomness.

We can look at finer details and define sp(H,1,j) as the number of sim-
plicial pairs (ej,eq) in H with |e;| = 4, |ea] = j and i < j. Then, letting
H~ CL(H) as before, the simplicial matrix of H, denoted by Mgg(H), is
the partial matrix with cell (z,7), i < 7 equalling

sp(H,1,7)
E(sp(H,i,j))

for all ¢ < j where H contains hyperedges of size ¢ and j, with cell (7, j) being
empty otherwise.

For the toy example shown in Figure 7.3(a), we obtain a value osg(H) ~
1.43, which indicates slightly more simplicial pairs than expected at random.
The reported value is an approximation since the expected value in the de-
nominator is estimated via sampling. For the simplicial matrix, the only two
non-zero entries are Mgg(H,2,3) ~ 2.2 and Msr(H,2,4) ~ 1.1. Thus, in this
hypergraph having two simplicial pairs with hyperedges of sizes two and four
is less surprising than two pairs with hyperedges of sizes two and three.

For a hypergraph H = (V| E), one can also define the local simplicial-
ity ratio for each vertex v € V by applying the above formula to the sub-
hypergraph induced by E,, = {e € E | v € e}, the set of hyperedges containing
node v. We will show some examples of nodes with small and large local sim-
pliciality ratios in the experiments section.

Finally, let us mention that one may study the concept of simpliciality
in hypergraphs in many other ways. For example, one can look for specific
patterns such as encapsulated sets of hyperedges forming a pattern similar to
matryoshka dolls. One can also consider the temporal aspect which may play
an important role in downstream tasks such as link prediction. For example,
one can differentiate a 3-edge following a 2-edge (could indicate a new scientific
collaborator) and the opposite where the 2-edge comes after the 3-edge. One
can also study the relationship between simplicial pairs and the time between
the corresponding hyperedges.

MSR(H7i7j) =

250 Hypergraphs

Rich Club in Hypergraphs

In Section 4.1, the rich-club coefficient p(¢) for a graph G is defined as the
ratio between ¢(¢), the number of edges in the subgraph G>, induced by
nodes of degree £ or more, and ¢(¢), the same value for the corresponding
random graph with the same degree distribution. Values of p(¢) above one
and increasing for large values of ¢ are indicative of a rich-club phenomenon.

While one can generalize these definitions and define ¢(¢) the same way
for a hypergraph H, the definition of d;(ﬂ) needs to be adjusted to additionally
consider the distribution of hyperedge sizes (Nakajima, Shudo, and Masuda,
2023). Unfortunately, unlike for graphs, in general it is computationally in-
feasible to obtain a closed form expression for QAS(E) One possible solution is
to sample a large number of random hypergraphs with the same degree dis-
tribution and hyperedge sizes as H, and compute the average value of ¢(¢)
on those graphs as our estimate for qAS(E) We illustrate this process in the
accompanying notebook.

Hypercoreness

In Section 3.5, we defined the k-core of a graph as the maximal subgraph with
the property that all nodes have degree at least k. This is a useful tool to
prune nodes of a graph and focus on its highly connected core. It is important
to notice that cores can be efficiently extracted from graphs. When computing
the k-core of a graph, one can recursively prune out nodes with degree less
than k, and all edges incident to those nodes. The situation is slightly more
complex for hypergraphs (Bu, Lee, and Shin, 2023). Given some hyperedge
e of size s > 2, if a node incident to e is pruned, there are still s — 1 nodes
remaining in e. We should not simply just delete this edge.

Given hypergraph H = (V, E) and some subset of nodes V' C V', we define
the sub-hypergraph of H induced by V' as H' = (V’, E') where

E'={enV'|eecE, en V' #£0}

One possible and natural extension of k-cores from graphs to hypergraphs is
to define the (k, t)-core of a given hypergraph H, to be the unique maximal
sub-hypergraph of H where nodes have degree k or more, and each hyperedge
contains at least a proportion ¢ of its original nodes. Indeed, as it is the
case for graphs, it is straightforward to show that the (k,t)-core is unique
and can be obtained by a simple pruning algorithm. To be consistent with the
approach taken for graphs, one can further reduce E’ by forcing each remaining
hyperedge to contain at least two nodes, so E' = {eNV' | e € E, |enV’| > 2}.
This avoids, for example, the situation where with ¢ = 0.5 we could obtain
many singleton hyperedges.

Embedding Hypergraphs 251

7.8 Embedding Hypergraphs

In Chapter 6, we discussed several aspects of embeddings of graphs. Similar
methods and algorithms also exist for embedding nodes and hyperedges in
hypergraphs (Antelmi et al., 2023). As with graphs, most of these methods
deal with embeddings of nodes, that is, given hypergraph H = (V, E), the
goal is to learn a representation z, € R? for each v € V, given some chosen
dimension d. A simple way to embed nodes (or edges) in a hypergraph H is to
use its bipartite graph representation and embed the nodes (and edges) with a
graph embedding algorithm such as Node2Vec. We illustrate such approach
in the section with experiments. Alternatively, one can simply embed nodes of
the corresponding 2-section graph [H], using methods described in Chapter 6.

While node embedding is the most common task, it is also possible to
embed hyperedges. One simple idea is given an edge e € FE, consider some
aggregation of the embedding vectors for every node v € e. One can also
transform the problem to the node domain by considering the dual represen-
tation of H.

Hypergraph embedding methods can be roughly split into three families.
The first group are spectral methods, which use different definition for the hy-
pergraph Laplacian. While such methods are theoretically founded, they do
not capture high-order interactions. The second group is made of proximity-
preserving methods, which consist of some similarity function between nodes
in the embedded space (for example, cosine similarity), along with some objec-
tive function to optimize. The objective function could include terms to favour
high similarity between connected nodes, and the opposite for unconnected
nodes. The third family covers deep neural network methods, mostly based on
hypergraph convolution as with graph neural networks. Such methods require
node features, which could simply be initialized via 1-hop encoding, or sim-
ple features like node degrees. At each iteration, some aggregation function is
applied to each node’s neighbourhood. Note that these methods do capture
high-order relations. For example, at step ¢ + 1, we can consider two sets of
updates: (i) for each edge e, we update its embedding as a function of its
embedding in the previous step ¢, and the embedding of each node v € e, then
(ii) for each node v, we update its embedding as a function of its embedding
in the previous step ¢, and the embedding of all its incident edges e > wv.
An alternative to hypergraph convolution is to use methods based on random
walks, similar to the Node2Vec graph embedding algorithm; such approach
is used in Hyper2Vec.

252 Hypergraphs

7.9 Experiments

In the first part of this section, we illustrate a few concepts related to hy-
pergraphs using synthetic hypergraphs generated by the h—ABCD model
introduced in Section 7.3. In the second part, we look at several aspects of the
hypergraph built from the scenes of the Game of Thrones (GoT) television
series.

h—ABCD Synthetic Hypergraphs

In this section, we consider two synthetic h—ABCD hypergraphs. The first
one is a small hypergraph with 100 nodes and 160 hyperedges of size 2 to 4
with well-defined communities. This hypergraph will be used mainly for visu-
alization purposes. The second one is a noisier, 300-node hypergraph which
will be used to illustrate various hypergraph properties and results of cluster-
ing algorithms.

Visualization and Hyperedge Composition

Different views of the 100-node hypergraph are presented in Figure 7.5, re-
spectively looking at the 2-section graph, a rubber-band representation, and a
convex hull representation for the hyperedges. The ground-truth communities
are shown with different shades of grey. We see that even for such a small hy-
pergraph with well-defined communities, visualizing hyperedges of sizes larger
than two quickly becomes tedious.

Next, we look at the hyperedge compositions as we defined earlier, where
a hyperedge is of type (c,d) if its size is d with ¢ nodes belonging to the most
represented community. We call such a hyperedge a community edge when
¢ > d/2. In Table 7.6, we show the counts for each type (recall that in this
synthetic model, the ground truth communities are known). However, in most
practical situations, one would not know the ground truth, but one could
estimate hyperedge composition with some clustering algorithm. In Table 7.6,
we also show the counts after running the Leiden’s algorithm on the weighted
2-section graph derived from the hypergraph. Perhaps not surprisingly, in this
case both distributions are quite close to each other.

From the statistics provided in Table 7.6, one can conclude that most com-
munity hyperedges are in fact “pure” hyperedges, that is, hyperedges with all
nodes from the same community. We can also investigate the number of sim-
plicial pairs. From the list of 160 hyperedges, there are only 9 such hyperedge
pairs. As a result, the simplicial ratio is around 1.3 which implies that this
particular hypergraph does not exhibit high simpliciality. This is an expected
property of the h—ABCD model which does not aim to create simplicial
hypergraphs—it is designed to create hypergraphs with communities.

Ezxperiments 253

o] o
Q £ ° o
o e o o o Q R o ‘o @ e S 2 °
A d { . o . o o
[SRS s a2 OOO o [) s atin s e ‘Zo o
e o0 00 .OOO o o ...0.0-000 o o
() . o0 ATRo S
o . o e » o
. 5200 0 =0 . A
. ® S e o
.) . s
L] e ° 0
L S 9’6 W L) VA
o °
° 98 s o
L o -0 [e] L o 7o o
L o o ! el e
o {of o o ° °
(e} o S o
] ° e e °
EENCAETY OOOD O oty °°o°
o
¥ o0 24V, 4
(a) 2-section view (b) rubber band view
(¢) convex hull view
FIGURE 7.5

Three different visualizations of the 100-node h—ABCD hypergraph. Com-
munities are shown in different shades.

Clustering Algorithms

The 100-node hypergraph we experimented with earlier has well-defined com-
munities. As a result, all reasonable clustering algorithms we discussed before
would recover them with high accuracy. To create more challenging “play-
ground” for our experiments, let us switch to a noisier, 300-node h—ABCD
hypergraph with three ground-truth communities where most hyperedges are
of size 4 but some are of size 3. The noise parameter is £ = 0.6 (quite large)
and most community hyperedges are “pure” as in the previous example.

254 Hypergraphs

TABLE 7.6

Hyperedge composition for the 100-node h—ABCD hypergraph: with
respect to the ground truth communities and communities returned
by Leiden. In the table d denotes hyperedge size and ¢ dominant
community in that hyperedge. Community hyperedges are ¢ > d/2,
and other edges are ¢ < d/2).

edge type d c frequency frequency
(ground truth) (Leiden)
community 2 2 54 56
community 3 3 47 46
community 4 4 21 22
other 2 1 16 14
community 3 2 9 11
community 4 3 6 3
other 4 2 4 6
other 3 1 3 2

For this particular hypergraph, we run each of the following algorithms 30
times and compare AMI between resulting partitions and the ground-truth
communities: (i) Leiden on a 2-section (weighted) graph, (ii) Kumar’s al-
gorithm, and (iii) h—Louvain with strict h-modularity. From the results in
Figure 7.7, we see that Kumar’s algorithm, which does take the hypergraph
structure into account, slightly improves on the results with 2-section clus-
tering, while h—Louvain improves the result further. This is partly due to
the fact that most community hyperedges are pure in this hypergraph, so this
algorithm is able to take advantage of this fact.

In general, however, choosing the “best” objective function to optimize,
such as the hypergraph modularity function with some choice of 7, is a dif-
ficult problem. As with graphs, there is no universal concept of the “best”
partition. It may well be the case that a given “ground-truth” partition has
weakly connected communities, while some other partition exhibits stronger
connectivity for the same hypergraph. Moreover, we may want to favour pre-
serving different types of hyperedges within the communities; for example,
small hyperedges may be more meaningful to reflect a strong relationship be-
tween associated objects, while large hyperedges may represent a very weak,
indirect association.

Embeddings and Classification

With the same 300-node hypergraphs, we fit two different embeddings using
Node2Vec, respectively on (i) the 2-section graph, and on (ii) the bi-partite
representation of the hypergraph. For the second embedding, we only keep the
embedding of nodes. In both cases, we embed the graph in 32 dimensions using

Ezxperiments 255

0.9 1

0.8 A

0.7 _T_

0.6

[eXo)

AMI

0.5+

0.4

T T T
2-section Kumar h-Louvain

FIGURE 7.7

Clustering for the 300-node noisy h—ABCD hypergraph. AMI is computed
with respect to the h—ABCD ground truth communities. The distributions
represent results of 30 independent runs of the three corresponding algorithms.

the default Node2Vec parameters, and project down to 16 dimensions using
UMAP. We then train a classifier on half of the points chosen at random,
using the three communities as the labels, and predict the other (test) points.
We repeat this process 30 times for each embedding. In Figure 7.8, we show
the distributions of the resulting accuracy for each embedding. We see that in
this case, embedding the bipartite graph, which preserves high-order structure
of the data, yields slightly better results.

Game of Thrones Example

In this section, we consider a hypergraph built by considering scenes from the
television series Game of Thrones (GoT) with data obtained from GitHub!.
In this hypergraph, the nodes correspond to characters in the series, and hy-
peredges are groups of characters appearing in the same scene(s). Finally,
hyperedge weights are the total scene(s) duration in seconds involving those
characters. We kept hyperedges with at least 2 characters and we recursively
discarded characters with degrees below 5 to focus on the better-known char-
acters. This procedure can be viewed as a natural generalization of the k-core
algorithm for graphs that we discussed in Section 3.5. This yields a hyper-
graph with 173 nodes of degrees between 5 and 306, 1,432 hyperedges of size
between 2 and 24, and weights ranging from 2 to 2,995. For the nodes, we also

Thttp://github.com/jeffreylancaster/game-of-thrones

256 Hypergraphs

0.921 —_—T

0.90 1

0.88 1

o

©

o
|

0.84

Accuracy

0.82 1 e

0.80 1

0.78 1 _—

T T
2-section bipartite

FIGURE 7.8
Accuracy of classification experiments for the 300-node noisy h—ABCD hy-
pergraph, respectively using the 2-section and bipartite graph embeddings.

define the strength as the sum of the weights of the edges that contain this
node; this amounts to the total scene duration for each character (excluding
the scenes that were pruned). We summarize the main characteristics of this
hypergraph in Figure 7.9.

Centrality

We introduced the concept of s-paths on hypergraphs, which allows us to gen-
eralize measures such as harmonic centrality and betweenness. In Table 7.10,
we show these values with s = 1 for the top-10 nodes with respect to strength.
We see that degree and strength are highly correlated, while harmonic central-
ity scores are quite uniform. The betweenness scores are more variable, which
is indicative of different levels of interaction with varied groups of characters
throughout the series.

For comparison purposes, we built the corresponding 2-section graph rep-
resentation of this hypergraph which we used to compute the same centrality
measures. Note that we ignore edge weights so we can compare them with
the measures we obtained on the hypergraph. The results exhibit high corre-
lation, as summarized in Table 7.11. However, they are not identical when we
consider s > 1.

Ezxperiments 257

5 10 15 20 25 0 500 1000 1500 2000 2500 3000
Edge size Edge weight

(a) Hyperedge sizes vary from 2 to 24 (b) Hyperedge weights vary from 2 to 2,995

100

80 70

60 50

40

20

° -
0 50 100 150 200 250 300 0 5000 10000 15000 20000 25000 30000 35000 40000
Node degree Node strength

(¢) Node degrees vary from 5 to 306 (d) Node strength vary from 102 to 39,899

FIGURE 7.9
Descriptive statistics for the Game of Thrones hypergraph.

TABLE 7.10

Top characters in the GoT hypergraph with respect to strength. We see a
high correlation between strength and degree, similar harmonic centrality
scores whereas the betweenness scores are more variable. Betweenness and
harmonic centralities are computed with s = 1.

name degree strength betweenness harmonic
Tyrion Lannister 263 39899 0.0723 0.770
Jon Snow 306 39221 0.0838 0.770
Daenerys Targaryen 220 30644 0.0450 0.692
Sansa Stark 183 25009 0.0456 0.753
Cersei Lannister 184 24981 0.0211 0.700
Jaime Lannister 153 22741 0.0698 0.753
Jorah Mormont 118 19344 0.0302 0.655
Arya Stark 103 17775 0.1043 0.727
Davos Seaworth 131 16960 0.0314 0.698
Lord Varys 115 15615 0.0233 0.706

Modularity and Clustering

First, we run the fast Leiden algorithm on the corresponding 2-section graph,
and we look at the edge composition for the GoT hypergraph given this

258 Hypergraphs

TABLE 7.11
Correlation between various s-centrality measures and the
corresponding measures on the 2-section graph.

harmonic betweenness
betweenness (s=1) 0.745 1.00
betweenness (s=2) 0.711 0.980
harmonic (s=1) 1.00 0.745
harmonic (s=2) 0.953 0.750

partition. We show the top-10 most frequent hyperedge types in Table 7.12.
We see that the most frequent are small “pure” hyperedges (of size 2-4), but
there are also several hyperedges with all characters but one belonging to
the same community. This suggests that some intermediate value for 7 in our
definition of 7-modularity should be used (see (7.5)). We set 7 = 3 in what
follows. For the partition we obtained earlier with Leiden ran on the 2-section
graph, the 7-modularity is ¢ ~ 0.55.

TABLE 7.12

Top-10 edge composition (i.e. (d, c)-edges) for the GoT hypergraph given
our computed partition. Community hyperedges meet the condition

¢ > d/2, pure hyperedges ¢ = d, and for other hyperedges ¢ < d/2.

edge type edge size (d) dominant community (¢) frequency

pure 2 2 259
pure 3 3 248
pure 4 4 139
other 2 1 110
community 3 2 109
pure 5 5 90
pure 6 6 57
community 4 3 o7
community 5 4 35
pure 7 7 30

Next, for comparison purpose, we look at the 7-modularity over random
partitions of the nodes. We considered random partitions between 2 and 20
parts (inclusively), and for each choice we generated 10 random partitions.
After computing the hypergraph modularity for each partition, we got values
in a small range around zero (roughly between +0.05), much lower than what
we obtained with Leiden. This experiment shows that the situation with
hypergraphs is similar to the one we experienced with graphs, namely, almost
all partitions have very low modularity and so the (challenging) task is to
find the “needle in the haystack,” a partition which yields a large modularity

Ezxperiments 259

function.

A partition with large 7-modularity is shown in Figure 7.13 where we plot
the corresponding 2-section graph. The tight cluster we see at the bottom left
corresponds to the characters from a theatre troupe seen in the series.

0
OoégoO
CUROIO o
OO%OOO O"" OO(BE?
O..OO(%%'%Q ® O o %
o e O & o)

FIGURE 7.13
Clusters for the GoT hypergraph represented as the 2-section graph. The
tight sub-cluster at the left corresponds to the Braavos Theatre Troupe.

In the accompanying notebook, we additionally show some other clustering
algorithms, including Kumar and h—Louvain, for which a small improve-
ment can be obtained for the resulting 7-modularity, albeit with quite similar
looking clusters.

Considering one of the main characters of the series, Daenerys Targaryen,
we look at the other characters present in the same cluster. In Table 7.14, we
list the top characters in that cluster with respect to the corresponding node’s
strength. Readers familiar with the series should be able to recognize those
characters as having lots of common scenes.

Simpliciality

In our discussion about simpliciality in hypergraphs, one remark we made is
that real hypergraphs often exhibit more simplicial pairs than one could ex-
pect from the corresponding null model. The simplicial ratio measure for the
GoT hypergraph is around 3.5, well above the expected value of 1 if simplicial
interactions were purely random. This is not surprising for this hypergraph,
since we expect to see proper subsets of characters in a scene to appear in

260 Hypergraphs

TABLE 7.14

Top characters in the GoT hypergraph with respect to
strength in the same cluster as the main character,
Daenerys Targaryen.

name degree strength
Daenerys Targaryen 220 30644
Jorah Mormont 118 19344
Missandei 92 13683
Grey Worm 79 10416
Barristan Selmy 35 6514

some other scenes. We can also look at the individual simpliciality ratio for a
character by considering a sub-hypergraph consisting of all hyperedges touch-
ing this character. In Figure 7.15, we plot the sub-hypergraphs respectively
for a character with high simpliciality (we see lots of overlap) and another
with low simpliciality (somewhat star-shaped). More details are given in the
accompanying notebook.

(a) high simpliciality character (b) low simpliciality character

FIGURE 7.15
Subset of hyperedges touching two characters from the GoT hypergraph,
respectively with high simpliciality (left) and low simpliciality (right).

Coreness

In Figure 7.16, we plot the size of the (k, t)-hypercores of the GoT hypergraph
for a range of k-values, and three choices for t. We see that this hypergraph
has non-empty (k,t)-hypercores for relatively large values of k, in particular,
when we set ¢ < 1. In the accompanying notebook, we look at some of those,

Practitioner’s Corner 261

which consist mostly of the main characters from the series.

1754 value of t
0.6

—eo— 0.8

—— 1

1251

-
o
5

(k,t)-hypercore size

504

251

10 20 30 40 50
value of k

FIGURE 7.16
Size of various (k, t)-hypercores for the GoT hypergraph.

7.10 Practitioner’s Corner

The development of hypergraph-specific algorithms as well as software pack-
ages to handle hypergraphs is currently a very active research and development
topic. As a result, it is impossible to recommend a specific package at this time.
In the accompanying Python notebook, we use the HyperNetX package? as
well as the XGI package?. If one wants to use the Julia language to work with
hypergraphs, the SimpleHypergraphs.j1* package may be considered.

2github. com/pnnl/HyperNetX
Shttps://github.com/xgi-org/xgi
4github.com/pszufe/SimpleHypergraphs. jl

262 Hypergraphs

7.11 Problems

In this section we present a collection of potential practical problems for the
reader to attempt.

1. Consider H(n,p,3), random 3-uniform hypergraph with p =
c/ ("51) for some constant ¢ € R;. Compare the theoretical pre-
diction for the size of the giant component (equation (7.3)) with
empirical results based on 1,000 independent runs for small graphs
on n = 100 nodes and larger graphs on n = 10,000 nodes. Present
the results on a figure similar to what we did for G(n,p), binomial
random graphs—Figure 2.1. In order to find the size of the giant
component, you might simply do it on the corresponding 2-section
graph.

2. For the Game of Thrones (weighted) hypergraph:

a. Compute the correlation between degree and strength of each
node using: Pearson’s p, Spearman’s rg, and Kendall’s 7
discussed in Section 3.4.

b. Fit the regression line predicting strength from degree; find its
slope, plot the line and all points (deg(v), strength(v)).

3. For the Game of Thrones (unweighted) hypergraph, use HyperNetX
library to solve the following questions related to node connected
components.

a. Plot the number of s-connected components for all values of s
until all nodes are disjoint.

b. For each unique partition obtained in the previous question
for a given value of s, compute the (hypergraph) modularity
function gz . Which s-value yields the best gz ?

c. What is the maximum value of s for which there are still non-
trivial components (that is, components of size at least 2)?
What characters are in those components?

d. What characters are in non-trivial 50-connected components?
4. For the Game of Thrones (unweighted) hypergraph, use the Hy-

perNetX library to solve the following questions related to edge-
connected components.

a. Plot the number of s-connected components for all values of s
until all hyperedges are disjoint.

Recommended Supplementary Reading 263

b. What is the maximum value of s for which there are still non-
trivial components (that is, components of size at least 2)?
What characters are in all hyperedges in those components?
What characters are in at least one hyperedge in those com-
ponents?

5. For the Game of Thrones (unweighted) hypergraph, use the Hyper-
NetX library to do the following.

a. Find the s-diameter for s = 1 and s = 27 What about s = 37

b. Sample 200 random pairs of nodes from the hypergraph and

compare s-distance distribution for s =1 and s = 2.

6. Two contact-based hypergraphs are illustrated in the accompany-
ing notebook: contact-primary and contact-highschool. Both
datasets encode close proximity between individuals during some
time period, respectively in a primary school and a high-school.

For both hypergraphs, compute the different simpliciality measures
we saw in this chapter and comment on the results.

7. With the same two contact hypergraphs as in the previous question,

a. compare the degree vs. hyperedge size correlation
b. plot the degree distributions for each hyperedge size (using
box-plots).
8. For the high-school contact hypergraph:
a. use h—Louvain (with 7 = 2) to partition the nodes; how many
communities were found?

b. build the 2-section graph and partition the nodes with Leiden,;
how many communities were found?

c. compare the results from (a) and (b) with the supplied ground-
truth communities by computing the AMI values.

7.12 Recommended Supplementary Reading

e S.G. Aksoy, C.A. Joslyn, C.M. Ortiz Marrero, B.L. Praggastis, E. Purvine,
Hypernetwork Science via High-Order Hypergraph Walks, EPJ Data Science
9, no. 1:16, (2020).

e A. Antelmi, G. Cordasco, M. Polato, V. Scarano, C. Spagnuolo, D. Yang,
A survey on hypergraph representation learning, ACM Computing Surveys,
56(1), 1-38 (2023).

264 Hypergraphs

J. Barrett, P. Pratat, A. Smith, F. Théberge, Counting simplicial pairs in
hypergraphs, Journal of Complex Networks 13(4) (2025), cnaf021.

A. Bretto, Hypergraph Theory: An Introduction. Springer (2013).

F. Bu, G. Lee, K. Shin, Hypercore decomposition for non-fragile hyper-
edges: concepts, algorithms, observations, and applications, Data Mining and
Knowledge Discovery, 37(6), 2389-2437 (2023).

B. Kaminski, V. Poulin, P. Pralat, P. Szufel, F. Théberge, Clustering via
hypergraph modularity, PLoS ONE 14(11): e0224307 (2019).

B. Kaminski, P. Pralat, F. Théberge, Hypergraph Artificial Benchmark
for Community Detection (h—ABCD), Journal of Complex Networks 11(4):
cnad028 (2023).

B. Kaminski, P. Misiorek, P. Pratat, F. Théberge, Community Detection Al-
gorithm Using Hypergraph Modularity, Journal of Complex Networks 12(5)
(2024), cnae041.

T. Kumar, S. Vaidyanathan, H. Ananthapadmanabhan, S. Parthasarathy,
B. Ravindran. Hypergraph clustering by iteratively reweighted modularity
mazimization. Applied Network Science 5(52) (2020).

N.W. Landry, J.G. Young, N. Eikmeier, The simpliciality of higher-order
networks, EPJ Data Science, 13(1), 17, (2024).

K. Nakajima, K. Shudo, N. Masuda, Higher-order rich-club phenomenon
in collaborative research grant networks, Scientometrics, 128(4), 24292446
(2023).

B. Kaminiski, P. Pratat, Pawel, A. Wojnarowicz, M. Zawisza. Relation-
ships between Node Degrees and Hyperedge Sizes in Empirical Hypergraphs.
preprint SSRN (2025).

Surveys on the higher-order mining and architecture of real complex sys-

tems:

F. Battiston, G. Cencetti, I. Tacopini, V. Latora, M. Lucas, A. Patania, J.-
G. Young, G. Petri, Networks beyond pairwise interactions: structure and
dynamics, Physics Reports, 2020.

G. Lee, F. Bu, T. Eliassi-Rad, K. Shin, A survey on hypergraph mining:
Patterns, tools, and generators, preprint arXiv:2401.08878, 2024.

Part 11

Additional Material

8

Detecting Overlapping
Communities

Graph clustering is a well-studied graph mining problem, in particular when
the set of nodes is to be partitioned into non-overlapping communities.
In Chapter 5, we saw a number of algorithms for node partitioning, such
as Leiden and ECG. In this chapter, we revisit the problem of graph clus-
tering and generalize it to include situations where: (i) nodes can be part of
several communities (overlapping communities), and (ii) nodes can be part of
no community (which we will refer to as outlier nodes). There are different
ways to approach this problem, including:

1. methods based on finding overlapping cliques (recall that the clique
on k nodes is another name for the complete graph on k nodes, Kj),

2. methods based on splitting nodes into multiple personae, and

3. methods based on clustering edges instead of nodes.

In the first sections, we present a few such clustering algorithms and discuss
some graph pre- and post-processing methods which are aimed to deal with
networks with overlapping communities. We illustrate those methods and al-
gorithms using the graph of Zachary’s Karate Club, which we experimented
with earlier in the book. Recall that there are two ground truth communities
in this dataset (which we’ll use for comparison), but some nodes are strongly
connected to both communities. In the following sections, we look at larger
datasets with overlapping communities, namely, the word association graph
and some synthetic benchmark ABCD graph with outliers and overlapping
communities, which we will refer to as ABCD+02.

In order to compare the (possibly) overlapping communities with the
ground truth communities (when available), we use oNMI! (Lancichinetti,
Fortunato, and Kertész, 2009; McDaid, Greene, and Hurley, 2011), which is a
modification of Normalized Mutual Information (NMI) that can handle
overlapping communities (but can be used even without overlap). This is done
by generalizing cluster membership for a node to a random variable with some
distribution over all possible clusters.

lgithub.com/aaronmcdaid/Overlapping-NMI

267

268 Detecting Overlapping Communities

8.1 Overlapping Cliques

The first algorithm we consider is a Clique Percolation Method (CPM)
(Derényi, Palla, and Vicsek, 2025). For a fixed clique size k (typically k is
set to be 3 or 4), the algorithm works as follows. For a given graph G, we
create a new graph G’ whose nodes are all k-cliques of the original graph G.
An edge between two nodes in G’ is formed if the corresponding k-cliques in
the original graph G have k — 1 nodes in common. Once G’ is formed, we find
connected components in G’ that partition the set of nodes of G’. Nodes of
the original graph G that belong to at least one clique of one such connected
component form a community. Note that, in particular, a node in G may
become a member of at least two communities (if it is contained in at least
two k-cliques that belong to two connected components in G’) or can be a
member of no community (if it is not contained in any k-clique).

For weighted graphs, one pre-processing method we can apply is to prune
edges with weight below some threshold before applying clustering. With
CPM, we can obtain a hierarchy of node clusterings by gradually increas-
ing this threshold. For unweighted graphs, one can use the ECG-generated
edge weights (number of votes), as described in Section 5.4 and prune edges
with low weights before applying CPM or any other clustering algorithm.

In Figure 8.1(a), we show the communities obtained with the CPM algo-
rithm (using k = 3). We see one large community, two small ones, and two
orphan nodes (shown in white). Nodes that belong to multiple communities
are displayed as black squares. The oNMI score is 0.165 in this case when
comparing to the ground-truth communities. In Figure 8.1(b), we show the
result of the CPM algorithm (with k& = 3), after running ECG and pruning
edges that received no vote. In this case, we obtained two large communities,
two small ones, and three isolated nodes, and increased the oNMI score to
0.371. As a basis of comparison, we generated 100 random clusterings having
the same distribution of cluster sizes and the same number of cluster mem-
berships for each node, as in the previous results. The resulting mean oNMI
score we obtained in 0.031 with standard deviation 0.027, much lower than
all previous results. All graphs shown here can be seen more clearly in colour
in the accompanying notebook.

N
8.2 [Ego-splitting

Let G = (V, E) be any graph (weighted or unweighted) on n nodes. For a
given node v € V', we say that the ego-net of v is the graph induced by v and
N(v), the set of neighbours of v. We consider the following ego-splitting
framework (Epasto, Lattanzi, and Paes Leme, 2017):

Ego-splitting 269

[] [] (0]
(] o ([] (@)
% 0% © 0%y ©
° °o ° ° o e ° o
| | |
o ¢ o 0 @) ¢ 00 O ¢ 0o
@] [©] @)
o O O
(@) (@) (@)
I o o o . o o o i ® o o
@) O o
(@] (©] @
) o Oo o ® @ (075} S ° PS ®e -
@ @) o OO o @ @) ° oO (€] [J @ ® .. (]
@) o (]
(a) Original CPM (b) Pruned CPM (c) Ego-splitting
FIGURE 8.1

Three clusterings of the Zachary graph: (a) CPM algorithm with k& = 3,
(b) same as (a) after ECG-based edges pruning, and (c) ego-splitting. Multi-
community nodes are shown as black squares.

1. For each node v:

(a) build the ego-net of v but excluding node v;

(b) partition this ego-net using some local method such as label
propagation (LP; see Section 5.6) or simply by finding the
connected components (CC; see Section 1.7);

(¢) split node v into multiple personae, one persona per ego-net
cluster; for each copy of node v, the edges that belong to its
cluster are retained, and there are no edges between the various
personae nodes.

2. Cluster this new graph (with duplicated nodes) with some graph
partitioning algorithm such as LP, Leiden, or ECG.

3. Each node from the original graph is assigned to the communities
that at least one of its duplicates belongs to. In order to avoid having
many small communities, we can set a minimum community size.
We use minimum size of 3 for the small Zachary graph.

There are a few variations of the LP algorithm; for our experiments, we use
the one implemented in igraph. We show the resulting communities in Fig-
ure 8.1(c) using CC to partition the ego-net, and LP for clustering; there
are four communities and two isolated nodes, with oNMI score of 0.413 when
compared to the ground-truth communities. We also tried with ECG for clus-
tering and we got identical results. Note that, unlike CPM, the results may
vary if one runs this algorithm multiple times since LP and ECG are stochas-
tic algorithms. More examples can be found in the accompanying notebook.

270 Detecting Overlapping Communities

8.3 Edge Clustering

We can also obtain overlapping communities by clustering edges instead of
nodes. One algorithm to do this can be described as follows (Ahn, Bagrow,
and Lehmann, 2010):

1. For each pair of edges sharing a node, say e; = (v;,vx) and
ea = (vj,vg), compute some similarity measure between the neigh-
bourhoods N(v;), N(v;) of nodes v; and, correspondingly, v;. For
example, one may use the Jaccard index:

[N (vi) NN (v3)]/IN () U N (05)]-

2. Perform hierarchical clustering on the edges with this similarity
measure. Nodes that are incident to at least one edge from a given
community belong to that community. As before, we can impose a
minimal number of nodes per community.

In order to get a clustering of edges in step 2 above, it is convenient to
reduce the problem to clustering of nodes by considering the line graph of G.
For a given graph G = (V, E), its line graph is a graph G’ = L(G) =
(V', E’) in which V' = E and two nodes in G’ (edges in G), e1,eq € V' = E,
are adjacent if the corresponding edges in GG share a node. Note that in our
scenario, L(G) is a weighted graph where weights are similarity measures of
the associated nodes in L(G) (edges in G).

Now, one may use some hierarchical clustering of nodes of L(G), including
those mentioned in Section 5.5. In our implementation, we simply consider the
connected components, so the hierarchy can be obtained naturally by varying
the threshold for the edge weights (Jaccard measures) and we select the best
clustering in the hierarchy based on the modularity scores on the line graph
(see Section 5.4).

Applying this algorithm to the Zachary graph resulted in two large and
three small communities with a lot of overlap, and an oNMI score of 0.281,
lower than some of the previous results. In the next section, we introduce a
simple post-processing step that improves this result.

8.4 Post Processing

In the previous sections, we saw that some pre-processing steps, namely prun-
ing edges with low weight, can improve the resulting clustering results. An-
other approach to try to improve results is to apply some post-processing
algorithm given some clustering on the nodes. We investigate one such method,

Llustration: Word Association Graph 271

using the community association strength (cas) score introduced in Sec-
tion 5.2. The steps are as follows:

1. Run some clustering algorithm on graph G = (V, E). This can be,
for example, one of the three methods presented earlier for finding
overlapping communities, but it can also be a partitioning algorithm
such as Leiden or ECG.

2. Let C = {c1,ca,...,cx} be the clusters obtained from the previ-
ous step. For each node v € V', compute all scores cas(v,¢;), the
association strength of node v to every community ¢;, 1 <1i < k.

3. For each node v € V' and for each community c¢;:

(a) if v € ¢; and cas(v, ¢;) < t1, then remove v from ¢;,
(b) if v ¢ ¢; and cas(v,¢;) > to, then add v to ¢;.

The values t; and t are thresholds that need to be set. For example we
can select the same values (¢; = t2). We can also ignore one of the steps above
by setting the corresponding threshold accordingly, for example, by setting
to > 1 but t; < 1 will only remove nodes from communities, but not add any.

We apply the above to the result obtained with edge clustering on the
Zachary graph. Recall that we had a lot of overlaps and oNMI score of 0.281.
With thresholds ¢; = 0.1 and ¢ > 1 (that is, only removing nodes with low
scores), we get improvement on the oNMI score to 0.404.

8.5 Illustration: Word Association Graph

We consider the graph built from the free-association database (Nelson,
McEvoy, and Schreiber, 2004; Palla et al., 2005).? In a nutshell, 5,017 base
words were selected and, for each word, several thousand participants listed
associated words, which were not necessarily base words. A total of 72,176
different words were chosen as responses with over 750,000 associations for
the 5,017 base words.

We built an association graph on the set W of the base words. For each
word w; € W, an association strength score is assigned for each other word
w; € W which equals the proportion of participants who selected w; as an
associated word given w;. We denote this score as s(w;|w;). Note that we
usually have s(w;|w;) # s(w;|w;) and so it is not symmetric. We built an
undirected graph over all words in W by adding an edge between words w;
and wj if s(wj|w;) + s(w;|w;) > 0.025. This gave us a graph with 29,266 edges
and 5,017 nodes (hence, average degree around 11). From this association
graph, we can apply CPM with edge pruning in two different ways: using

?http://w3.usf.edu/FreeAssociation/

272 Detecting Overlapping Communities

the scores s(w;|w;) + s(w;|w;) for the edge weights, or using the ECG-based
weights. We look at both, using k& = 4 for the clique size. With this example,
we see that finding overlapping clusters is a useful tool to capture different
meanings or different usages of common words as we illustrate below for a few
words.

Consider the word MATH (all words are represented with capital letters
in the database). Using ECG-based edge pruning along with CPM, here is
an example of a set of clusters we obtained:

ADD CALCULATE CALCULATOR COMPUTE COMPUTER FIGURE MATH

ADD DIVIDE DIVISION MATH MULTIPLY QUOTIENT SUBTRACT

ALGEBRA ARITHMETIC CALCULUS FACTOR MATH NUMBER TRIGONOMETRY
ALGEBRA EQUATION FORMULA MATH

The results are quite similar using the association strength scores:

- ALGEBRA ARITHMETIC CALCULUS FACTOR GEOMETRY HARD MATH NUMBER
TRIGONOMETRY

- ADD DIVIDE DIVISION MATH MULTIPLY QUOTIENT SUBTRACT

- ANGLE GEOMETRY MATH TANGENT

- ADD CALCULATE CALCULATOR COMPUTE COMPUTER FIGURE MATH

- ALGEBRA EQUATION FORMULA MATH

In the notebook, we show results for several other words. The word
MONEY is particularly rich, with about 20 different clusters. We list a few of
those here:

BILL CHECK DEBT DUE FEE MONEY PAYMENT RECEIPT

CENT CENTS CHANGE COIN DIME DOLLAR MONEY NICKEL PENNY QUARTER
MONEY PAY SALARY WAGE

BANK LOAN MONEY MORTGAGE PAYMENT

8.6 ABCD-+o0? Benchmark Graphs

Just like we did with partitioning algorithms (see Section 5.3), we compare
some of the methods we presented here for overlapping clusters with graphs
generated from the ABCD+o0? benchmark model® (Kamifiski et al., 2023).
This model is a generalization of the ABCD benchmark which we described
in Section 5.3. Several parameters of the model are the same as for ABCD,
namely:

e the number of nodes n, possibly including a number of outlier nodes,

Shttps://github.com/bkamins/ABCDGraphGenerator. j1

ABCD+0* Benchmark Graphs 273

ABCD-00 graphs with £=0.1 ABCD-o0 graphs with n=1.5

++ ego-split e ego-split
1.0 === ego-split+cas === ego-split+cas
— ecg+cas — ecg+cas

(a) fixing £ = 0.1 (b) fixing n = 1.5

FIGURE 8.2
Comparing clustering algorithms on ABCD+0? benchmark graphs.

e truncated power-law degree distribution,
e truncated power-law community size distribution, and
e the proportion ¢ of noisy edges.

To this list, we add a new parameter, 77, that controls the average number of
communities a non-outlier node is part of. For nodes that are part of multi-
ple communities, rather than assigning the communities at random, a spatial
model is used to determine the community memberships. This creates a more
realistic scenario where some pairs of communities have relatively large over-
lap, while other pairs have small or no overlap. There is also an option in
ABCD+02 to control the correlation between node degrees and the number
of community memberships, a phenomenon often observed in real networks.

In the accompanying notebook, we propose a large experiment where
we generated over a thousand ABCD+o0? graphs with n = 1,000 nodes,
0.1 < ¢ <£0.65, and 1.0 < n < 2.0. The other parameters are listed in the
notebook. With those graphs, we compared three different clustering algo-
rithms: (i) the ego-split algorithm, (ii) the ego-split algorithm followed by post-
processing using cas, and (iii) the ECG algorithm followed by post-processing
using cas. For cas-based post-processing, we used thresholds t; = to = 0.1 (re-
spectively to remove or add nodes to communities). Two subsets of the results
are presented in Figure 8.2, respectively fixing £ = 0.1 and n = 1.5. More re-
sults are presented in the notebook. For all tests, we used the oNMI score
comparing with the ground-truth communities. A few remarks on those exper-
iments are that (i) ego-split performs well but can be further improved with
cas-based post-processing, (ii) ECG with post-processing gave even better
results, and (iii) results seem to degrade more quickly as 7 increases than
as & increases. The last remark is indicative of the difficulty of identifying
overlapping communities in general.

274 Detecting Overlapping Communities

8.7 Recommended Supplementary Reading

e [. Derényi, I.G. Palla, T. Vicsek, Clique percolation in random network,
Phys. Rev. Lett., 2005, vol. 94 pp. 160-202. (CPM)

e A. Epasto, S. Lattanzi, R. Paes Leme, FEgo-Splitting Framework: from
Non-OQverlapping to Overlapping Clusters, KDD 2017, pp. 145-154. (ego-
splitting)

e Y.Y. Ahn, J. Bagrow, S. Lehmann, Link communities reveal multiscale com-
plexity in networks, Nature 466, 761-764 (2010). (edge clustering)

e J. Barrett, R. DeWolfe, B. Kaminski, P. Pratat, A. Smith, and F. Théberge,
The Artificial Benchmark for Community Detection with Qutliers and Over-
lapping Communities (ABCD+02), arXiv:2506.05486. (ABCD+0? Model)

e AF. McDaid, D. Greene, N. Hurley, Normalized Mutual Information to
evaluate overlapping community finding algorithms, arXiv:1110.2515 (2011).
(oNMI)

e A. Lancichinetti, S. Fortunato and J. Kertész, Detecting the overlapping
and hierarchical community structure in complex networks, New J. Phys.
11, 033015 (2009). (oNMI)

For the word free association database, details can be found in the first
reference below. Our small illustration is based on the work in the second
reference.

e D.L. Nelson, C.L. McEvoy, T.A. Schreiber, The University of South Florida
free association, rhyme, and word fragment norms, in Behavior Research
Methods, Instruments and Computers 2004, 36 (3), 402-407.

o G. Palla, I. Derényi, 1.J. Farkas, T. Vicsek, Uncovering the overlapping
community structure of complex networks in nature and society, Nature
435(7043):814-818, July 2005.

9
Embedding Graphs

In this chapter, we illustrate a few applications of embeddings of graphs on
some chemical datasets. In this context, embedding refers to the embedding of
a family of entire graphs, not the embedding of nodes of a single graph which
we were concerned with in Chapter 6. The objective of graph embedding is to
obtain a representation of a structure of a whole graph in a vector space by
encoding the relationships and properties of the graph’s nodes and edges.

We begin this chapter by describing two datasets that contain collections
of graphs. Next, we discuss how one can embed entire graphs and how it can
be used to analyze these datasets.

9.1 NCI1 and NCI109 Datasets

NCI1 and NCI109 (Kersting et al., 2016; Wale, 2006) are two datasets from
the National Cancer Institute of chemical compounds that were screened for
activity against non-small cell lung cancer and, respectively, ovarian cancer cell
lines'. The datasets are balanced, consisting of a similar number of inactive
(label 0) and active (label 1) compounds. For each dataset, the compounds
are represented as graphs where the nodes are atoms, with respectively 37 and
38 different atom types for the two datasets. In Table 9.1, we summarize basic
characteristics of the two datasets in which each compound is represented as a
graph and each graph also has a label (0 or 1). We show two of the graphs from
the NCI1 dataset in Figure 9.2 with different labels. In Figure 9.3, we plot the
distribution of the number of nodes and, respectively, the number of edges for
graphs with label 0 or 1 in the NCI1 dataset. The distribution for the NCI109
dataset is very similar. We immediately see that graphs with label 1 tend to
have slightly more nodes and edges. We will show later that simple features
(such as the number of nodes and edges) are useful for predicting graph labels,
but better accuracy can be attained using extra features obtained via graph
embeddings.

In the following sections, we consider different ways to build vector repre-
sentations for graphs. We then use these representations to perform supervised

Thttps://1s11l-www.cs.tu-dortmund.de/staff/morris/graphkerneldatasets

275

276 Embedding Graphs

TABLE 9.1
Basic statistics of the two NCI datasets.

Dataset | graphs | label 1 graphs | mean #nodes | mean #edges

NCI1 4110 2057 29.9 32.3
NCI109 4127 2079 29.7 32.1
(a) Compound with label 0 (b) Compound with label 1
FIGURE 9.2

Two compounds (graphs) from the NCI1 dataset.

Number of nodes Number of edges
. 120 4 v
100 1 : i
100 !
<
Q. 80 ¥ 3
© t L 80 s
5 !
5 60 — 1
@ 60
5 40 1 B
3 — | “]
O | — [] []
20 1 \T 20
R — = o —
0 1 0 1
Label Label
FIGURE 9.3

Node (a) and edge (b) counts per label for the NCI1 dataset.

learning on the NCI datasets, building models from a subset of the compounds,
and trying to predict the labels of the other compounds. Finally, we show a
few results obtained via unsupervised learning.

Vector Representations of Graphs 277

9.2 Vector Representations of Graphs

In Chapter 6, we saw various techniques to embed nodes of a given graph in
a vector space. Here, we consider a few ways to obtain vector representations
for each compound in the NCI1 and, respectively, NCI109 datasets, with the
compounds represented as graphs.

Simple Graph Features

A vector representation for graphs can be obtained by computing some simple
graph features. We already saw, for example, that the distribution of the
number of nodes and edges differs for graphs with labels 0 or 1 respectively.
In our experiments, we build 10-dimensional vectors for each graph which
consist of:

e number of nodes, edges, and graph density,

e graph assortativity,

e number of nodes of degree 1, 2, and 3 or more,

e number of nodes with coreness 1, 2, and 3 or more.

This is far from an exhaustive list and other features can easily be added in
the accompanying notebook.

Graph Embeddings

Graph embeddings can be achieved via methods known as graph kernels (for
example, by counting motifs), but those are typically based on handcrafted
features that may not generalize well (see Section 6.6 for a short discussion on
these methods). Instead, we use an unsupervised, neural embedding frame-
work known as Graph2Vec? (Narayanan et al., 2017) to represent the com-
pounds in a vector space. It is based on the ideas used in NLP that we already
discussed in Section 6.4 in the context of node embedding algorithms such as
Node2Vec. Here, the entire graph is the analog of a “document” and rooted
subgraphs around each node in the graph, including the node labels, are anal-
ogous to the “words” making up the document. In our experiment, we used
the different atom types as node labels. Other choices could include using the
degree of each node as labels. Note that this method can be applied to graphs
of arbitrary size. We experimented with three different representations using
Graph2Vec: (i) high dimensional (1024), (ii) high dimensional reduced to
lower dimensional (64) via UMAP, and (iii) low dimensional (64). For both

2github.com/benedekrozemberczki/graph2vec

278 Embedding Graphs

NCI datasets, results were best with scenario (ii) and this is the approach we
use in the following experiments.

Bag of Node Features

Another approach that can be used to find vector representation for graphs
is analogous to a method used for document embedding, where each word is
represented by a vector (obtained via some word embedding algorithm), and
each document is a “bag of word vectors”. In the case of graphs, we represent
each graph as a “bag of nodes”, where each node is itself represented by some
vector of features.

We use the NEExT? (Network Embedding Exploration Tool) package
for embedding graphs via collections of node features (Dehghan, Pratat, and
Théberge, 2025). With NEEXT, there are several node features already pro-
vided, and users have the ability to define their own.

For each graph, we first compute node features to obtain a k-dimensional
vector representation for each node. Each graph can be seen as a distribu-
tion of points over k-dimensional space (the “bag of node features” analogy).
Each bag of node features is mapped into a single vector, which represents
the embedding for the corresponding graph. To find this mapping, we use the
Wasserstein distance, which amounts to the optimal amount of work required
to transport the mass between the distributions. We use the implementation
from the Vectorizers? library which uses linear optimal transport (LOT)
based techniques. Computing the Wasserstein distances can be prohibitive for
some large problems. A few faster methods are also implemented in Vector-
izers. The first one uses the Sinkhorn distance which is based on entropic reg-
ularization of the transport plans. The other one, Approximate-Wasserstein,
also solves the optimal transport problem but using a single-point reference
distribution obtained via averaging.

9.3 Supervised Learning

We use the three different methods described in the previous section to build
vector representations for the graphs. For supervised learning, we use 80% of
the data for training random forest models, and the other 20% for testing. We
also build a model where we use all the vector representations simultaneously.
Results are summarized in Table 9.4, where we compare the classification
accuracy as well as the area under the ROC curve (AUC). For both datasets,
all vector representations yield good results, and we obtain the best results

Shttps://github.com/ashdehghan/NEEXT
4https ://vectorizers.readthedocs.io

Supervised Learning 279

by combining them.

TABLE 9.4
Classification results for different vector representations.
Vector NCI1 NCI109

representation accuracy | AUC | accuracy | AUC
Simple graph features 0.727 0.793 0.696 0.763
Graph2Vec embedding 0.773 0.852 0.815 0.892
NEExT embedding 0.804 0.877 0.789 0.861
All vectors combined 0.824 0.898 0.833 0.917

We show the ROC curves we obtained when using all vectors combined in
Figure 9.5. For both datasets, the results are much better than random, with
AUC (the area under the ROC curve) values around 0.9. We also report the
95% confidence intervals obtained via bootstrap sampling. (Recall that AUC
can be interpreted as the probability that the model ranks a randomly chosen
positive example higher than a randomly chosen negative one.)

-
o

°
)

°
Y

o
IS

True Positive Rate
True Positive Rate

°
o

— ROC, auc=0.898 ,// — ROC, auc=0.917
00 ---- Random 00 e ---- Random
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate False Positive Rate
(a) NCI1 (b) NCI109

FIGURE 9.5

ROC curves for the test data sets using all vector representation com-
bined. Using bootstrap re-sampling, we obtained a 95% confidence interval
of [0.877,0.919] for the AUC with (a) NCI1 and, respectively, [0.900,0.936]
with (b) NCI1009.

Feature Importance

There are different ways to assess feature importance for a given task. The
NEEXT package provides methods that can be used even in an unsupervised
context. In our case, given that graph labels are available, we simply use the
feature importance score provided by the random forest classifier.

280 Embedding Graphs

In Figure 9.6, we plot the distribution of the top 10 features, comparing
the distributions for graphs with label 0 or 1 respectively. Those features
were mostly obtained with Graph2Vec and the NEExT-based embeddings,
with one coming from the list of simple graph features, namely, the number
of edges. From that same plot, we see that no single feature provides a clear
separation between the two classes of graphs, but for all features, as witnessed
by AUC scores of random forest models, there are noticeable differences in
the distributions.

label
I 0
27 mm 17

normalized value
<
.
e s

top features

FIGURE 9.6

Distribution of the top features according to the random forest model. Most
features come from the Graph2Vec (g2v) or the NEExT-based (neext) em-
beddings. The number of edges in the graphs is also an important feature, a
fact we noticed earlier.

9.4 Unsupervised Learning

Embedding graphs can also be used to find similar graphs via clustering in the
embedded space. For the NCI1 dataset, we took the combination of all vector
representations that gave us the best results for supervised learning, and we
trained a simple k-means clustering algorithm with & = 10 as the number of
clusters. We summarize the results in Table 9.7, where we order the clusters in
terms of the proportion of label 1 compounds. In that same table, we also show

Unsupervised Learning 281

a few average measures for each cluster: the number of edges, the proportion
of nodes with degree 3 or more, and the proportion of nodes in the 2-core,
with more available in the accompanying notebook. From those results, we
see a few small clusters with a large proportion of label 1 compounds, and
larger clusters with mixed populations. For the small clusters, the average
number of edges per graph is quite different from the overall average (32.3),
and the same is true for the proportion of nodes with degree 3 or more (overall
average is 0.346). We illustrate this in Figure 9.8, where each ball represents
a cluster with its size proportional to the number of graphs in the cluster,
and darker colour indicates a higher proportion of label 1 graphs. The dashed
lines for each feature is the overall mean. From this, we see that a few simple
features are enough to isolate some clusters with a very high proportion of
label 1 graphs, but those features are not enough to classify the majority of
the graphs.

TABLE 9.7

Clusters in the NCI1 dataset found via k-means with k£ = 10. We
order the clusters with respect to the proportion of compounds with
label 1. We also show the mean of a few measures for each cluster:
number of edges, proportion of nodes with degree 3 or more, and
proportion of nodes in the 2-core.

size label=1 #edges deg3+ 2-core
41 1.000 69.195 0.375 0.639
10 1.000 97.000 0.440 0.828
48 0.979 26.188 0.184 0.304
45 0.933 82.356 0.402 0.557
18 0.833 40.667 0.356 0.648
566 0.792 46.030 0.405 0.641
1513 0.465 30.712 0.334 0.753
1225 0.453 28.443 0.364 0.715
208 0.356 29.774 0.334 0.628
436 0.280 22.234 0.270 0.329

Another observation we can make based on Table 9.7 is that the propor-
tion of nodes in the 2-core can be quite different from cluster to cluster. For
example, for the small 10-graph cluster (all with label 1), we see that on aver-
age almost 83% of the nodes are in the 2-core (mean value 0.828 with variance
0.001). On the other hand, for the size 436 cluster (with the smallest propor-
tion of label 1 graphs), this proportion is only 33% (mean value 0.329 with
variance 0.035). In general, we thus expect to see more tree-like graphs in the
latter cluster. We show one graph from each of those clusters in Figure 9.9,
where we selected respectively a graph with a large proportion of nodes in
the 2-core (0.841) from the small 10-node cluster, and a graph with a small
proportion of nodes in the 2-core (0.286) from the size 436 cluster. We see

282 Embedding Graphs

0.45 A

0.40

035 Lo ool

0.30 A

0.25 A

proportion of degree-3+ nodes

0.20 A

20 40 60 80 100
number of edges

FIGURE 9.8

A representation of the clusters obtained with k-means for the NCI1 dataset
with respect to their mean values for two features: number of edges, and
proportion of nodes with degree 3 or more. Sizes are proportional to the
number of graphs in each cluster. Darker colour is indicative of high proportion
of label 1 graphs,

that the first graph has many short cycles while the second one is close to a
tree, as expected.

All results presented in this chapter (and more) are illustrated in the
accompanying notebook. Readers who want some hands on experience are
encouraged to try some variations, such as experimenting with other graph
features, other graph embedding algorithms, running similar clustering exper-
iments with the NCI109 dataset, etc.

Recommended Supplementary Reading 283

(a) Most nodes in the 2-core (b) Few nodes in the 2-core

FIGURE 9.9
Two compounds (graphs) from the NCI1 dataset from two different k-means
clusters.

9.5 Recommended Supplementary Reading
The references for the NCI1 and NCI109 datasets are:

o K. Kersting, N.M. Kriege, C. Morris, P. Mutzel, M. Neumann, Benchmark
Data Sets for Graph Kernels, 2016.

e N. Wale, G. Karypis. Comparison of descriptor spaces for chemical com-
pound retrieval and classification, Proc. of ICDM, pp. 678-689, Hong Kong,
2006.

The reference for Graph2Vec and NEExT are:

e A. Narayanan, M. Chandramohan, R. Venkatesan, L. Chen, Y. Liu,
graph2vec: Learning distributed representations of graphs, MLG 2017, 13th
International Workshop on Mining and Learning with Graphs. (Graph2Vec)

e A. Dehghan. P. Pralat, F. Théberge, Network Embedding Ezploration Tool
(NEEzT), arXiv:2503.15853. (NEExT)

10

Network Robustness

In earlier chapters, we discussed various measures describing graphs such as
centrality measures of their nodes, community structure, degree distribution,
or degree correlations. A natural followup question is how these structural
properties can help us to better understand the behaviour of the system mod-
elled by these networks and the processes run on them.

One of the important dynamic properties of systems described by networks
is their robustness, which is also sometimes referred to as resilience. This
property is related to a rather vague question of what fraction of nodes in
the network are closely connected. There are several ways to formalize this
notion. In this chapter we will use a measure called the order parameter,
which is defined as the fraction of nodes of the network that belong to its
largest component. In order to test how robust the network is, we will remove
some set of nodes before investigating the size of the largest component. Hence,
there are two natural ways to report the fraction of nodes that belong to it:
as a fraction of nodes in the original graph or a fraction of nodes of the graph
after the operation of removing nodes. In the experiments we perform in this
chapter, we will use the former conception and always refer to the order of the
initial graph before any deletions. This definition is less common but allows
for cleaner and more easily interpretable visualizations.

Most empirical networks have their order parameter close to 1, that is,
a graph is either connected or almost all nodes belong to the giant component.
We will call a network robust if this property still holds if some of the nodes
from the network are removed. Indeed, it is often a desired property of the
network to be resilient to either random failures or deterministic attacks that
can be viewed as splitting the graph into several smaller disconnected networks
when some of its nodes are removed.

Let us consider some practical examples of networks in which resilience is
obviously a desired property.

1. Computer network: two nodes (computers) in this network should
stay connected even if some of the nodes in the network are removed
(for example, some servers go down due to a hardware malfunction).

2. Road network: travellers should be able to travel between any two
locations (nodes) even if some other locations are removed from the
network (for example, due to road-works).

285

286 Network Robustness

3. Power grid network: it is crucial for the network to stay fully con-
nected and operational so that it is possible to transfer energy from
any source (that is, a power plant) to any destination (for example,
a factory), even if some random failures of power stations occur.

When analyzing network robustness, there are two typical scenarios that
may be considered.

1. Random removal of nodes: in this case we assume that some force of
nature or natural process affect the network (for example, a server
in a computer network goes down due to some hardware error or
due to its age).

2. Targeted node removal: in this case we assume that some adversary
selects nodes from the network with the goal of disconnecting it as
fast as possible (for example, hackers may target several key servers
in a computer network with a denial of service attack).

In this context, we will consider the following natural questions related to
network robustness.

1. Given a network and its characteristics, how prone is it to random
or targeted node removal?

2. How much does the speed of deterioration of network’s order pa-
rameter differ between random and targeted node removal?

3. What characteristics of nodes make them suitable for a targeted
attack? In particular, it is natural to consider removing nodes with
high degree or with high betweenness centrality, but the question is
if some global characteristic of the network influences the choice of
which one should be used.

We start our experiments by illustrating these concepts on an empirical
network representing the power grid graph on the Iberian peninsula (Sec-
tion 10.1). In order to better understand the interplay between network ro-
bustness and some global structural parameters, such as the power-law expo-
nent, assortativity, and the presence of community structure, we then analyze
selected artificially generated networks (Section 10.2). Finally, we discuss a
related topic in a hypergraph context. Namely, in Section 10.3 we investigate
how the size of the giant component in a hypergraph changes as a function of
its simpliciality and number of edges.

10.1 Power Grid Network on the Iberian Peninsula

We start by considering the giant component of the electric grid network
from the Iberian peninsula that we already worked with in Chapter 1. We

Power Grid Network on the Iberian Peninsula 287

present the plot of this network in Figure 10.1. The corresponding undirected
graph is connected, has n = 1,537 nodes, and the mean node degree is equal
to (k) = 2m/n =~ 2.553. This is a typical example of a spatially embedded
graph in which nodes are adjacent only if they are close to each other in the
geographical space. As a result, nodes of large degree are rarely present in such
networks and they typically do not exhibit power-law degree distribution (see
a longer discussion about such distributions in Section 2.4). Our first task is
to check how robust this network is.

FIGURE 10.1
Giant component of the Iberian peninsula power grid graph.

As discussed in the introduction, we consider the order parameter, that
is, the fraction of nodes in the giant component of the original graph, as a
function of the number of nodes removed under the following three scenarios:
random removal of nodes, removal of nodes with the largest degree, and re-
moval of nodes with the largest betweenness centrality. The second and the
third scenarios use a greedy approach assuming that after removing a node,
the corresponding parameter (the maximum degree or the maximum between-
ness) is recalculated for the remaining graph. In case of a tie, we randomly
select one of the nodes with the largest parameter to remove.

In Figure 10.2 we show the results of a simulation where we repeatedly
undertake the three node removal, until all the nodes are removed from the

288 Network Robustness

network. As expected, observe that using a targeted attack makes the order
parameter drop much faster than the random removal of nodes. Indeed, in
geometric graphs, such as the one we study, we do not have long links. This
means that one may try to remove a group of nodes in a specific geographic
region and disconnect a large part of the graph from the rest by removing a
relatively small set of nodes. That is why adversarial attacks are so effective
for such networks. One may also get lucky and reproduce this strategy by
random removal but it is highly unlikely.

1.0 ~—0U i random
—-=—=- degree
0.8 - —— betweenness
' % of nodes

E \
£ 0.6
o
@©
o
3 0.4 1
°
o

02] :“."'

0.0

0 5 10 15 20 25 30 35 40
% of removed nodes
FIGURE 10.2

The order parameter as a function of the fraction of nodes removed from
the power grid of Iberian peninsula graph. The straight grey line indicates the
fraction of nodes remaining in the graph (which is a trivial upper bound for
the order parameter). The maximum fraction of removed nodes considered
is 40%.

In the accompanying notebook we additionally analyze the distribution of
cluster sizes, assuming that 5% of nodes are removed from the network under
the maximum degree and the maximum betweenness attacks. It is interesting
to note that the maximum betweenness attack does not leave large components
in the resulting network. On the other hand, the maximum degree attack
produces many more small clusters but leaves several relatively large clusters
that are kept connected by relatively low-degree, but high-betweenness nodes.

Synthetic Networks 289

10.2 Synthetic Networks

Let us now move to the analysis of artificial graphs.This will allow us to better
understand how global characteristics of networks influence their robustness.
We will consecutively consider the following models: Watts—Strogatz model
(Watts and Strogatz, 1998), Chung-Lu model with the power law degree dis-
tribution, assortative/disassortative networks exhibiting degree correlations,
and ABCD networks with community structure. In all experiments, we con-
sider networks with 2,000 nodes and approximately 4,000 edges.

Watts—Strogatz Graph

In this section we consider the Watts—Strogatz model defined on the one-
dimensional lattice ring with rewiring parameter p ranging from 0 to 1. This
model produces a synthetic network with a small average path length and
a large clustering coefficient (see Section 1.11 for a definition and discussion
about this graph parameter). For a given number of nodes n and desired
average degree (k) (which is assumed to be an even integer), we generate
the Watts—Strogatz graph as follows. We label n nodes with non-negative
integers, that is, labels are from the set L := {0,1,...,n — 1}. We start with
a regular ring lattice on n nodes, that is, for each node ¢ € L, we put an edge
between node i and node

je{i—1i—2,....i—(k)/2yu{i+1,i+2,...,i+ (k)/2}

(using modular arithmetic, mod n) such that node i has degree precisely (k).
For each edge ij, i < j < i+ (k)/2 (as before, mod n), we call i the leader and
7 the follower of that edge. Then, we revisit all edges again and for each edge
ij we independently rewire the follower node of that edge with probability
p, that is, we remove edge ¢j and replace it with edge ¢, where ¢ is chosen
uniformly at random from all nodes. Since we aim for a simple graph, we
avoid creating loops and parallel edges by resampling node /¢, if needed. The
parameter p allows us to interpolate between the regular lattice (for p = 0)
and a random graph that is similar to the binomial random graph G(n, ¢) with
g = (k)/(n —1) (for p = 1). The lattice has a large average path length and
a large clustering coefficient whereas the random graph has a small average
path length and a small clustering coefficient. The “sweet spot” is somewhere
between these two extremes, a graph that already has a small average path
length but which still has a relatively large clustering coefficient.

As one can observe from Figure 10.3, the parameter p has a significant in-
fluence on random node removal. The more long-edges are present in the graph
the more difficult it becomes to split the graph into small connected compo-
nents. On the other hand, for this graph the maximum betweenness attack
is relatively efficient but its effectiveness decreases with p. For the maximum

290 Network Robustness

degree attack we observe that parameter p has a less significant and non-
monotonic effect. The reason for this is that in the Watts—Strogatz graph
nodes have similar degrees. For instance, it is interesting that the original ring
(p = 0) is more robust than the random graph for the maximum degree at-
tack. Can this be explained? Yes—in order to decrease the order parameter,
one needs to remove consecutive nodes of the lattice. But with the maximum
degree attack, once a node is removed, neighbouring nodes will decrease their
degrees and, as a result, will not be selected by the greedy algorithm—it will
not remove them too soon. The algorithm will remove nodes in some other
parts of the graph instead of trying to make a “hole” in the ring.

Power Law Graphs

In this subsection we consider Chung-Lu random graphs which generate
graphs with a given expected degree sequence following power-law. (See Sec-
tion 2.5 for details of this model.) We experiment with various power law
exponents in the range from 2 to 4. In Figure 10.4, we show how the order
parameter behaves for different power law exponents. We independently in-
vestigate the three scenarios of interest: random, the maximum degree, and
the maximum betweenness attacks. We observe that the smaller the expo-
nent’s degree is the faster the order parameter of the graph decreases in
all scenarios. Note that when the exponent is equal to 2 we initially have a
significant fraction of isolated nodes in the graph (as it is generated using the
Chung-Lu random graph which only preserves the expected degree process).
Let us also note that the maximum degree and the maximum betweenness at-
tacks have similar efficiency as the considered graph is random in which edges
occur independently and so large degree nodes also have large betweenness.
However, as in the previous examples, the maximum betweenness attacks are
slightly more efficient.

Graphs with Degree-degree Correlations

In this subsection we take the graph from the previous subsection with the
power exponent equal to 3 and perturb it using the Xulvi-Brunet and
Sokolov algorithm to increase and, respectively, decrease its assortativity
with ¢ = 3/4. (See Section 4.7 for details about this algorithm.) In Figure 10.5
we show the result performed on the graphs from the same experiment that
we performed in the previous subsection. One can observe that with random
attacks, the disassortative network is most robust. The opposite effect is ob-
served for the maximum degree and the maximum betweenness attacks for
which assortative networks seem to be the most robust. The reason for this is
that in both scenarios we quickly destroy the backbone that consists of high-
degree and high-betweenness nodes. However, even if the backbone is removed
from assortative graph, then low-degree nodes still induce a dense graph as
they originally were mutually connected at a higher rate in comparison to

Synthetic Networks 291

disassorative graph. The same justification explains the reason why the maxi-
mum betweenness attacks are slightly more efficient than the maximum degree
attacks.

Graphs with Community Structure

In the last experiment, we consider the ABCD graphs with the mixing pa-
rameter £ € {0.0001,0.01,0.1, 1.0} that controls the level of noise. The details
of how this model generates synthetic graphs with community structure are
provided in Section 5.3. The specific details of the graph generation process
used for this specific experiment can be found in the accompanying notebook.

Results of the experiments are presented in Figure 10.6. The general con-
clusion is that the maximum degree and the maximum betweenness attacks
are more efficient for these graphs than for graphs that do not exhibit com-
munity structures that we considered in earlier sections. However, the exact
value of £ does not have a very significant influence on the effectiveness of
either the maximum degree or the maximum betweenness attacks, provided
that it is large enough (specifically, £ = 0.1 and £ = 1.0 yield very similar
results). The significant differences can be observed for very low values of the
mixing parameter £ (pertaining to very strong communities).

As in the earlier examples, the maximum betweenness attack is more ef-
ficient than the maximum degree attack. It is especially visible for £ = 0.01
where the maximum betweenness attack very quickly eliminates nodes that
connect communities (despite the fact that they might not have large degrees).

292 Network Robustness

109 & p=0%
--- p=1%
| -=- p=5%
08 — p=100%
?g % of nodes
2 0.6
IS
©
aQ
3 0.4
e
o
0.2 4
0.0 1
0 10 20 30 40 50
% of removed nodes
Random node removal
104 w0 p=0%
--- p=1%
| === p=5%
0.8 ' — p=100%
Q LI % of nodes
£ 061 L.
I ~~
©
Q
@ 0.4
B
o
0.2 4
0.0 1
0 10 20 30 40 50
% of removed nodes
Maximum degree attack
109 w0 p=0%
: -=- p=1%
1
] [1 == p=5%
0.8 H ! — p=100%
E, '| : % of nodes
So6{ i1 Y
© ! 1
8 bl
. 1 1
o 0.4+ 1 1
E \ 1
S | M
[) I|
024 L L
H 1
- L
‘l
0.0 =

0 10 20 30 40 50
% of removed nodes

Maximum betweenness attack

FIGURE 10.3

The order parameter as a function of the fraction of nodes removed from
the Watts—Strogatz graph for different values of p. The straight grey line
indicates the fraction of nodes remaining in the graph (which is a trivial upper

bound for the order parameter). The maximum fraction of removed nodes
considered is 50%.

Synthetic Networks 293

109 ~_ e exponent=4
——-- exponent=3
0.9 1 —-—- exponent=2.5
—— exponent=2
5 081 % of nodes
k]
€ 0.7
IS
3
- 0.6
(7
E
© 0.5
0.4
0.3 4
0 10 20 30 40 50
% of removed nodes
Random node removal
exponent=4
exponent=3
exponent=2.5
exponent=2
o % of nodes
k]
£ \
IS
©
Q
5}
B
o
0 10 20 30 40 50
% of removed nodes
Maximum degree attack
1.0 exponent=4
exponent=3
| exponent=2.5
0.8 exponent=2
E, % of nodes
2 0.6
I
©
a
@ 0.4+
i<
o
0.2
0.0 4

0 10 20 30 40 50
% of removed nodes

Maximum betweenness attack

FIGURE 10.4

The order parameter as a function of the fraction of nodes removed from
the power law graph for different values of power law exponent. The straight
grey line indicates the fraction of nodes remaining in the graph (which is a
trivial upper bound for the order parameter). The maximum fraction of
removed nodes considered is 50%.

294

FIGURE 10.5

order parameter

order parameter

order parameter

Network Robustness

o
N
N

o
w»
s

=]
>
L

o
W
s

----- assortative
—-—- dissortative
—— neutral

% of nodes

T T

T
10 20 30 40 50
% of removed nodes

Random node removal

1.04

o
©
s

o
o
L

=]
>
L

o
]
N

0.0

----- assortative
—-—- dissortative
— neutral

% of nodes

10 20 30 40 50
% of removed nodes

Maximum degree attack

1.09

o
©
s

o
o
s

=]
EN
L

o
N
N

0.0 4

----- assortative
——- dissortative
— neutral

% of nodes

T T

T
10 20 30 40 50
% of removed nodes

Maximum betweenness attack

The order parameter as a function of the fraction of nodes removed from
assortative/disassortative graphs. The straight grey line indicates the fraction
of nodes remaining in the graph (which is a trivial upper bound for order
parameter). The maximum fraction of removed nodes considered is 50%.

Synthetic Networks

FIGURE 10.6

104 m—_ e xi=0.0001
--- x=0.01
-=-- xi=0.1
0.8 — xi=1.0
?g % of nodes
[5 o
g 0.6
©
o
B 0.4
o
0.2
0 10 20 30 40 50
% of removed nodes
Random node removal
104 s~ i=0.
--- x=0.01
0.8 T
— xi=
Q % of nodes
£ 0.6
e
&
Q
g 0.4
2
o
0.2
0.0
0 10 20 30 40 50
% of removed nodes
Maximum degree attack
WO e e xi=0.0001
: --- x=0.01
1 -=-- xi=0.1
081 1 % — xi=1.0
I i ! % of nodes
2064 i N
8 H 4
3 i 1
: \
$0.44 Il
2 i
e i
ML)
029 i}
RE W
s
0.0
0 10 20 30 40 50

% of removed nodes

Maximum betweenness attack

295

The order parameter as a function of the fraction of nodes removed from
ABCD graphs with varying value of £. The straight grey line indicates the
fraction of nodes remaining in the graph (which is a trivial upper bound for
the order parameter). The maximum fraction of removed nodes considered

is 50%.

296 Network Robustness

10.3 Random Hypergraph Growth

In this experiment, we study the growth of the giant component in a hy-
pergraph with random hyperedge selection and we compare this growth for
hypergraphs with different levels of simpliciality. For terminology used below,
we refer the reader to Chapter 7.

We select some reference hypergraph (contact-primary-school) which
is a temporal hypergraph where nodes are primary school students and hy-
peredges are instances of contact (physical proximity) between students. This
dataset is available in the XGI package. From that reference hypergraph, we
extract the number of nodes as well as the degree and edge size distribu-
tions. Those are used to generate random hypergraphs with varying level of
simpliciality.

We use a simplicial Chung-Lu model, which is a modification of the hyper-
graph Chung-Lu model where (i) edges are added sequentially and (ii) with
some probability ¢, the new edge to add is chosen to be a subset or superset of
some existing edge (a simplicial edge), else the new edge is chosen randomly
as in the usual Chung-Lu model. In step (ii), it may not be possible to add a
new simplicial edge, in which case the new edge is chosen at random.

For each such hypergraph G, we perform the following experiment. We
choose a uniform random order for the edges E(G) and track the size of the
largest component as hyperedges are added to initially empty hypergraph. For
stability, this process is averaged over several independent repeats.

In Figure 10.7, we show the results for the first 400 edges. From this plot,
we notice that initially, when only a few edges are added, the giant compo-
nent is larger for simplicial hypergraphs. This is likely due to the fact that
initially, new edges are more likely to intersect with existing ones for simpli-
cial hypergraphs, thus forming a dense “backbone” sub-hypergraph. On the
other hand, for non-simplicial Chung-Lu hypergraphs, since the initial edges
are chosen randomly, they are more likely to be disconnected. However, as the
number of edges increases, the effect is reversed: non-simplicial hypergraphs
cover a wider range of nodes which become connected when enough edges
are added. Note that for each hypergraph, as the number of edges increases,
every node is eventually in the giant component, provided that the initial
hypergraph G is connected.

Conclusion 297

----- non simplicial
-=-=- simplicial
— highly simplicial | ..

P

o o o
ES o ©
| | |

Proportion of nodes in giant component
o
o

0.0 A

T T T T T T T T
0 50 100 150 200 250 300 350 400
Number of edges added

FIGURE 10.7
Size of the giant component for Chung-Lu hypergraphs with varying level of
simpliciality.

10.4 Conclusion
Let us summarize what we have learned in this chapter:

1. Clearly, there might be some artificially generated networks that do
not have this property but, as a general rule, using the maximum
degree or the maximum betweenness attacks are much more efficient
than random node removal in making the ordered parameter of
the resulting network to drop.

2. If the network exhibits power law degree distribution, then the lower
the power law exponent the more effective attacks are.

3. If the network exhibits high assortativity, then it is more robust to
the maximum degree and the maximum betweenness attacks than
highly disassortative networks.

4. In general, the maximum betweenness attacks are expected to be
more efficient than the maximum degree attacks.

5. Other aspects and properties of (hyper)graphs may also influence
robustness; for example, we illustrated how the level of simpliciality

298 Network Robustness

may affect the growth of the giant component in hypergraphs.

Finally, let us note that we have only used a few simple centrality mea-
sures to select nodes for our attacks (the maximum degree and the maximum
betweenness, respectively). In practice, it is possible to perform more sophis-
ticated optimization process (“looking ahead” instead of applying a simple
greedy algorithm) for a given network that selects nodes that are most influ-
ential, given the predefined number of nodes we aim to be removed. Finding
such a set of nodes is a complex combinatorial optimization problem and
requires techniques and algorithms that are outside of the scope of this book.

10.5 Recommended Supplementary Reading
The Watts—Strogatz model was introduced in the following paper:

e D.J. Watts, S.H. Strogatz. Collective dynamics of ‘small-world’networks,
Nature 393.6684 (1998): 440-442. (Watts—Strogatz)

11
Road Networks

In this chapter, we present tools and techniques that can be used to analyze
graphs that are embedded in a geographical space. This class of applications
is encountered quite frequently in practice. In our example, we concentrate on
analyzing the graph representing some network of roads. For the purposes of
this chapter, we employ a small part of such a network extracted for the city
of Reno, NV, USA, which was obtained from the OpenStreetMap! project
and is publicly available.

The main goal is to identify intersections in this road network that are
exposed to a large volume of traffic. However, let us stress the fact that this
particular application is selected to illustrate the process and one should be
able to deal with a much broader set of questions using a similar approach. In
this particular example, we want to highlight the fact that very often graphs
are only a component of more complex mathematical models of some real
world phenomena. Such models are frequently quite involved and, as a result,
impossible to solve analytically. In such situations a typical approach to ana-
lyze them is by using a simulation (Méller, 2014). In the scenario considered
in this chapter, the models that are often used are so-called agent-based sim-
ulations, where we consider agents (in our case cars) performing some actions
(in our case traveling from source to destination location). A comprehensive
discussion of how such models are specified and implemented is outside the
scope of this book, however, the example we have chosen can be solved with
tools and techniques that we have covered in earlier chapters.

11.1 Representing a Road Network as a Graph

Road networks are typically represented as graphs in the following way. Nodes
in such graphs correspond to intersections and edges correspond to road seg-
ments between the intersections. In the accompanying notebooks, we include
code that shows how one can easily extract the necessary data from the Open-
StreetMap? project to obtain:

lwww.openstreetmap.org/

2We used the following excellent package: github.com/pszufe/OpenStreetMapX.jl

299

300 Road Networks

1. geographical locations (latitude and longitude) of nodes;

2. weights (road lengths) of edges, along with the road class (deter-
mining the traveling speed).

In Figure 11.1 we show an example of a graph representing a road network.
However, if a graph is actually embedded in a geographical space we may use
this fact and try to do a better job. In Figure 11.2 we illustrate how one can
present the graph representing the road network on top of the display of the
map. Indeed, it is possible to overlay a graph on top of the map like this
using the folium® package available in Python. This approach uncovers more
details about the structure of the graph. For example, we see that there is an
airport at the bottom of the map (and thus there are no roads there) or that
there is a river, slicing the map horizontally, with only a few bridges (edges)
crossing it. Finally, observe that there is a highway that is represented in pink
in the accompanying notebook. In this notebook, one may additionally see a
picture showing that roads on a highway have the highest speed of travel, as
one would expect. Moreover, in the notebook one may interact with the plot
by zooming in or out, or by moving it.

The graph representing a road network that we are presently considering is
directed and strongly connected. It consists of n = 1,799 nodes and m = 3,963
edges. In Table 11.3, we present node in- and out- degree distributions. We can
see that frequencies of in- and out- degrees for a given value are very similar,
which suggests that the majority of the roads are two-way. Also, interestingly,
frequencies of in-degree 1, 2, and 3 are similar to each other whereas 4 occurs
much less frequently (the same applies for out-degree). In the accompanying
notebook, plots of the graph with nodes coloured by their in- and, respectively,
out- degree are provided. From this plot one can learn, for instance, that most
nodes lying on a highway have in- and out- degree equal to one. This is due
to the fact that highways have a number of entries/exits and U-turn points.
As a result, the representation of a highway in OpenStreetMaps project has
many nodes having degree one to properly represent its shape.

Similarly, in Table 11.4 we list fractions of edges with different driving
speeds. We see that most of the roads have low speed limits (they are most
likely located in some dense residential zones), and the fastest roads constitute
less than 6% of edges. As observed above they form a highway.

11.2 Identifying Busy Intersections

The objective of our analysis is to identify the intersections in the road network
that are expected to experience a lot of traffic. In order to perform this analysis
we assume that citizens want to travel between any two randomly picked

3python-visualization .github.io/folium/

Identifying Busy Intersections 301

-
I

113

e
)

IIiI
£/

b

~HH

211/

o=
N re—0

:i, l

FIGURE 11.1
Graph representing the system of roads of Reno, NV, USA.

302 Road Networks

T, e

el
“H ﬂ
-
1
&
(LY
il
W
I
\
z

._"_' 2 L el 1 | ‘kﬁ* - (SN 5\.
== , — | //
e I o
AR N ITF \
==t - 8
I J,mg
T meme «
! / . :
4y
FIGURE 11.2

Road graph plotted on top of the map of Reno using the folium package.

TABLE 11.3
Distribution of node in- and out- degrees for the
graph representing road network in Reno, NV, USA.

degree in- % out- %
1 32.07 31.80
2 25.79 26.13
3 30.79 30.96
4 11.34 11.12
TABLE 11.4

Distribution of driving speed limits for
the graph representing road network in

Reno, NV, USA.
speed %
40 59.73
50 13.21
70 18.93
90 2.46

120 5.67

Identifying Busy Intersections 303

intersections in the considered road network via a shortest path linking them
(note that there may be more than one path with the shortest length between
any two intersections). This is, of course, a simplified model but it should still
be able to predict the possible outcome. A more realistic model would require
additional information about the behaviour of people living in the city such
as their home location, their workplace, number of cars, etc. If such external
knowledge is provided in a convenient format, adjusting the model should be
straightforward.

Our goal is to show how sensitive the results of the analysis are with
respect to the level of detail reflected by the graph. Therefore, we present
three scenarios with increasing levels of realism:

1. assuming that each edge in the road graph has the same length and
travel time;

2. taking into account real road lengths but assuming that the driving
speed on each edge is the same;

3. taking into account real road lengths and differentiating driving
speeds between roads (in particular, one may drive faster on a high-
way than on a gravel road).

Of course, even the third scenario that we consider is still lacking many
real-life aspects that are potentially important in practice and might affect the
result significantly. Here are some natural extensions we ignore in the analysis:

1. non-uniform distribution of the source and the destination locations
of travel (in particular, traffic generated from outside of the area
we have selected for analysis is completely ignored);

2. the number of lanes on each road;

relationship between traffic on a road and effective average driving
speed;

4. road usage restrictions for certain classes of vehicles;
5. effect of street lights;

6. restrictions on turning on intersections.

We left out these details from the analysis to keep the example simple enough.
However, it is certainly possible to extend the analysis with these details,
which could constitute an interesting computational project.

Let us now discuss how the analysis we want to perform can actually
be executed. The first idea that comes to mind is to write a simulator of
cars driving around the city. This approach is certainly feasible (and, in fact,
two of the authors of this book have several research papers applying such
a methodology), however, it is quite expensive to implement and execute.
Fortunately, the question we want to answer can be quite well approximated
by betweenness centrality, which we introduced in Section 3.3. The reason

304 Road Networks

behind it is that, since we assumed that the source and the destination nodes
are sampled uniformly at random from the set of all nodes and that people
select a shortest path to get to their destinations, the betweenness centrality
directly translates to the probability a given node will be visited on such a
route.

In the accompanying notebook we perform this analysis for the three no-
tions of node distance, as discussed above: ignoring road lengths, taking into
account road lengths, and taking into account both road lengths and speed
limits. Before we discuss the result, let us note that under all three distance
measures most of the nodes have very small betweenness and only a few nodes
have large betweenness. (This can be investigated on the betweenness distri-
bution histograms presented in the notebook.) This means that, indeed, one
may expect that certain intersections in the city create a “bottleneck” in the
road system and could become very busy.

In Figure 11.5 we present the results of the analysis when road lengths are
ignored. In this figure and in the following figures, large black circles represent
the top 1% of the busiest intersections, and small black circles indicate the
top 10% of the busiest intersections. One non-surprising conclusion is that the
busiest intersections are located in the center of the map; in particular, around
the bridges over the river. However, we can also spot some deficiencies. For
instance, some local roads located at the top of the map seem to be indicated
as relatively busy, which does not sound realistic. Therefore, in Figure 11.6 we
incorporate information about road lengths in the analysis. Now, we see that
the points are less scattered and lie along the main roads. We also notice that
the nodes in the very center of the map in Figure 11.5 are now slightly less
busy as they are quite distant from each other and so are not used as much as
would seem when ignoring the road lengths. Still, it seems that this analysis
could be improved as we note that, somewhat surprisingly, highways are not
utilized as much as one would expect. This is “fixed” in Figure 11.7 where
we additionally take into account the distance on the graph using travel time
(that is, the road lengths divided by road speeds). This change, indeed, leads
to a solution where the busiest nodes lie along the highway, as they should.

In this experiment, we observe that relatively small changes to the setting
of the problem might lead to significantly different conclusions. Such an it-
erative process of refining the analysis with additional assumptions is quite
typical in the daily work of a data scientist. The most challenging part is to
decide, following the principle of Occam’s razor, when to stop adding them.
Fortunately, as we have tried to show in this chapter, experimenting with
graph mining techniques is really easy, especially when you have a helpful
visualization at hand, and we hope you enjoyed it as much as we did!

Identifying Busy Intersections 305

5 & Ks,
= TH-
a1 4 H—

\!
|
|

— oS @ = -
ZT% 1 5%
o Eastoreg Svept W\
ES5imign B ™Y , “J\ 1]
smagllIRlL y
= = & ‘

% JIH *“‘ja
= S
2 1
STy

FIGURE 11.5

The busiest intersections assuming all road sections have the same weight in
the road graph of Reno.

=7 s
1
1) al ks
-) B
B NTHEH
o i/ k -
= e) (S
- [e
b
TN S 1 "
t Tl
=il : , |
i I 1?‘!17_ /
7
= r j’x
] J,m@
o <] \-‘t‘c\
)
3

FIGURE 11.6

The busiest intersections taking into account road lengths in the road graph
of Reno.

306 Road Networks

P o Dar WAL Fay
3%’ ; I 1 lanatks l /
S : 7y 18ayen
— v 2 f
y " L T B = 0
== — 1]
Y - ‘
Siiniiap .)
> Il - /
F . » ‘ J \I‘
——ed 1 {3:’
] jlllg P
- o= s a*‘é
NS &
FIGURE 11.7

The busiest intersections taking into account travel time in the road graph of
Reno.

11.3 Recommended Supplementary Reading

An introduction to simulation of transportation systems can be found in the
following textbook:

e D.P.F. Moller. Introduction to Transportation Analysis, Modeling and Sim-
ulation, Springer, 2014.

12

Fairness in Graph Mining

Fairness is a fundamental principle that underlies many aspects of human so-
ciety, often associated with equity, justice, and impartiality. In general terms,
fairness refers to the idea that individuals or groups should be treated in a
way that is free from bias or favouritism. In decision-making systems, regard-
less whether social, economic, or technological, fairness is crucial to ensure
that outcomes are perceived as legitimate and trustworthy. As more and more
decisions are influenced by algorithms, the question of fairness has become
increasingly important in fields like machine learning, data science, but also
in network science.

Indeed, in the context of network science, fairness takes on unique and
complex dimensions. Ensuring fairness in such systems involves addressing
how resources, influence, or information are distributed across the network.
For instance, algorithms that rank nodes, detect communities, or allocate at-
tention may reinforce existing inequalities or biases present in the structure
of the network. As a result, researchers are increasingly examining how to
design network algorithms and measures that promote equitable outcomes,
prevent discrimination, and respect the diverse roles and positions of individ-
uals within a network.

To keep the exposition of various definitions of fairness simple, we will con-
centrate on just one aspect of supervised learning, namely, the node classifica-
tion problem. The aim is to build the model that makes unbiased predictions
for node labels, preventing discrimination based on sensitive attributes like
gender or race, while maintaining high accuracy. However, let us note that
fairness is also incorporated into the unsupervised learning context such as
community detection that we discussed in Chapter 5. For example, Panayiotou
et al. (2025) propose an algorithm that aims to maximize a linear combination
of node partition modularity function (see Section 5.4) and a measure of fair-
ness of this partition (which, following the method of Lagrange multipliers, is
equivalent to maximizing modularity function, subject to a constraint on the
level of fairness of the partition).

307

308 Fairness in Graph Mining

12.1 Measurements of Fairness of Prediction Models

Let Y be a binary target variable assigned to a node of a graph and X be
explanatory variables of this node. Assume that ¥ (X) is a random variable
being a binary prediction of a realization of a target variable. Typically,)A/(X)
is a prediction of some function of X whose functional form is estimated from
data.

Assuming that we have a scoring model s from the feature space X into
real numbers, and a classification threshold 7 € R we typically assume that
Y (X) =1ifs(X) > 7and Y(X) = 0 otherwise. Finally, assume that one of the
explanatory variables, say X, is a protected attribute against which we want
the model to be fair. In many applications, such as credit scoring in banking,
such variables are defined by law. (For example Equal Credit Opportunity Act
and Fair Housing Act indicate such variables as gender, race, and religion as
protected.) For simplicity, we will assume that X, is binary but all definitions
can be generalized to other situations.

There are several measures of fairness of the prediction Y (X). We will only
describe two popular ones: disparate impact and separation.

The first measure we consider is disparate impact (Kim, Chen, and Tal-
wakar, 2020). This measure is aligned with the demographic parity criterion
(Hardt, Price, and Srebro, 2016):

DI =|P(Y|X,=1)— P(Y|X, =0)|.

(Note that we minimally changed the original definition proposed by Kim,
Chen, and Talwakar (2020) to improve its numerical properties.) The ideal
value for this measure is zero; any deviation from zero indicates a violation of
fairness under the disparate impact criterion. Intuitively, this means that the
model’s prediction of a positive outcome (i.e., Y = 1) should be independent
of the value of the protected attribute X,.

The second measure we consider is separation (Kozdoi, Jacob, and Less-
mann, 2022). This measure aligns with the equalized odds criterion (Hardt,
Price, and Srebro, 2016):

1
1 . .
SP:§§ ’P(Y:i|Y:1—i,Xa:1)—P(Y=i|Y:1—z’,Xa:0) .
1=0

(Note that here we also minimally changed the original definition proposed by
Kozdoi, Jacob, and Lessmann (2022) to ensure that the measure controls both
false positive rate and false negative rate.) As before, the ideal value for this
measure is zero and deviations from this value indicate that the model is not
fair with respect to SP measure. Its interpretation is that the rate of correct
and incorrect classifications made by the model do not depend on the value

Measurements of Fairness of Prediction Models 309

of protected attribute X,. In other words, the likelihood of misclassification
should be independent of the protected attribute, conditional on the true
outcome.

Let us showcase these measures in the following simple scenario. Suppose
a company uses a machine learning model to decide whether to invite job
applicants for an interview. The model predicts Y =1 for “invite” and Y =0
for “reject”. Our goal is to analyze fairness with respect to gender, where
X, = 1 indicates that the applicant is a female and X, = 0 indicates that
the applicant is a male. The true label Y = 1 indicates that the applicant is
actually qualified, based on internal assessments or ground-truth outcomes.

Disparate impact looks at how the overall selection rates differ between
groups, regardless of true qualification:

P(Y/ =1|X,=1) = 0.50 (50% of female applicants are invited)
P(Y =1 | X = 0) = 0.70 (70% of male applicants are invited).

We get that DI =]0.50 — 0.70| = 0.20, that is, there is a 20 percentage point
gap in invitation rates between genders. This means the model favours male
applicants in terms of overall selection, regardless of who is truly qualified.

Separation provides a slightly more detailed picture. It checks whether the
model makes errors at the same rate across groups, conditional on the true
qualification Y. Let us look at the two relevant error rates. For False Positive
Rate (FPR), we get

P(Y =1|Y=0,X,=1) = 0.30 (30% of unqualif. women mistakenly invited)
P(Y =1|Y=0,X,=0) = 0.10 (10% of unqualif. men mistakenly invited)

whereas for False Negative Rate (FNR), we have

P(}A/ =0 | Y=1X,= 1) = 0.40 (40% of qualif. women are wrongly rejected)
P()A/ =0|Y=1,X,=0) = 0.20 (10% of qualif. men are wrongly rejected).

We get that SP = $(/0.30 — 0.10] + [0.40 — 0.20]) = 0.20, that is, the model
exhibits unequal error rates across genders. Female applicants are both more
likely to be wrongly invited when unqualified, and more likely to be wrongly
rejected when qualified.

310 Fairness in Graph Mining

12.2 Methods for Improving Model Fairness

In the previous section, we described two simple measures whether a model
meets the desired fairness criteria. A natural followup question is, for a given
a problem at hand, what one should do to ensure that the model used meets
them. There are three types of approaches that can be used to achieve this
objective (Friedler et al., 2019):

e fairness thorough unawareness: in this method the protected features are
removed from the training data set;

e pre-processing methods: modify the training data set in order to ensure that
the model built using it meets fairness criteria;

o in-processing methods: modify the algorithm used to estimate the predictive
model so as to ensure that it produces a model in line with a desired fairness
objective;

e post-processing methods: take an initial model as given, but modify the pre-
dictions produced by it in order to make sure that the updated forecasts
meet fairness criteria.

In this chapter we will discuss a post-processing method that can be used
either to ensure disparate impact or separation. In this method, two separate
classification thresholds 7y and 71 are selected for X, = 0 and, respectively,
X, =1 classes. In this approach we need to decide on two criteria:

e the objective function that we want to maximize; in our examples we will use
the accuracy, i.e. the probability of correct classification, namely, P(Y = Y);

e which fairness criteria we want to keep and to what extent, by selecting an
acceptable deviation threshold.!

Therefore, our problem can be described as follows:

max P(Y =Y | 10,71) (12.1a)

70,71

subject to DI(my,71) < Cpr, (12.1b)
SP(T07T1) S Csp7 (12.16)

where we optimize over the values of cut-off thresholds 7y, 71, while Cp; and
CgP are fairness criteria quality thresholds selected by the user.

INote that, in general, we cannot assume that it is possible to ensure that both criteria
are met, i.e. DI =0 and SP = 0.

Examples 311

In the experimental section below, we will compare the performance (accu-
racy) and fairness level (as measured by DI and SP criteria) of the following
scenarios:

e original model without any modifications;

e fairness through unawareness approach;

e post-processing via separate classification thresholds with DI objective;
e post-processing via separate classification thresholds with SP objective.

A reader interested in the subject of ensuring fairness in ML models should
investigate some standard libraries that implement more advanced methods
in this domain. In particular, among the popular tools are aif360% and Fair-

learn3.

12.3 Examples

In this section we illustrate model unfairness as well as ways to alleviate this
issue via a few simple examples.

For the first example, we consider the GitHub developers network that we
already saw in Section 1.12. Recall that in this network there are two classes
of nodes (machine learning (ml) and web developers), with edges between de-
velopers who follow at least one common repository. We define Y, the binary
target variable, such that Y = 1 for ml developers and Y = 0 for web devel-
opers. For the explanatory variables, we consider X,,;; = 1 + log(D,,;), where
D,y is the mil-degree, the number of ml developer neighbours for each node.
Similarly, we define Xyep = 1+ log(Dyep), where Dyep is the web-degree. For
the protected variable X, we picked one of the binary attributes that are sup-
plied with the dataset; we selected an attribute that is correlated with the
target variable. In Table 12.1, we show the mean values for D,,;, Dyep and Y
conditioned on the value of the protected variable X, which clearly indicate
correlations.

Using logistic regression, we build a scoring model for Y using all three
variables, $1(Dyi, Duwep, X); it yields predictive scores in the [0,1] interval
where large values strongly indicate that Y = 1. For some threshold 7, we
predict Yy =1if $1(Dmiy Dyep, X) > 7 and Y = 0 otherwise. We performed
a grid search to pick the value of 7 that maximizes the accuracy, namely,
P(Y = Y). The value 7 = 0.46 gave us the best accuracy score of 0.851

2https://aif360.readthedocs.io/en/latest/index.html
Shttps://fairlearn.org/

312 Fairness in Graph Mining
TABLE 12.1

Mean values of the ml and web degrees (D1, Dyep) and
the target variable Y, conditioned on the value of the
protected variable X.

X Dml Dweb Y
0 1.241 14.894 0.140
1 6.277 5.763 0.741

with corresponding fairness measures DI = 0.827 and SP = 0.700, which are
indicative of unfairness in the model.

Next, we try the fairness through unawareness method, building a second
model s2(Dyn1, Dyey) where the protected variable X is simply ignored. Using
the same methodology as with the previous model, we found that the value
7 = 0.46 gave us the best accuracy score of 0.845 (almost the same!), while
the fairness measures slightly decrease to DI = 0.652 and SP = 0.480.

The above scores still indicate unfairness in the model, so we try the post-
processing method described in the previous section, that is, we look for sep-
arate thresholds (79,71) depending on the value of the protected variable.
Starting from our first model s1(Dyni, Dyep, X), we apply the methodology
described in equations (12.1). We perform the optimization via a grid search
over both parameters 0 < 79,7, < 1. In Table 12.2, we show our results for
different choices of the constraints C'p; and Csp for the fairness scores. This
experiment shows that one can significantly reduce the unfairness values (one
or both, setting a threshold of 0.05), at the price of a small decrease in accu-
racy. In Figure 12.3, we summarize the accuracy, DI and SP scores over the
entire grid of values for (79, 71). We see very similar patterns for the DI and
SP scores.

For the second example, we generated a synthetic ABCD graph with one
large community (of size 1,000) and 10 small ones (of size 100), with the degree
distribution being uniform in the range [30,130). The binary target variable is
such that Y = 1 if the node is a member of the large community, and Y = 0
otherwise. For the explanatory variable, we simply use the node degree D, and
we engineered a protected binary attribute X that is negatively correlated with
Y. Details for the generation of X are given in the accompanying notebook.

Given the parameters of the ABCD graph, we expect a positive correlation
between D and Y (see Section 5.3 for more details about this model). The
predictive model is simply the degree D, along with a threshold 7 € [30, 130)
which we optimize for accuracy. With this simple model, we obtained 0.73 for
the accuracy (with 7 = 107), and fairness scores DI = 0.199 and SP = 0.144.

We apply the methodology described in equations (12.1) to reduce the un-
fairness. We perform the optimization via a grid search over both parameters
30 < 79,7 < 130. In Table 12.4, we show our results for different choices of
the constraints Cp; and Cgp for the fairness scores while in Figure 12.5 we

Ezxamples 313

summarize the accuracy, DI and S P scores over the entire search grid. As with
the previous example, the conclusion is that one can reduce the unfairness at
the cost of some decrease in accuracy.

TABLE 12.2
Optimizing accuracy on the GitHub network with various
constraints for the fairness scores.

Cpr Csp (10, 7T1) accuracy DI SP

100 1.00 (0.38, 0.54) 0.852 0.799 0.656
0.05 100 (0.8, 0.94) 0.767 0.044 0.054
()
()

1.00 0.05 0.38, 0.89 0.788 0.168 0.042
0.05 0.05 0.40, 0.94 0.766 0.046 0.049

Accuracy

To

0.0 0.0

oz on
cgod
Soo

FIGURE 12.3
The accuracy, DI and SP fairness scores for the Github developer experiment
as a function of the thresholds (79, 71) that depend on the value of the pro-
tected variable.

314 Fairness in Graph Mining

TABLE 124
Optimizing accuracy on the ABCD graph with various
constraints for the fairness scores.

Cpr Csp (10, 7T1) accuracy DI SP

1.00 1.00 (107, 106) 0.731 0.191 0.141
0.05 1.00 (107, 89) 0.704 0.047 0.178
1.00 0.05 (115, 106) 0.680 0.087 0.049
005 005 (116, 103) 0.664 0.046 0.050

Accuracy

FIGURE 12.5

The accuracy, DI and SP fairness scores for the ABCD experiment as a
function of the thresholds (79, 71) that depend on the value of the protected
variable.

12.4 Recommended Supplementary Reading

e J.S. Kim, J. Chen, A. Talwalkar., FACT: A diagnostic for group fairness
trade-offs, International Conference on Machine Learning (2020), 5264-5274.

e N. Kozodoi, J. Jacob, S. Lessmann, Fairness in Credit Scoring: Assessment,
Implementation and Profit Implications, European Journal of Operational

Recommended Supplementary Reading 315
Research (2022), 297(3), 1083-1094.

e M. Hardt, E. Price, N. Srebro. Equality of opportunity in supervised learning
(2016). Neural Information Processing Systems, p. 3315-3323.

e S.A. Friedler, C. Scheidegger, S. Venkatasubramanian, S. Choudhary,
E.P. Hamilton, D. Roth. A comparative study of fairness—enhancing in-
terventions in machine learning (2019). Proceedings of the Conference on
Fairness, Accountability, and Transparency, p. 329-338.

e G. Panayiotou, A. M. M. Simon, M. Magnani, E. Calikus. MOU-
FLON: Multi-group Modularity-based Fairness-aware Community Detection,
arXiv:2510.12348.

Index

(k,t)-core, 250

2-section, 231

a-centrality, 68

k-core, 83

s-betweenness, 245
s-clustering coefficient, 245
s-connected component, 244
s-diameter, 244

s-distance, 244

s-harmonic centrality, 245

s-walk, 243
s-wedge, 245
ABCD

ABCD+0?, 272

Adamic-Adar, 187

Adjusted Mutual Information, 146

Adjusted Rand Index, 147

AGRI, 169

AMI, 146

anomaly score, 135

area under the ROC curve, 204

ARI, 147

Artificial Benchmark for Community
Detection (ABCD) model
Aly,7,€), 142

assortative network, 103

asymptotic notation, 29

asymptotically almost surely, 29

attenuation factor, 69

AUC, 204

authorities, 71

authority centrality, 73

Barabdsi—Albert model, 27
Bayan algorithm, 148
Bell number, 136

Bernoulli random variable, 5
binomial random graph G(n,p), 30
critical phase, 31
phase transition, 31
sub-critical phase, 31
super-critical phase, 32
threshold subgraph probability,
35
binomial random hypergraph
H(n,P), 232
binomial random variable, 5
breadth-first-search, 46
breadth-first-search (BFS), 50

Cauchy—Schwarz inequality, 6
ceiling function, 3
centrality, 63
authority centrality, 72
betweenness centrality, 77
closeness centrality, 75
degree centrality, 64, 65
eccentricity centrality, 77
group centrality, 85
harmonic centrality, 76
hub centrality, 72
Katz centrality, 69
PageRank centrality, 71
characteristic polynomial, 66
Chung-Lu
hypergraph, 230, 237
Chung-Lu model G(w), 40
classical node embedding, 181, 183
Clauset—Newman—Moore algorithm,
149
clique expansion, 231
Clique Percolation Method (CPM),
268

316

Index

cluster similarity, 154

average, 154

complete, 154

single, 154
clustering coefficient

global, 16

local, 16
CNM algorithm, 149
Common Neighbours, 187
community, 131, 133

strong, 132

weak, 132
community association strength, 135
community distribution distance, 136
conditional probability, 5
configuration model, 45
coreness, 83
correlated network, 102
correlation exponent, 106
cosine similarity, 185

damping factor, 71
datasets
airport traffic graph, 88, 119
American college football, 167
electric grid network, 18, 123,
286
Game of Thrones, 255
GitHub developers network, 17,
55, 123
movie actors graph, 124
NCI1 and NCI109, 275
OpenStreetMap Reno roads, 299
Word Association graph, 271
Zachary karate club, 130, 161,
211
Deep Walk, 193
degree
external, 132
internal, 131
normalized within-module, 133
degree correlation coefficient, 105
degree correlation function ki, (¢),
103
degree correlation matrix, 101

317

degree-edge size correlation, 247
Delta centrality, 79
demographic parity, 308
dendrogram, 153
depth-first-search, 46
disassortative network, 103
disparate impact, 308

double round exposure, 142
downward closure, 248

ECG algorithm, 150
edge, 9

endpoint, 9
edge betweenness, 155
edit simpliciality, 248
ego-splitting, 268
eigenvalue, 65

leading eigenvalue, 66
eigenvector, 65

left eigenvector, 66

right eigenvector, 66
eigenvector centrality, 66, 68
elementary event, 4
embedding, 184

classical, 181, 183

structural, 181, 183
Ensemble Clustering algorithm for

Graphs, 150
equalized odds, 308
erased configuration model, 49
Erdés-Rényi random graph process,
31

events, 4

face edit simpliciality, 248

Fiedler value, 158

Fiedler vector, 158

floor function, 3

forest, 15

friendship paradox, 104

Frobenius norm, 189

Fundamental Theorem of Algebra, 8,
66

gamma function, 43
GCN, 196

318

generalized Chung-Lu hypergraph
model, 240
generalized hypergeometric model,
146
Geometric Chung-Lu random graph
G(w,&,), 201
giant component, 31
volume-based, 41
Girvan—Newman algorithm, 155
global divergence score, 203
GNNs, 211
graph, 9
d-regular, 15
adjacency list, 10
adjacency matrix, 10
average degree, 13
bike wheel, 17
bipartite, 15
centralization, 87
clique, 15
complement, 14
complete, 15
complete bipartite, 15
connected, 12
connected component, 12
cycle, 15
degree
maximum, 14
minimum, 14
degree distribution, 13
degree sequence, 13
density, 35
diameter, 12
directed, 10
disconnected, 12
distance, 12
edge
parallel, 9
edge list, 10
efficiency, 78
empty, 15
incidence matrix, 10
independent set, 15
lollipop, 17
loop, 9

Index

path, 12, 15
length, 12

simple, 9

star, 15

strongly connected component,

12

undirected, 9

volume, 14

volume set, 14
Graph Convolution Network, 196
graph Laplacian, 157
Graph Neural Networks, 211
graph-aware adjusted RAND index,

169

graph-aware RAND index, 169
Graph2Vec, 277
graphic sequence, 14, 40
GraphSAGE, 196
GRI, 169
ground truth, 130

harmonic number H,,, 48
Herfindahl-Hirschman index, 134
hierarchical clustering, 153
algorithm, 153
agglomerative, 153
divisive, 153
hierarchical tree, 153
High Order Proximity Embedding
algorithm, 191
HITS, 72
homogeneous system of equations, 65
HOPE, 191
hub centrality, 73
hubs, 71
hyperedge, 230
hypergraph, 230
2-section, 231
k-uniform, 230
clique expansion, 231
co-rank, 230
incidence graph, 231
line graph, 231
rank, 230
regular, 230

Index

simple, 230
Hypergraph Artificial Benchmark for
Community Detection
(h—ABCD) model
H(v,1,€), 235
Hyperlink-Induced Topic Search, 72

identity matrix, 7

independent events, 5

Infomap, 159

inhomogeneous random graph, 40
integers, 3

irreducible matrix, 66

Jaccard index, 270

Katz Index, 186

Kendall’s rank correlation coefficient,
82

Kolmogorov—Smirnov statistic, 43

Kronecker delta, 108, 154

Label Propagation algorithm, 156
Lancichinetti-Fortunato-Radicchi
(LFR) model L(v,T, 1), 139
Laplacian Eigenmaps, 190
layout, 212
force-directed, 212
Fruchterman-Reingold, 212
Kamada-Kawai, 212
Leiden algorithm, 150
LINE, 198
line graph, 208
local divergence score, 204
Local Linear Embedding, 188
local simpliciality ratio, 249
Louvain algorithm, 149

matrix
characteristic polynomial, 8
determinant, 8
eigenvalue, 8
eigenvector, 8
Gram, 9
Gramian, 9
improper rotation, 9

319

inverse, 8
invertible, 8
irreducible, 9
leading eigenvalue, 9
orthogonal, 8, 9
rotation, 9
roto-reflection, 9
symmetric, 8
trace, 8
transpose, 8
maximum subgraph density, 35
MI, 144
modularity, 147
T-modularity, 241
degree tax, 148
edge contribution, 148
majority, 241
maximum modularity ¢*(G), 148
modularity function, 148
resolution limit, 151
strict, 241
monotone property, 83
motifs, 33
multinomial coefficient, 4
Mutual Information, 144

natural cut-off, 39
natural numbers, 3
network
assortative, 103
correlated, 102
disassortative, 103
neutral, 103
uncorrelated, 102
neutral network, 103
NMI, 144
oNMI, 267
node, 9
adjacent, 9
degree, 13
neighbour, 13
node role
hub, 134
connector, 135
kinless, 135

320

provincial, 134
non-hub, 134

connector, 134

kinless, 134

peripheral, 134

ultra-peripheral, 134
Node2Vec, 194
Normalized Mutual Information, 144
null-model, 147

OhmNet, 208
order parameter, 285

pairing model, 45
participation coefficient, 134
partition, 131
Pearson correlation coefficient, 105
Pearson’s correlation coefficient, 6,
81
Perron—Frobenius Theorem, 9, 66
Personalized PageRank, 186
planted partition model, 138
Poisson distribution, 37
power iteration method, 73
power set, 3
power-law distribution, 38
degree exponent, 38
Preferential Attachment model, 27
probability
conditional, 100
joint, 100
probability measure, 4
probability space, 4
uniform, 4
proximity
kth-order, 185
Adamic-Adar, 187
Common Neighbours, 187
first-order, 185
Katz Index, 186
Personalized PageRank, 186
second-order, 185
SimRank, 188
PyG, 211
PyTorch Geometric, 211

Index

Rand Index, 146
random d-regular graph G, 4, 45
random k-uniform hypergraph
H(n,p, k), 233
random geometric graph RGG(n,r),
52
random graph G, 4 with a given
degree sequence d, 48
random variable, 5
covariance, 6
expectation, 5
linearity, 6
expected value, 5
variance, 6
randomized degree correlation
function k,,,,(¢), 109
ranking, 80
dense ranking, 80
fractional ranking, 80
ordinal ranking, 80
standard competition ranking,
80
Ravasz algorithm, 153
real numbers, 3
Receiver Operating Characteristic,
204
Recursive Feature Extraction, 196
ReFeX, 196
resilience, 285
rewiring algorithm, 109
RI, 146
rich-club, 106, 107
coefficient, 107
ring of cliques, 169
robustness, 285
ROC, 204

sample space, 4

SDNE, 195

separation, 308

signed graphs, 207

Signed Network Embedding, 207
signum function, 82

simplicial fraction, 248
simplicial matrix, 249

Index

simplicial pair, 248
simplicial ratio, 249
simpliciality, 248
SimRank, 188
SkipGram, 192
SNE, 207
softmax function, 193
SPA, 112
spanning tree, 15
Spatial Preferential Attachment, 112
Spearman’s rank correlation
coefficient, 81
Spectral Bisection algorithm, 157
Stirling’s formula, 29
stochastic block model S(P,N), 138
strength of a node, 256
structural cut-off, 40, 109
Structural Deep Network
Embedding, 195
structural node embedding, 181, 183
subgraph, 14, 83
induced, 14
maximal, 83
spanning, 14
switching algorithm, 49, 109

TAU algorithm, 150
topological overlap matrix, 154
tree, 15

leaf, 15

uncorrelated network, 102
uniform random graph G(n,m), 31

Viger’s algorithm, 50

Watts—Strogatz model, 59, 289
Word2Vec, 192

Xulvi-Brunet—Sokolov’s algorithm,
116

Yen’s algorithm, 78

321

